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This work examines the thermodynamic consequences of the repeated partial projection model for
coupling a quantum system to an arbitrary series of environments under feedback control. This paper
provides observational definitions of heat and work that can be realized in current laboratory setups.
In contrast to other definitions, it uses only properties of the environment and the measurement
outcomes, avoiding references to the ‘measurement’ of the central system’s state in any basis. These
definitions are consistent with the usual laws of thermodynamics at all temperatures, while never
requiring complete projective measurement of the entire system. It is shown that the back-action
of measurement must be counted as work rather than heat to satisfy the second law. Comparisons
are made to quantum jump / unravelling and transition-probability based definitions, many of
which appear as particular limits of the present model. These limits show that our total entropy
production is a lower bound on traditional definitions of heat that trace out the measurement device.
Examining the master equation approximation to the process at finite measurement rates, we show
that most interactions with the environment make the system unable to reach absolute zero. We
give an explicit formula for the minimum temperature achievable in repeatedly measured quantum
systems. The phenomenon of minimum temperature offers a novel explanation of recent experiments
aimed at testing fluctuation theorems in the quantum realm and places a fundamental purity limit

on quantum computers.

I. INTRODUCTION

A version of the EPR paradox prevents simultaneously
doing work on a quantum system and knowing how much
work has been done. A system can do work on its en-
vironment only if the two have a nonzero interaction
energy. During interaction, the two become entangled,
leading to a superposition of different possible values for
the work. According to quantum mechanics, measuring
the energy of either system removes correlations so that
the interaction energy becomes exactly zero. [1] There-
fore either the system-environment interaction is zero or
the work is unknown.

We argue that this paradox presents the central dif-
ficulty in applying fluctuation theorems and work rela-
tions to quantum systems. It is a re-statement of the
energy-time uncertainty principle, and therefore mani-
fests whenever energy measurements are preformed on
nontrivial quantum systems.

One hundred years ago, Einstein presented a first-order
rate hypothesis concerning the rate of energy exchange
between a molecular system and a reservoir of photons.[2]
Under this hypothesis, the transition between states with
known molecular energy levels by emission and absorp-
tion of discrete photons can be shown to bring about
thermal equilibrium for all parties: the photons, the
molecular energy levels, and the particle velocities. This
semiclassical picture provided a clear, consistent, and
straightforward picture for the time-evolution of coupled
quantum systems. Nevertheless, the argument must have
appeared unsatisfactory at the time because it only pro-
vided a statistical, rather than an exact, mechanical de-
scription of the dynamics.

Many years later, Einstein, Podolsky, and Rosen pub-
lished the famous EPR paradox.[3, 4] The paradox states
that, before any measurement is made, neither position

nor velocity exist as real physical quantities for a pair
of entangled particles. Either of the two choices can be
‘made real’ only by performing a measurement. The con-
sequence for energy exchange processes follows directly.
For a 2-state system entangled with a field, no definite
separation of energy between the molecule and the field
exists before any measurement is made.

Recent works on quantum fluctuation theorems con-
front this difficulty in a variety of ways. One of the
most prominent is the quantum jump method based on
a stochastic unravelling of Lindblad equation.[5, 6] It re-
places a dissipative quantum master equation with an en-
semble of trajectories containing periodic jumps due to
measurement.[7] In that setup, the jump process repre-
sents dissipation, so heat is defined as any energy change
in the system due to the jumps. Other changes in en-
ergy, caused by varying the Hamiltonian in time, are
counted as work. Fluctuation theorems for this process
are based on the detailed balance condition for jumps
due to the reservoir, avoiding most issues with defining a
work measurement. Application of the jump process for
a Jaynes-Cummings system showed that the fluctuation
theorem for work is followed exactly when the the cou-
pling uses the rotating wave approximation.[8] However,
that approximation removes the essential difficulty with
the energy-time uncertainty relation.[9]

The work of Venkatesh[10] on general coupling Hamil-
tonians shows that regular, projective measurement of
work-like quantities based on the system alone (such as
time-derivative of the Hamiltonian expectation) gener-
ally leads to “qualitatively different statistics from the
[two energy measurement] definition of work and gener-
ally fail to satisfy the fluctuation relations of Crooks and
Jarzynski.”

Another major approach is to model the environment’s
action as a series of generic quantum maps. A physical



interpretation as a two-measurement process accomplish-
ing feedback control was given by Funo.[11] There, an ini-
tial projection provides classical information that is used
to choose a Hamiltonian to evolve the system for a fi-
nal measurement. That work showed that the transition
probabilities in the process obey an integral fluctuation
theorem. Although the interpretation relied on a final
measurement of the system’s energy, it provided one of
the first examples for the entropic consequences of mea-
surement back-action.[12]

Recent work on the statistics of the transition pro-
cess for general quantum maps showed that the canoni-
cal fluctuation theorems hold as long as the maps can be
decomposed into transitions between stationary states of
the dynamics.[13] This agrees with other works showing
the importance of stationary states in computing entropy
changes from quantum master equations.[14] In other
words, the essential difficulties with the quantum case
come from differences between the basis in which the dy-
namics is carried out and that in which the measurement
is done.

In contrast to these approaches, the present work starts
from a physically realizable measurement process and
shows that work and heat can be defined independently
— without recourse to stationary states of the central sys-
tem. By doing so, it arrives at a clear picture of the
back-action, and a minimum temperature argument. It
also builds a quantum parallel to the measurement-based
definition of work and heat for classical nonequilibrium
systems laid out in Ref. [15]. There, the transition prob-
ability ratio is shown to be equivalent to a physical sepa-
ration of random and deterministic forces. Although no
fluctuation theorem can be shown in general, our expres-
sions reduce to well-known limits. In particular, for weak
coupling the interaction commutes with the total uncou-
pled energy, H4 + Hp, and a fluctuation theorem such
as the one in Ref. [13] applies.

We consider a combination of system and reservoir
with time-independent joint Hamiltonian,

FIZﬁA+ﬁB+7HAB. (1)

The coupling Hamiltonian should not be able to sim-
ply shift an energy level of either system, which requires
Tr 4 [f(lflA)ﬁAB} = 0 and Trp [f(ﬁg)ﬁAB} = 0, for
arbitrary functions, f. A simple generalization discussed
later is to waive the first constraint, but this is not inves-
tigated here. Time-dependence comes in by the choice of
H,p and the initial state pp at the start of each mea-
surement interval.

There have been many definitions proposed for heat
and work in quantum systems. These fall roughly into
three categories: the near-equilibrium limit, experimen-
tal work-based definitions, and mathematical definitions
based on information theory.

The near-equilibrium limit is one of the earliest mod-
els, and is based on the weak-coupling limit of a system
interacting with a quantum energy reservoir at a set tem-

perature over long time intervals. That model is prob-
ably the only general one derivable from first principles
where it can be proven that every system will eventu-
ally relax to a canonical equilibrium distribution with the
same temperature as the reservoir.[16] The essential step
is taking the van Hove limit, where the system-reservoir
interaction energy scale, 7, goes to zero (weak coupling)
with constant probability for energy-conserving transi-
tions (which scale as v2/(h%))). In this limit, the only
allowed transitions are those that conserve the uncou-
pled energy, H4 + Hp. The dynamics then becomes a
process obeying detailed-balance for hopping between en-
ergy levels of the system’s Hamiltonian, H,4. States with
energy superpositions can mix, but eventually decay to
zero probability as long as the environment can couple
to every system energy level.

