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We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according
to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the
moment generator of the stochastic functional, given a particular realization of the underlying
discrete Markov process; the latter generates transitions between different dynamical equations for
the continuous process. We then analyze the stochastic Liouville equation using methods recently
developed for diffusion processes in randomly switching environments. In particular, we obtain
dynamical equations for the moment generating function, averaged with respect to realizations of
the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential
Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a
one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present
an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation
of stochastic hybrid systems.

I. INTRODUCTION

An increasing number of problems in biological physics
involve the coupling between a piecewise deterministic
dynamical system in R

d and a time-homogeneous Markov
chain on some discrete space Γ [1], resulting in an a type
of stochastic hybrid system known as a piecewise deter-
ministic Markov process (PDMP) [2, 3]. Probably the
simplest example of a PDMP is a velocity jump pro-
cess where the “velocity” of some continuous process ran-
domly switches between different values. This could be
the position of a molecular motor on a filament track
[4], the length of a microtubule undergoing catastrophes
[5] or a bacterium displaying run and tumble [6]. An-
other example at the single-cell level concerns membrane
voltage fluctuations in a neuron due to the stochastic
opening and closing of ion channels [7–16]. The dis-
crete states of the ion channels evolve according to a
continuous-time Markov process with voltage-dependent
transition rates, whereas the membrane voltage evolves
according to a piecewise deterministic equation that de-
pends on the current state of the ion channels. In the
limit that the number of ion channels goes to infinity, an
application of the law of large numbers recovers classi-
cal Hodgkin-Huxley type equations. On the other-hand,
channel fluctuations in the finite case can lead to noise-
induced neuronal spiking. Another important example is
a gene regulatory network, where the continuous variable
is the concentration of a protein product and the discrete
variable represents the activation state of the gene [17–
21]. Yet another example arises in a stochastic formu-
lation of synaptically-coupled neural networks that has
a mathematical structure analogous to stochastic gene
networks [22].

In many of the above examples, one finds that the tran-
sition rates between the discrete states n ∈ Γ are much
faster than the relaxation rates of the piecewise deter-
ministic dynamics for x ∈ Rd. In other words, there is a
separation of time scales between the discrete and contin-
uous processes, so that if t is the characteristic time-scale

of the Markov chain then ǫt is the characteristic time-
scale of the relaxation dynamics for some small positive
parameter ǫ. In the limit ǫ → 0 one obtains a determinis-
tic dynamical system in which one averages the piecewise
dynamics with respect to the corresponding unique sta-
tionary measure of the Markov chain (assuming it exists).
An important problem is then characterizing how the un-
derlying stochastic process approaches this deterministic
limit in the case of weak noise, 0 < ǫ ≪ 1. A rigor-
ous mathematical approach to addressing this particular
issue has recently been developed for stochastic hybrid
systems using large deviation theory [23–25]. Such a the-
ory provides a variational or action principle that can be
used to solve first passage time problems associated with
the escape from a fixed point attractor of the underlying
deterministic system in the weak noise limit. This in-
volves finding the most probable paths of escape, which
minimize some action with respect to the set of all tra-
jectories emanating from the fixed point. In addition,
a variety of complementary techniques in applied mathe-
matics and mathematical physics have been used to solve
first passage time problems in biological applications of
stochastic hybrid systems. These include WKB approx-
imations and matched asymptotics [10, 14, 15, 18–21],
and path-integrals [26, 27].
In this paper, we address a different aspect of stochas-

tic hybrid systems, namely how to derive a “Feynman-
Kac” formula for functionals of a continuous variable
x(t) ∈ R evolving according to a piecewise determinis-
tic dynamics. The original Feynman-Kac formula was
derived for Brownian functionals [28]. Suppose that
X(t) ∈ R represents pure Brownian motion. A Brown-

ian functional over a fixed time interval [0, t] is formally
defined as a random variable T given by

T = ∫ t

0

U(X(τ))dτ, (1.1)

where U(x) is some prescribed function or distribution
such that T has positive support. Two common examples
are as follows [29, 30]: (i) U(X) = δ(x − a) for the local
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time density at x = a, which characterizes the amount
of time that a Brownian particle spends in the neigh-
borhood of a point in space, and (ii) U(x) = Θ(x) for
the occupation or residence time in R

+. Since X(t),
t ≥ 0, is a Wiener process, it follows that each realization
of a Brownian path will typically yield a different value
of T , which means that T will be distributed according
to some probability density P (T, t∣