_Adding an effective time-dependent Hamiltonian,
HS(t), onto this picture and assuming very long time-
scales provides the following definitions of heat and
work,[17]

Qo = T [HS(1))]

Weﬂ =Tr lal%[éiz%t)p} ) (2)

where F' = dF/dt denotes the time-derivative of F' ac-
cording to the dynamics, and e~ B () must be the sta-
tionary state of the time-evolution used. Note that to
match the dynamics of a coupled system, HSI(¢) must

be a predefined function of ¢ satisfying, (see Eq. 14)

Tr [ﬁﬁxﬁ(f) Trp [PAB]} =Tr [(ﬁA +7yHap)pas| (3)

Work and heat defined by equation 2 have been used ex-
tensively to study quantum heat engines.[14, 17-24] For
this definition, it is possible to prove convexity,[16] and
positivity of Siot = Sa — BQCH.[N] Statistical fluctua-
tions of heat and work have also been investigated.[7,
11, 13, 25] These first applications have demonstrated
some of the novel properties of quantum systems, but
encounter conceptual difficulties when applied to dynam-
ics that does not follow the instantaneous eigenstates of
HE(¢).[10, 12, 14]

The paradox described in this work shows why moving
away from eigenstates is so difficult. The small-coupling,
slow-process limit under which Eq. 2 applies also amounts
to an assumption that the system-environment pair is
continually being projected into states with known effec-
tive energy. Its validity in deriving quantum fluctuation
theorems relies on the this particular choice of basis.

Entropy can also be defined thermodynamically by an-
alyzing physical processes taking an initial state to a final
state. One of the simplest results using the thermody-
namic approach is that even quantum processes obey a
fluctuation theorem for exchanges of (heat) energy be-
tween system and environment when each transition con-
serves energy and there is no external driving force.[26]



On averaging, this agrees with the common experimental
definition of heat production as the free energy change
of two reservoirs set up to dissipate energy by a quan-
tum contact that allows monitoring the energy exchange
process.[27-30] Semiclassical trajectories have also been
investigated as a means to show that postulated expres-
sions for quantum work go over to the classical definition
in the high-temperature or small-A limit.[31]

Other works in this category consider a process where
the system’s energy is measured at the start and end
of a time-dependent driving process. It is then easy to
show that the statistics of the energy change give a quan-
tum version of the Jarzynski equality for the free energy
difference.[32, 33] More general results are difficult owing
to the fact that, for coupled systems, quantum transitions
that do not conserve uncoupled energy are possible, giv-
ing rise to the paradox motivating this work.

There have also been many mathematically-based defi-
nitions of entropy production for open quantum systems.
The primary goal of a mathematical definition is to quan-
tify the information contained in a quantum state.[34] It
is well-known that preparation of a more ordered system
state from a less ordered one requires heat release propor-
tional to the information entropy difference.[35, 36] From
this perspective, information is more fundamental than
measured heats, because it represents a lower bound on
any physical process that could accomplish this transfor-
mation. A maximum work could be found from such a
definition using energy conservation. However, the dis-
advantage of a mathematical definition is that it can not
be used to construct a physical transformation process
obeying these bounds.

Most of the bounds on mathematical entropy produc-
tion are proven with the help of the Klein inequality stat-
ing that relative entropy between two density matrices
must be positive.[37] There are, in addition, many con-
nections with communication and measure theory that
provide approximations to the relative entropy.[34, 38|

One particular class of mathematical definitions that
has received special attention is the relative entropy,
inst]

S(plp™") = Tr [plog p — plog p
= B(F(t) — F9) (4)

between an arbitrary density matrix and an ‘instanta-
neous equilibrium’ state,

P = exp |[<BHN)]/2NB,). ()

This definition is closely related to the physical process
of measuring the system’s energy at the start and end
of a process. Several notable results have been proven
in those works, including work relations and integrated
fluctuation theorems[11, 13, 32, 39, 40] as well as useful
upper and lower bounds.[7, 41] The present work is dis-
tinguished from these mathematical definitions because it
completely removes the requirement for defining or using

an ‘instantaneous equilibrium’ distribution of the central
system or directly measuring the central system at all.

One of the primary motivations for this work has been
to derive a firm theoretical foundation for analyzing time-
sequences of measurements in hopes of better under-
standing the role of the environment in decoherence.[42—-
51] The present paper provides a new way of understand-
ing the gap between the Lindblad operators describing
the quantum master equation and the physical processes
responsible for decoherence. Rather than unravelling the
Lindblad equation,[6] we choose a physical process and
show how a Lindblad equation emerges. The result also
provides an alternative continuous time, Monte Carlo
method for wavefunction evolution[52, 53] without us-
ing the dissipation operator associated with the Lindblad
master equation.

Another outcome has been finding a likely explanation
for the anomalous temperature of Utsumi et. al.[27, 28]
Those experiments attempted to test the classical fluctu-
ation theorems for electron transport through a quantum
point contact, and found that the effective temperature
of 1.37 K (derived by fitting the slope of the transport
odds ratio, 10g Prwd /Prev to the FT) was much higher than
the electron temperature of 130-300 mK. Trying to lower
the temperature further below 1.37 K showed minimal
changes in the slope, indicating a minimum temperature

had been reached.

Sections II and IIT present a repeated measurement
process, and show that it allows for a physical definition
of heat and work that occurs between successive mea-
surements. Measurements are only performed on the in-
teracting reservoir, and (because of entanglement) cause
instantaneous projection of the central system according
to the standard rules of quantum mechanics. In this way,
it is not required to define a temperature for the central
system. Because the central system is generally out of
equilibrium, the concept of equilibrium is applied only to
the environmental interactions.

Section IV proves the Clausius form of the second law
for the new definitions. Numerical results on simulations
of atom-cavity systems are presented in Sec. V. Specifi-
cally, we perform Monte Carlo simulations of trajectories
of the time-dependent density matrix during relaxation
to equilibrium. The system is a simplified micromaser (a
dissipation-free single-mode optical cavity) started in its
first excited state, and the reservoir is a stream of thermal
2-level atoms. Since the propagator is non-Markovian, we
also derive the Markovian approximation in the Linblad
representation. The heat and work performed on the sys-
tem by the passing atoms is compared between the two
methods. Finally, in Sec. VI, we show that continuous
finite interaction with the reservoir causes an effective in-
crease in the ‘temperature’ of the system’s steady-state.
Although surprising, the measurement rate is unavoid-
able in the theory as it is the exact parameter controlling
broadening of spectral lines.[54] Effects from the mini-
mum achievable temperature will be seen when all of the
following conditions are met: i) the reservoir tempera-



ture is less than the system’s first excitation energy, ii)
the measurement rate is on the order of this excitation
energy, and iii) the commutator, [H, H 4], is nonzero.

II. REPEATED MEASUREMENT PROCESS

To study the action of continual environmental mea-
surement on part of a quantum system, we propose the
following process (Fig. 1):

1. Let |[¢)) represent a general wavefunction of the cen-
tral system at time t;.

2. At time t;, the central system is coupled to a mea-
surement device whose state, |n), is chosen at ran-
dom from a starting distribution, pg(t;), that is
diagonal in the measurement Hamiltonian, so that
Hg|n) = hwp ,|n). (panel a)

) = ) ©n). (6)

3. The joint system is evolved forward using the cou-
pled Hamiltonian, U(t) = e~ *#/" until the next
measurement time ¢;41 = t; + ¢ (panel b-c). Our
numerical calculations assume a Poisson measure-
ment process with rate A, so that ¢ has an expo-
nential distribution.

[, n) = U@®),n) (7)

4. The state of the measurement device is ‘measured’
via projection into one of its uncoupled energy
eigenstates, |m) at time ¢;11 (panel c).

(m|U ()|, n)
VPm
This causes the system to undergo a quantum jump

with probability p, = | (m|U(t)|¢,n)|? (panel d).
The resulting state, [¢'), is sent as input to step 1.

Ut)|p,n) — ') = : (8)

When expressed in density matrix notation, steps 4, 1,
and 2 combine together to form the ‘purification’ super-
operator of Spohn and Lebowitz,[16]

Ppag(t) = (Trp pas(t) ® ps(0). 9)

Every time this operation is performed, the memory
of the environmental system is destroyed, all system-
environment superposition is removed, and (Hap) nec-
essarily becomes zero as explained following Eq. 1. To
make use of the information on the measured state of B,
this work treats ‘measurement’ (step 4) and ‘thermaliza-
tion’ (step 2) as separate steps.

For studying thermalization process, it suffices to use
a constant, thermal equilibrium distribution for pg(t;),

PB) = e P18 ) Z5(B). (10)

4

In many experimental cases, pp(t;) represents a specially
prepared protocol to drive the system toward a desired
state. Since our calculations are for the case where the
environment is not time-dependent, we will use pp(0) =
ps(t;) interchangeably.

The operation of measurement disconnects the two sys-
tems, and, more importantly, makes the energy of the
reservoir system correspond to a physical observable. A
complete accounting for heat in quantum mechanics can
be made using only these measurements on ancillary sys-
tems, rather than the central, A, system. The thermody-
namics based on this accounting allows the central sys-
tem to retain most of its quantum character, while at the
same time deriving the traditional, operational relation-
ships between heat and work.

Although the analysis below is phrased in terms of
density matrices, that view is equivalent to carrying out
this process many times with individual wave-functions.
Specifically, if pa(t;) = >, pr|tr) (Y|, is composed of
any number of pure states,[55] the final density matrix
at time ¢;4, is a linear function of p4 and hence of each
|t) (¢r]. Carrying out the process on individual wave-
functions thus allows an extra degree of choice in how to
compose pa(t;), the use of which does not alter any of
the results.

This process is a repeatable version of the mea-
surement and feedback control process studied in
Ref. [11], gives a discrete-time version of quantum state
diffusion,[5] and fits into the general quantum map
scheme of Ref. [13]. Nevertheless, our analysis finds dif-
ferent results because our thermodynamic interpretation
of the environment and measuring device allows the reser-
voir to preform work in addition to exchanging heat.

IIT. THERMODYNAMICS OF REPEATED
MEASUREMENT

In order for heat and work to have an unambiguous
physical meaning, they must be represented by the out-
come of some measurement. Fig. 2 presents the energies
for each operation applied to a system and its reservoir
over the course of a measurement interval in Fig. 1. This
section assumes ¢; = 0 without loss of generality. Initially
(in step 2), the density matrix begins as a tensor product,
uncoupled from the reservoir, which has a known start-
ing distribution, pp(0). However, for a coupled system
and measurement device, time evolution leads to entan-
glement. At the time of the next measurement, the en-
tanglement is projected out, so it is again permissible to
refer to the properties of the A and B systems separately.

After a measurement, the total energy of the
system/reservoir pair will have changed from
(fIA—I—fIB—i—vHAB) to (ﬁA+fIB>. The amount
of energy that must be added to ‘measure’ the sys-
tem/reservoir pair at any point in time is therefore,
—v(HaB)-

This step is responsible for the measurement ‘back-
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FIG. 1. Schematic of the repeated measurement process. (a-
¢) Exact evolution of the coupled system-reservoir from an
uncoupled state quickly leads to an entangled state. (c¢) Mea-
suring the reservoir energy selects a subsample of the system,
removing coherences. (d) Replacing the reservoir state with a
thermal sample results in heat and work output. The thermal
nature of the environment is responsible for dissipation.

action’, and the violation of the FT for general quan-
tum dynamics. Strictly speaking, this measurement en-
ergy does not correspond to an element of physical real-
ity. Nevertheless, the starting and ending Ha, Hp are
conserved quantities under the uncoupled time-evolution,
and so the energy of the measurement step can be objec-
tively defined in an indirect way.

This instantaneous measurement of the reservoir sim-
ulates the physical situation where an excitation in the
reservoir leaks out into the environment. After this
happens, the information it carried is available to the
environment, causing traditional collapse of the sys-
tem /reservoir pair.

To complete the reset from step 4 back to step 1, the
reservoir degree of freedom must be replaced with a new
sample from its input ensemble. For the micromaser, this
replacement is accomplished spatially by passing separate
atoms (B) through a cavity, one at a time.

On average, the system should output a ‘hot’
pB(t), which the environment will need to cool back
down to pp(0). Using the methods of ordinary
thermodynamics,[17, 19, 22] we can calculate the min-
imum heat and maximum work for transformation of
pp(t) back to pp(0) via an isothermal, quasistatic process

at the set temperature of the reservoir,

BQ = —Tr [pp(0)log pr(0)] + Tr[pp(t) log pp(t)]

= —ASg (11)
Winerm = Tr [(05(0) — pi (1) Hp| + ASp/5
= —-AFp (12)
W = Wtherm + AFIA + AI—IB
=AHs—Q (13)

These sign of these quantities are defined as the energy
added to the system, while AX = (X)ana — (X )initial
represents the total change in X during evolution from
one measurement time to the next.

In this work, T always refers to the externally set tem-
perature of the reservoir system. The temperature of the
reservoir, used in defining 8 = 1/kgT above, is entirely
related to the conditions under which the reservoir states
are prepared. It can be different for each measurement
interval.

Note that when a thermal equilibrium distribution is
used for the reservoir (Eq. 10), the reservoir dissipates
energy from the system. Since it always begins in a state
of minimum free energy, the reservoir always recovers
work from the system as well, since —Wiperm is always
strictly positive by Eq. 5. This makes sense when the
central system is relaxing from an initial excited state.
When the central system is at equilibrium, the second
law is saved (Sec. IV) by including the work done during
the measurement step.

A. Caution on Using a Time-Dependent
Hamiltonian

The assumption of a time-dependent Hamiltonian for
the system leads to an ambiguity on the scale of the mea-
surement back-action.[10-12] This presentation does not
follow the traditional route of assuming a time-dependent
Hamiltonian for the central system. The assumption of a
time-dependent Hamiltonian is awkward to work with in
this context because it side-steps the measurement para-
dox. Instead, it assumes the existence of a joint system
wherein the dynamics for sub-system A is given exactly
by, pa(t) = — £ [HF(1). pa(t)].

The complete physical system plus environment must
have a conserved energy function. This matches the dy-
namics,

pa(t) = =7 Trp [HA+HB+'7HAB7PAB(t)} (14)

exactly when Eq. 3 holds.
In classical mechanics, such a function can be formally
constructed by adding an ancillary degree of freedom, vy,
that moves linearly with time, y(¢) = ¢. The potential

energy function,
YOV (2pes(t), t)

Vi) = Vi) +V ™ o) [ 2

dt (15)
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FIG. 2. Work and heat of the intermittently measured quantum system. On the left, the system (A) and reservoir (B)
Hamiltonians are uncoupled. Coupling (step 2 in the process of Sec. II) does not initially change their energy, since diagonal
elements of Hap are zero. During time-evolution (step 3), the total energy is conserved, leading (Hap) and (Ha + Hg) to

oscillate. Measurement (step 4) projects back into an uncoupled state, requiring work 7<'yPAI aB).* Finally, thermalization of
the reservoir removes accumulated heat, while exporting all work to the environment.

2 pa ® pp(t) is schematic in this figure, as discussed in the text surrounding Eq. 25 and 28.

is defined using the known trajectory for z,ef(t) under the
desired Hamiltonian, H(z,t), so that so y experiences
no net force. Alternatively, y can be considered to be
infinitely massive.

When translated to quantum mechanics, neither of
these last two methods avoids the Heisenberg uncertainty
principle.[31, 56] An intuitive argument can be based on
(Ap)(Az) > 2. In both cases, the work done by the sys-

tem on the reservoir is, %ﬁf’y)dy, and contributes di-
rectly to the change in momentum of y. The y-coordinate
was constructed to move linearly in time, and hence mea-
sures the ‘time’ of interaction. Using these translations
from momentum change and position to work / time pro-
vides, (Apy)(Ay) =~ (AV (z, 1)) (AtL).

Although the definitions of heat and work in Eq. 2
can be shown to be mathematically consistent with the
laws of thermodynamics, they require infinitesimally slow
time-evolution under the Markov assumption and con-
stant comparison to a steady-state distribution.[13, 14,
17] The present method is valid under a much less restric-
tive set of assumptions. In particular, it allows arbitrary
time-evolution, and only makes use the equilibrium prop-
erties of the B system, not the central, A system. The
present set of definitions is also directly connected to the
experimental measurement process.

Strong-coupling schemes define a time-dependent H,
which groups the central system together with some as-
pects of the reservoir. In the present framework, it is
easy to allow Hg and Hup = H; 5 + H', to be different
for each measurement interval (encompassing even non-
Markovian dynamical schemes[45, 57, 58]). In this case,
the analysis above mostly carries through, with the ex-
ception that, since (f(Ha)Hap) # 0, an extra amount of
energy is added during coupling, but not removed during
measurement. This extra energy contributes to the work
done on the system according to Eq. 2. However, the con-
nection to heat found here is very different because, as

the next subsection shows, the definition of heat in Eq. 2
requires that the reservoir be near equilibrium. The com-
parison presented here is conceptually simpler because
energy stored in the system cannot be instantaneously
altered by an external source.

For a specific example, consider the energy exchange
process taking place between a nuclear spin and its en-
vironment in an NMR spin-relaxation experiment.[23] In
order to represent stored energy, the Hamiltonian of the
atom can be defined with respect to some static field,
H), = %02. Rather than varying the field strength
(wp) directly, changing the atomic state from its initial
equilibrium can be brought about with an interaction
Hamiltonian, H'; 5, such as the Rabi model studied here.
The work can be added over each time interval to give,

[ w) =t o oa) - pato))- [ ar @),
0 0

(16)
The heat release can be analyzed using either of the
methods in the next section (Sec. IIIB). Assuming
the minimum heat release leads to f(f at'stHQ) =
Sa(t) — Sa(0), in agreement with the rules of equilib-
rium thermostatics. Alternately, in the limit where the B
system always begins at thermal equilibrium and moves
infinitesimally slowly between each measurement inter-
val, Eq. 2 is recovered, giving W (t) = 0. The key point
is that this model separates the system and environment
in such a way that changes in the environment cannot
instantaneously change the energy stored in the system.

B. Comparison to Common Approximations for
the Heat Evolution

The heat generated in the process of Figs. 1 and 2
comes directly from the entropy change of the measure-
ment system, B. Most analyses ignore the measurement



system, making this result difficult to compare with oth-
ers in the literature. This section presents two simple
methods for calculating ASp from quantities available
in other methods.

First, assuming the time-dependence of pa(t) is known,
a lower bound on the heat emitted can be derived from
the state function, Sa(t) = —Tr[palogpa]. Because
over each time interval, AS4 + ASp > 0, the total heat
added obeys the inequality,

AQ(t) = —ASp/B < ASa/B. (17)

Assuming the minimum required heat release leads to a
prediction of the quasistatic heat evolution,

/0 dc?igl)dtlg/o dSa(t')/B(t") dt'. (18)

This is exactly the result of equilibrium quantum ther-
modynamics, valid for arbitrary processes, pa(t).
Second, if the B system always begins in thermal equi-
librium, pp(0) = pg), and the change in occupation
probability for each energy level (A diag(pg)) over a mea-
surement interval is small, then we can directly use the

expansion,[16]

6Sp =~ dp;jlogp; (19)
J

This is helpful because in Fig. 2, the entropy of the B
system is always calculated in the energy basis of B. Sub-
stituting the canonical equilibrium distribution,

5Q = — Zaijj = —6Hp. (20)

J

Equations 19 and 20 apply whenever pg(0) is a canon-
ical distribution and the change in pp is small over an
interval.

In the van Hove limit (see Appendix B), energy is con-
served between the A and B systems. Because of energy
conservation, the heat evolution of Eq. 20 is exactly the
well-known result of Eq. 2 in this case. We have therefore
proven that our scheme is bounded by the von Neumann
entropy and that it reduces to the standard definitions
in the weak coupling limit.

IV. THERMODYNAMIC CONSISTENCY

For the definitions of work and heat given above to be
correct, they must meet two requirements. In order to
satisfy the first law, the total energy gain at each step
must equal the heat plus work from the environment.
This is true by construction because the total energy
change over each cycle is just (AH4). Next, in satis-
faction of the second law, the present section will show
that there can only be a net heat release over any process

returning to its initial thermodynamic state. Since () has
been defined as heat input to the system, this means

7{@ <0. (21)

There is a fundamental open question as to whether
the energy change caused by the measurement process
should be classified as heat or work. Counting it as heat
asserts that it is spread throughout the environment in
an unrecoverable way. Conversely, counting it as work
asserts that measurement can only be brought about by
choosing to apply a stored force over a distance. In the
cycle of Fig. 2, it is classified as work, because this is the
only assignment consistent with thermodynamics.

Counting (yHap) as heat leads to a systematic viola-
tion of the second law, as is now shown. Over a ther-
modynamic cycle (many repetitions of the measurement
cycle of Fig. 2), pa must eventually return to its initial
state. Therefore §(AH4) drops out when integrating the
quantity,

R=(AHa)+ (AHp) — ASp/P, (22)

to leave
fRz]((AHm—ASB/ﬂ. (23)

If the B sub-system starts each interval in thermal equi-
librium (Eq. 10), this is the free energy difference used
in Eq. 4. The Klein inequality then proves the positivity
of each contribution to Eq. 23. Therefore, over a cyclic
process, § R > 0.

A thermodynamically sound definition is found when
counting as part of @ only the entropy change of the
reservoir. Heat comes into this model because the en-
vironment is responsible for transforming pg(t) back
into pp(0). Using a hypothetical quasistatic, isother-
mal process to achieve this will require adding a heat,
Q= (Sp(0) — Sp(1))/B = —ASp.

We now show that § ASp > 0 by considering entropy
changes for the A-B system jointly. At the starting
point of each measurement cycle, the two systems are
decorrelated,[38]

S[pA(0)®pB(O)] ZSA(O>+SB(0). (24)

The time-evolution of this state is unitary, so pap(t) has
the same value as Eq. 24 for the entropy. However, pro-
jection always increases the entropy,[38, 55] so it is easy
to show,

Slpat) @ pp(t)] = Slpas(t)], (25)

with pa(t) = Trppap(t)], etc. Combining Eq. 24

and 25,

AS4s +ASEp > 0. (26)



This is quite general, and applies to any measurement
time, starting state, and Hamiltonian, Hapg. Again, for
a cyclic process A must return to its starting point, so
$§AS4,=0,and §Q <O0.

Although the form above is useful in most cases, a
stronger form of Eq. 25 can be shown when the projected
joint state is,

pap(t) =Y (mlpap(t)im) @ [m)(m|.  (27)

In this case, since Trlpap(t)logpap(t)] =

Tr[pap(t)logpap(t)’], the Klein inequality applies
to show that,

Slpapt)'] = S[pan(t)]- (28)

It should be stressed that the results of this section
hold regardless of the lengths of the measurement inter-
vals, {t;j11 — t;} or driving protocols ({pg(t;), Hap,;})-
The choice of thermal driving and a Poisson measurement
process is not justified in every case. This is especially
true for the physical micromaser, where the input state
can be precisely controlled and measurement times are
usually be Gaussian, based on the cavity transit time for
each atom.

V. RESULTS

We illustrate the results of the previous sections by
comparing the dynamics of the process from Sec. II ap-
plied to models of the relaxation dynamics of a single-
mode atom-cavity system. In all cases, the system is a
single optical mode with Hamiltonian,

I{IAZRLUA(TALA+%), ﬁA:aTa. (29)

The cavity begins at time ¢ = 0 in its singly excited
state (nq = 1). At all times, there is also a 2-level atom
present, with Hamiltonian,

A = "8 jeyte] — lo) o) = "2

5 (hp—3).  (30)

According to the process of Sec. II just after every mea-
surement performed on the atom, the atom is reset to a
state diagonal in Hp with imposed excited and ground-
state probabilities o, and oy,.

A. Jaynes-Cummings Model

In the Einstein picture, photons in A can cause exci-
tation of the atom, B, at a fixed rate. This section uses
the model of Sec. II to derive the rate, starting from the
transition probabilities of the Jaynes-Cummings Model
(JCM). It uses an atom-field coupling,

VHY = A(alo_ +acy), (31)

where

o =|g)el, ot =le)(gl. (32)

The analysis of this model is well-known,[59-61] and
leads to an expression for the transition probabilities,
|bm ()2, (Eq. A7) that depend on the total number of
excitations present, m = (fia + fip), and which are peri-
odic in time. The heat and work exerted by the atom on
the cavity are easily found by computing Eqns. 11 and 13
using the model’s analytical solution,

x(t) = an(ag|bn(t)|2 — 0elbnia (t)?)  (33)

n=0
oo(t) = 00+ a(t) (34)
o4(t) =04 —2(t) (35)
(AH4(t)) = —hwax(t) (36)
(AHp(t)) = hwpx(t) (37)

The numbers p,, are the initial occupation probabilities
of the cavity, and o4 (0.) is the initial probability of the
atom’s ground (excited) state. To interpret this correctly,
note that both A and B started in uncoupled diagonal
states at ¢ = 0 and that a measurement on B alone was
performed at time t.

All of the quantities in Eqns. 33 through 37 are mea-
surable in this particular model because the JCM is a
very special case where unitary evolution only mixes the
states |[n — 1,€) and |n, g). Thus the only allowed transi-
tions are between these two states, and all the results can
be neatly expressed in terms of x(t), the average number
of photons absorbed by the atom.

To complete the analysis of this model, we apply the
assumption of Poisson measurement events (with rate \)
to determine the expected number of absorptions over all
measurements. This average is,

E [|bm (8)[*] =

1 A2 + A2
~(1- T2 NED
2 A2 + AZ 4 dm~y? [ h?

where A, = wp — w4 is the difference between atom and
cavity frequencies and E [f(t)] = /\foOo dt exp(—At)f(t).
We simplify the result by noting that both fast and slow
measurement-rate limits of this equation give identical
first-order terms,

_ 2my? /R
N2+ A2
(39)
Since measurements happen with rate A, the effective
total rate of atomic absorptions in these limits is,

lim E [|b,(t)[*] =

A—0o0

. 2
Jim B [[bm (2)[]

2N

AE [z(t)] = N1 AT

(g (74(0)) — 0 (24(0) + 1)) (40)

the two parts of Eq. 40 show Einstein’s simple picture of
photon emission and absorption processes occurring with



equal rates, [2]

AWabs/ A Bas = 0 BE (i4) dt (41)
AWern | AEem = 0o (A9 + BY (As))dt.  (42)

All the A, B coefficients are equal to the prefactor of
Eq. 40 here because x(t) counts only a single cavity mode
at frequency wa. In a blackbody, the A coefficient goes
as w?dw because more modes contribute.[54]

The denominator, A\? + A2 is exactly the one that ap-
pears in the traditional expression for a Lorentzian line
shape. Here, however, the measurement rate, A\ appears
rather than the inverse lifetime of the atomic excited-
state. The line broadens as the measurement rate in-
creases, and the atom is able to absorb/emit photons
further away from its excitation frequency. Only the res-
onant photons will cause equilibration, while others will
cause noise. In the van Hove limit, y,A — 0 so that
the contribution of the resonant photons will dominate.
From the importance of A. in this example, we see al-
ready that the work of measurement, AH 4 + AHpg, will
be critical for understanding energy balance.

B. Rabi Model

The Rabi model uses the more complete[62] coupling
between the field and a dipole oriented in the x-direction,

vHap =~(a" +a)(oy +0) (43)

To compute the work and heat under this coupling,
we must resort to numerical simulation.[63] Because the
process in Fig. 1 is repeated after each measurement, the
simulation is carried out by averaging over the distribu-
tion of N =0,1,... measurement times,

N
P({t}{VaN“"j > tj—l) = H A_le_A(t'j_tj_l)a (44)
j=1

starting from the initial state at time ¢y = 0. Numer-
ically, the averages plotted are Monte Carlo averages
over 5000 samples from Eq. 44. The evolution of the
density matrix according to Sec. II is completely deter-
mined when the number and times of measurement are
known. Average heat and work values (Eq. 11 and 13)
were computed numerically at each fixed time ¢; by tak-
ing a weighted average over these Monte Carlo samples of
the Poisson process. The sample weights, A\~'e=*ts =)
(where t; is the last measurement time before t;) were
used to account for the probability that the plotted time,
ty, is a measurement time.

Figure 3a shows the average work and heat computed
for the parameters w4 = wp = 27, v/h = 0.05, A = 1072,
The quantities shown are cumulative from the starting
time, so that sum— AH 4 /hwa = 1/2— H(t)/hw4. Rabi
oscillations can be seen clearly as the photon exchanges
with the reservoir (atom). Initially, this increases the en-
tropy of the incoming atom’s energy distribution. When
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FIG. 3. Work and heat production during decay of a photon
in a cavity (na = 1) coupled to a 2-level reservoir via 43,
with wa = wp = 27, v = 0.05, A = 1072, 8 = 1). Panels
(a) and (b) compare the system energy loss, AHy4, to the
work and heat computed from the measured reservoir states
(Eq. 13 and 11). Panels (c) and (d) show the information
entropy of the A system and the combined entropy change,
Stot(t) = Sa(t) — fot Q/T > 0. Note that the traditional
calculation of heat (Eq. 2) gives only Q ~ AHa, W = 0.
Panels (a) and (c) show results for the time-evolution of the
density matrix using the exact process, while panels (b) and
(d) are computed using the weak-coupling approximation of
Sec. VC.

there is a strong probability of emission, however, the
integrated heat release, — fot Q(t)dt', shows system ac-
tually decreases the entropy of the reservoir. This hap-
pens because the the reservoir atom is left in a consistent,
high-energy, low-entropy state. In this way, the reservoir
can extract useful work from the cavity, even during a
thermalization process. Fig. 3c plots the von Neumann
entropy of the A system and Siot (the sum of S4(t) and
the integrated heat release), to show that no laws of ther-
modynamics are broken. Average work was extracted
because the system starts in a pure state, but ends in a
mixed, equilibrium state. The information entropy of the
system itself increases appreciably during the first Rabi
cycle. Eventually, the equilibration process ends with
the initial excitation energy being transformed into both
heat and work. Despite the appearance of Fig. 3a, the
final total emitted heat was generally non-zero for other
coupling strengths (not shown).

C. Comparison to Weak Coupling

The work and heat defined by Sec. III differ substan-
tially from the standard literature definition based on
weak coupling (Eq. 2). This is because the earlier defini-
tion is based only on the ‘A’ system, without considering
the reservoir, ‘B.” It therefore provides no way to use the



energy of the atom after interaction for useful work. Eq. 2
therefore finds zero work for the process studied here, and
classifies AH 4 entirely as heat lost to the environment.

A better comparison to Eq. 2 is made if we modify the
standard weak coupling scheme to track changes to the
reservoir during interaction. Appendix B derives expres-
sions for the time-dependence of the joint density ma-
trix, pap, in the weak-coupling limit and averages over
Poisson-distributed measurement times to find the Lind-
blad equation,

2

dpap(t) T Y
Past) _ g T
i h[ 4B(A), pap(0)] + B [paB(0)],
(45)
where,
Hup = Z V., (46)
5 1 -
Hap(\) =) Sl (47)
. 1 s s
L/[p] = Z Sw,w’ (VUJPVJ’ - 2{VJ/Vwap})
+ LD Vs ) (48)
I\ — ifw —
Swrr = W (49)
/
Ay, = wd+ d (50)

Ay = (A —iw)(A+iw" )X —i(w —w')). (51)

This equation reduces to the traditional dynamics[16] in
the van Hove limit (y,A — 0 with 42/\ — constant).
Note that the sums run over both positive and negative
transition frequencies, w, and that these quantities have
the symmetries, V.| = V_,,, s* , = Sw.w, d5
and a;w, = G’ w- The canonical Lindblad form can be
obtained by diagonalizing the matrix, sy ]. Numerical
simulations of the Lindblad equation were carried out
using QuTiP.[63]

To make the comparison with weak coupling, we car-
ried out the same sampling over Poisson-distributed mea-
surement times as in the last section, but replaced the
propagator with the integrated form of Eq. 45. As be-
fore, the heat and work were computed from the joint
density matrix at the beginning and end of each mea-
surement interval.

Panels (b) and (d) of Fig. 3 show that the initial cos?
shape and Rabi oscillation structure are lost in the weak-
coupling limit. Instead, the L’ propagator creates a fast
initial loss of cavity energy followed by exponential de-
cay toward the steady-state. Nevertheless, the observed
decay rate and eventual steady states match very well
between the two methods. The total evolved heat shows
a discrepancy between methods because the fast initial
loss in the L’ propagator quickly mixes pg.

= dw’,wa
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FIG. 4. Decay of the system simulated in Fig. 3 from an ex-
cited state (E4(0) = hwa) at different values of the measure-
ment rate. Panels (a)-(d) have rates A = 107*, 5-1073, 1072
and 5- 1072, respectively. The exact propagator is compared
with the weak-coupling propagator under the same repeated
measurement process. The shape of the decay to steady-state
behavior is a combination of fast energy exchange due to Rabi
oscillations and the slower process of memory loss through re-
peated measurement.

The only source of differences between exact evolution
and the Lindblad form of Eq. 45 is the additional dis-
sipation brought about by smearing over the measure-
ment times. Because a dissipative propagator (L’) is
used within a measurement interval, some quantum cor-
relations with the reservoir are not captured. Neglecting
these correlations leads to artificial heat release. This
effect may be exaggerated here because the two systems
are at a resonance condition.

Fig. 4 illustrates the effect of using the weak-coupling
propagator (L') at different measurement rates. Without
the trace over the environment — i.e. at a slow measure-
ment rate as in panel (a) — L’ just gives the approxima-
tion to pap(t) from second-order perturbation theory.
This actually decays faster than when repeated projec-
tion is used — i.e. at a fast measurement rate as in panel
(d) — because the environment loses its memory after each
projection.[55] Both the fast initial relaxation and slow
exponential tail (due to measurement) are visible in the
figure.

This cross-over highlights a tradeoff in choosing the
time-scale for simulations employing weak-coupling ap-
proximations. Although a slow measurement rate, A,
is needed to minimize the effect of measurement back-
reaction on the system energy, agreement with the exact
dynamics is better at fast measurement rates. Actually
performing repeated measurements has important ener-
getic and dynamical consequences for the system.



VI. MINIMUM ACHIEVABLE TEMPERATURE

Simulation results of the last section reveal that even
as the reservoir temperature approaches zero, the prob-
ability of the first excited state does not vanish. In fact,
the results very nearly resemble a Gibbs distribution at
elevated temperatures. As the reservoir goes to abso-
lute zero, the effective system temperature levels off to a
constant, minimum value.

This section gives both intuitive and rigorous argu-
ments showing that this is a general phenomenon orig-
inating from work added during the measurement pro-
cess. First, observe that the total Hamiltonian, H, is pre-
served during coupled time-evolution. When allowed by
the transitions in Hap (i.e. when [H, Hag] # 0), a por-
tion of that total energy will oscillate between Hi+ Hp
and H s p. Consider, for example, a dipole-dipole interac-
tion, H = &% + p4 + 2% + p% + y2adp. At equilibrium,
the individual systems have (Z) = 0, but the coupled
system polarizes so that, (Hp) < 0.

Intuitively, the joint system can be pictured as relax-
ing to a thermal equilibrium at an elevated tempera-
ture, 1/8’. The initial density matrix at each restart,
pa(B) ® pp(B), would then look like an instantaneous
fluctuation of

pas(B) =eFH)Z45(8) (52)

where (Hp) = 0 is too high and (Hp) is too low.

At steady state, (H4) must be the same at the begin-
ning and end of every measurement cycle. This allows
the equilibrium argument above to determine 3’ by self-
consistency,

(B [fp(t)] - Hp(8)) = —7 (E[Hap®)]).  (53)

If equilibrium at ' = 1/kpT" is reached by the average
measurement time, then expanding (Hp(8') — Hp(B))
yields,

- <]E {ZSIAB(t)} >

AT ~
Cv.p

; (54)

where C'y, g is the heat capacity of the reservoir system.

It is well-known that quantum mechanical degrees of
freedom freeze out at temperatures that are fractions of
their first excitation energy (AFj). Since the heat capac-
ity when S~ < AFE] goes to zero, while the interaction
energy should remain nonzero, this intuitive argument
suggests that the temperature of the system cannot go
much below AFE; /kg.

To be more quantitative, (E[H 4z (t)]) can be estimated
in the weak coupling limit from the second-order pertur-
bation theory of Appendix B. This comparison considers
the case A, = 0, since the stationary state where A, # 0
is known to be non-canonical. Also, the JCM with ro-
tating wave approximation is too idealistic, since when
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A, =0no off—resgnance interactions can occur — so H AB
commutes with H and the minimum temperature argu-
ment does not apply. In other words, in the rotating wave
approximation, the number of absorption events, z(t), al-
ways increases the energy of the atom and decreases the
energy of the cavity by the same amount.

However, if the more physical interaction Hamiltonian
(Eq. 43) is used, then the weak coupling theory should
also include transitions between 0, g and 1,e. The aver-
age number of simultaneous excitations must be tracked
separately, since it increases both the energy of the atom
and cavity. Using Eq. 48 with wy = wp = w, this average
is

(dloy +ao_) = (55)
A221(/2hw)2 (g {14 +1) = 0c (R4))

In the low-temperature limit, only the probabilities of
the four lowest-lying states, labeled py,104,., contribute
substantially. Inserting Eq. 55 into the weak coupling
dynamics (Eq. 45),

O(Ha) _ 2%7°/1
ot ()2 +1

((25)%(po — 1) + 0epo — Tgp1) -

(56)
This result applies whenever H 45 allows for both 0, e <>
1,9 and 0, g <> 1, e transitions with with equal weight and
respective energy differences of zero and 2hw. Eq. 56 can
be solved for steady-state to find,

— ) 57
P (£)2+0, (57)
In the low-temperature limit,
A2
lim 2L = &% (58)
c=1po ()2 + 1

This argument brings the energy-time uncertainty
principle into sharp focus. If the measurement rate is on
the order of the transition frequency, w, then p; /po can be
of order 1, making absolute zero unreachable regardless
of the coupling strength, «y, or the reservoir temperature
determining o./0,. On the other hand, as the relative
measurement rate, A/w, approaches zero the thermody-
namic equilibrium condition, o.pg = o4p1, dominates. In
the limit where measurements are performed very slowly,
transitions that do not conserve the energy of the isolated
systems are effectively eliminated.

Figure 5 illustrates these conclusions by solving numer-
ically for the steady-states of the Rabi model (Sec. V B)
as a function of environmental temperature, kgT = 5.
The limiting predictions of Eq. 58 are drawn as arrows
for each simulated value of the measurement rate, A. For
high reservoir temperatures and low measurement rates,



FIG. 5. Steady-state inverse temperature vs. reservoir 8. The
arrows plot the limiting value of —w™"log p1/po from Eq. 58.
Each line represents the steady-states found using a fixed mea-
surement rate, A\, as the reservoir temperature varies. Their
y-values were computed from the steady-state probabilities
for simulation in the weak-coupling limit (Eq. B11).

the system’s steady-state probabilities follow the canon-
ical distribution with the same temperature as the reser-
voir (since they fall on a straight line). When the reser-
voir temperature is lowered below a limiting value, the
system is unable to respond — effectively reaching a min-
imum temperature determined by Eq. 58. Effects from
the minimum temperature can be controlled by lowering
the measurement rate.

VII. CONCLUSIONS

A measurement process is required in order to avoid
the EPR paradox for defining heat and work in a quan-
tum setting. However, continually measuring the energy
of an interacting quantum system has important ener-
getic and dynamical consequences for the system. Tra-
ditional definitions of work and heat avoid this problem
because they assume infinitely slow measurement rates.
Our process shows that quantum systems under repeated
measurement do not always reach canonical (Boltzmann-
Gibbs) steady-states. Instead, the steady-state of a quan-
tum system depends both on its coupling to an external
environment and the rate of measurement.

This analysis creates a novel proof of the unattainabil-
ity of absolute zero, which is one part of the third law
of thermodynamics.[64, 65] Other proofs in the litera-
ture have arrived at similar conclusions for the minimum
achievable temperature by examining specific models for
the optimal rate of cooling in quantum engines under
weak coupling,[66] or in heat exchangers using scattering
theory.[67] A general minimum temperature argument
was constructed in Ref 68 by maximizing the probabil-
ity that the system is set to the ground state over arbi-
trary unitary coupling to a reservoir. The present result
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(Sec. VI) applies generally to all systems and reservoirs
that follow the dynamic measurement process considered
in this work.

The presence of a measurement rate in the theory indi-
cates the importance of the outside observer — a familiar
concept in quantum information.[5] Most experiments on
quantum information have been analyzed in the context
of a Lindblad master equation, whose standard interpre-
tation relies on associating a measurement rate to every
dissipative term. All energy changes arising from these
terms were previously assumed to be lost as heat. We
have shown that every process with a measurement rate
can be used as a source and sink for work as well as heat.
This use creates a novel alternative to time-dependent
coupling Hamiltonians required by other theories.

Our argument was based on accounting for heat and
work during each single measurement step. We showed
that averaging over Poisson-distributed measurement
times re-derives the master equation as the approxima-
tion to this process in the limit of weak coupling. The
result agrees with standard line-shape theory and extends
thermodynamics to fast, strongly coupled measurement
processes.

The physical consequences of the measurement rate
will become increasingly important as quantum exper-
iments push for greater control.[51] However, they also
present a new probe of the measurement rule and energy-
time uncertainty principle for quantum mechanics. For
the micromaser, the rate seems to be the number of atoms
sent through the cavity per unit time — since every atom
that leaves the cavity is measured via its interaction with
the outside environment. It is not, however, because even
there the atoms can be left isolated and held in a superpo-
sition state indefinitely, leading to entanglement between
successive particles.[61] Most generally, the number of
measurements per unit time is determined by the rate at
which information can leak into the environment. If in-
formation leaks quickly, the amount of energy exchanged
can be large and the minimum effective temperature of
the system will be raised. If information leaks slowly, the
work done by measurement will be nearly zero, and the
quantum system will more closely approach the canonical
distribution. By the connection to the width of spectro-
scopic lines, this rate is closely related to the excited-state
lifetime.

This model presents a novel, experimentally motivated
and thermodynamically consistent treatment of heat and
work exchange in the quantum setting. By doing so, it
also raises new questions about the thermodynamics of
measurement. First, the explicit connection to free en-
ergy and entropy of reservoir states provides an addi-
tional source of potential work that may be extracted
from coupling. Connecting multiple systems together or
adding further dynamic details to the measurement pro-
cess (rather than simple projection) are well-posed within
this framework. Second, we have shown the conditions
needed for the present definitions to reduce to well-known
expressions in the literature. Third, although the ini-



tial process was defined in terms of wavefunctions, the
average heat and work is defined in terms of the den-
sity matrices. Definitions (Eq. 11 and 13) still apply
when the density matrix consists of a single state, but
the repeated measurement projecting to a single wave-
function has a subtly different interpretation. The dif-
ference (not investigated here) is related to Landauer’s
principle,[22, 35] since measuring the exact state from
the distribution, ps ® pp, carries a separate ‘recording’
cost.

There have been many other investigations on ther-
modynamics of driven, open quantum systems. The re-
striction to time-independent Hamiltonians in this work
differs from most others, which assume a pre-specified,
time-dependent H,4(t). To make a comparison, either
the cycle should be modified as described in Sec. IIT A or
work at each time-step in such models must be re-defined
to count only energy that is stored in a time-independent
Hamiltonian for the central system, H 4.

Quantum jump and power measurement based meth-
ods assume, following weak-coupling definitions, that
heat is defined as all energy exchange with a ‘dissipa-
tive’ reservoir. There, work is supplied by the time-
dependence of the Hamiltonian. An interesting point
of the present study is that heat may be more closely
identified with changes to the von Neumann entropy of
the B system, and by strong subadditivity, to the time-
dependent entropy of A. The energy exchange with the
reservoir is only indirectly connected to the heat ex-
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change through Eq. 20. The fact that this becomes exact
in the van Hove limit explains the role of the steady-
state for A and observations by many authors that the
work of measurement is the source of non-applicability of
fluctuation theorems.[10-12, 26, 31]

When [H, Hap] = 0, then energy is conserved between
the sub-systems (AH4 + AHp = 0). In this case, the
measurement back-action disappears, and the fluctuation
theorem for AH 4 is given by the formalism of Ref. 13.
It should also be possible to derive a forward fluctuation
theorem (not restricted to time-reversal) for predicting
the force/flux relationships along the lines of Ref. 15.

The process studied here retains a clear connection to
the experimental measurement process, and is flexible
enough to compute heat and work for continuous feed-
back control. In view of the near-identity between our
Eq. 58 and Eq. 10 of Ref. 27, (also similar in form to
Eq. 77 of Ref. 68) it is very likely that recent experimen-
tal deviations from the fluctuation theorem are due to
the phenomenon of minimum temperature, as well as to
differences between traditional, system-centric, and the
present, observational, definitions of heat and work.
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Appendix A: Analysis of the Micromaser

Exact numerical results are known for the micromaser
in the rotating wave approximation — a single-qbit system
(B) in state e or g coupled to a single mode of an opti-
cal cavity (A) in a Fock state, n = 0,1,....[59-61] The
Hamiltonian is known as the Jaynes-Cummings Model
(JCM) and is given by Eq. 31. The rotating wave ap-
proximation neglects a term,

T

vYH)p = ’Y(aLaB +aaap) (A1)

in the Hamiltonian causing simultaneous excitation of the
gbit and cavity that is present in the Rabi model (Eq. 43).
It is usually justified when the two frequencies, w4 and
wp, are near resonance,[70] but is critical for reproducing
some quantum effects.[9]
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The JCM is an idealized model for understanding ex-
periments on the 1-photon micromaser. There, a se-
quence of atoms are passed through an optical cavity
tuned to a resonant frequency, wa. The work exchange
between the field and a passing atom is realized when
the energy of the exiting atom is measured. This will
project the environment into a state with known excita-
tion, ng =1 or 0.

For completeness, we derive the solution of the JCM
given in Eq. 33. The solution is well-known,[7, 59, 60]
but is re-stated here because the notation is slightly dif-
ferent. For states with m > 0 total excitations, the
time-evolution operator decomposes into a 2 x 2 block-
diagonal,[70]

[<n — Lefy( )q _ piwat(n—3)

t
(n, gl (1)) (42)

t) o] [ on],

with the definitions,[59]

Q= %Wﬁ (A3)

AC = WRB — WA (A4)

02 = 02 4+ A2 (A5)
JAN

an(t) = cos(,t/2) — =Ssin(,t/2)  (A6)

Q/

n

0,
bu(t) = _1(7 sin(,t/2).

n

Starting at t = 0 from |n — 1)(n — 1| ® |e)(e| gives,

_n—Le_T_ an(®)?  —an )by (t)] [(n—1,€]
pas® =" 5] Lk inar | gl
i i i (A8)
Starting, instead, at ¢ = 0 from |n){n| ® |g){g| gives,
[n=1] [ a®)P  an®ba(D)] [(n - 1€
PAE = Vi g) | [—an(ba(®) Jan®P | |
(A9)

Because of the simplicity of this system, measuring the
atom also projects the cavity into a Fock state. This sim-
plifies the analysis, since we only need to track the pure
probabilities, p,. Assuming the incoming atomic states
are chosen to be pure e or g at random (with probabilities
O OF 04, Tesp.),

Pn(t) = pn(0) + |bui1 () *(0gPrs1 — Tepn)

— [bu(t) P (0gpn — Oepn—1).  (A10)

Eq. A10 uses the fact that by = 0. This expression for
the density matrix immediately after measurement can
be used to make exact calculations of the work and heat
in the JCM.

This master equation has a non-trivial steady-state at
Pn = pg(g—:)”. The existence of this steady-state, and

(n,gl |°

(n,gl |~



the fact that the cavity does not have a canonical dis-
tribution, even when the atom does (0./0, = e #hws)
were noted by Jaynes.[70] Experimentally, relaxation to
the canonical distribution occurs because of imperfect
isolation of the cavity, which allows thermalization in-
teractions with external resonant photons and results in
a near-canonical (but not perfect) steady state.[60] Such
interactions could easily be added to the present model,
but for clarity this analysis focuses on interaction with
the single reservoir system, B.

Equation 38 is derived by averaging over the distribu-
tion of measurement times.

00 QQ
(b (£)[?) = /0 Ne Mt o7t sin® (€,4/2)

n

(A11)

In the limit of many measurements (7'/t — o0), this ex-
pectation gives the rate of transitions (and from those
the rates of heat and work) per average measurement in-
terval. Note that for the physical micromaser setup, the
interaction time is set by the velocity of the atom and the
cavity size — resulting in a narrow Gaussian distribution
rather than the Poisson process studied here.

Appendix B: Weak Coupling Limit

The classical van Hove limit was investigated in detail
by Spohn and Lebowitz,[16] who showed generally that
thermal equilibrium is reached by pa in this limit irre-
spective of the type of coupling interaction, H op. First,
the interaction strength, ~, must tend to zero so that
only the leading-order term in the interaction remains.
This makes the dynamics of pa(t) = Trp [pap(t)] ex-
pressible in terms of 2-point time-correlation functions
for the reservoir. We use the term ‘weak coupling limit’
in the text to refer only to v — 0.

We use the term ‘van Hove limit’, to refer to tak-
ing the weak coupling first, followed by assuming an in-
finitely slow measurement process. We derive the long-
time limit below as A — 0. This enforces energy conser-
vation because time evolution causes off-diagonal matrix
elements to oscillate and average to zero over long enough
timescales.

Finally, the Gibbs ensemble is found to be stationary
by combining energy conservation with the detailed bal-
ance condition obeyed by the reservoir,

Trg [e—ﬂﬁBA(O)B(t)] _ [e-BﬁBB(t - iﬁ)A(O)} :
(B1)

which enforces for the A system,

e PP BT — e PEnBR. (B2)
The time-dependence of the operators in this equation is
defined by the Heisenberg picture, below.

Because Sec. V C requires expressions for the time-
dependence of both p4 and pp, this section re-derives
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the weak-coupling limit without taking the partial trace.
The time-dependence of p can be found from second-
order perturbation theory,

OaB(t) = pap(0) — %/0 dz [Hap(z), pap(0)] + O(%—z)
42

-2 s [ (o) st pano),

(B3)

where pap(0) = pa ® pp(0). This equation uses the
following notation for the density matrix and time-
dependence in the interaction representation,

Oan(t) = Uy ' pan(t)Us (B4)
Hap(t) = Uy " HapU} (B5)

with time-evolution operator,
Uy = e {HatHp)/h, (B6)
The time-evolution can be written more explicitly by
decomposing Hap into transitions between joint sys-

tem/reservoir states (m to k) with energy difference
Wi — Wm,

Hap(t) =) Ve (B7)

where

Ve, > |k) (k| Hap|m)(m|.  (B8)
km : wg—wm=w
Eq. 45 in the text is derived by average each term in
Eq. B3 over a Poisson-distribution for the measurement
time, t.

(6()) = A /O St e Mo (B9)

iy

= pas(0) 7

Fap (). pa5(0)] + L5 [oan 0]
(B10)

When A — 0, transitions where energy is conserved
between the A and B systems (w = 0) dominate in the
sum, resulting in a net prefactor of (7/Ah)2. The transi-
tion rate is then v2/h?\ — exactly the combination that is
kept constant in the van Hove limit. In this limit, tracing
over B in Eq. 48 should recover Eq. II1.19 of Ref. 16.

By applying the interaction part of Eq. 48 to the time
evolution with rate A, the effective master equation in
the weak coupling limit becomes,

(Faepal®)) + 22 T (L [pa(t) @ 0]
(B11)

dpa 1
ot h
For the JCM, there is just one VAC = ao4. The time-

evolution in this picture reproduces the exact result,
Eq. 40.



Appendix C: Fast Coupling Limit

For the atom-field system, it was shown that the tran-
sition rate approached the same value in both the weak
coupling and infinitely fast measurement case. To find
the general result for the Poisson measurement process
as A — oo, note that the Taylor series expansion of the
time average turns into an expansion in powers of A7!,

> oM _ - —kp(k)
)\/0 dt e 0(t) kZ:OA o®) (1). (C1)

It is elementary to calculate successive derivatives,
6%) | by plugging into

00(t) iy, A
—— = ——[Hap(t),0(t)]. C2
o = i n(0),00) (c2)
The average measured 6 after a short interaction time on

the order of A~! is therefore,

(6) = pa5(0) = 1 (Haz. pan(0)

[[PAIA + f{fg, I:[AB]a PAB(O)}

+ —=— (2F[ABpAB(O)ﬁAB - {H,ZAB7PAB(O)}>

+0 < Az;) . (C3)

We can immediately see that this limit is valid when
the measurement rate is faster than /% measurements
per second. The O(v) terms are in the form of a time-
propagation over the average measurement interval, A~!.
They have only off-diagonal elements, and do not con-
tribute to (H4) or (Hp).

The third term has the familiar Lindblad form, which
immediately proves a number of important consequences.
First, all three terms are trace-free and totally positive.
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Next, this term introduces dissipation towards a station-
ary state for p. For a system under infinitely fast repeated
measurement, the O(y) terms do not contribute to Trp,
and the density matrix evolves according to,

VN
= 5 [Ha, pa(t)]
_r

A2

pa(t) =
Tep [[Ha, Az, pa © pp(O)]] . (C4)

A more explicit representation is possible by defining
the sub-matrices,

[Vnm]l] = [I:IAB}in,jm~ (05)
These have the symmetry, ynm =yt mn - so

_[[ﬁ[A& [ﬁAB,pA ® pp(0)]]

m,m

= pR2vTrpa Vi — phgumn i a1 (C6)

For the JCM, this gives,

72y (0g (n) —0oe (n+1)). (C7)

The stationary state of this system will usually not
be in the canonical, Boltzmann-Gibbs form. In fact, the
prefactor does not depend on the cavity-field energy mis-
match, A., so it gives atomic transitions regardless of the
wavelength of the light.

This phenomenon is an explicit manifestation of the
energy-time uncertainty principle. In the long-time limit
of Sec. B, energy-preserving transitions dominated over
all possibilities. In the short-time limit of this section,
all the transitions contribute equally, and the energy dif-
ference caused by a transition could be infinitely large.
In-between, energy conservation (and convergence to the
canonical distribution) depends directly on the smallness
of the measurement rate, .



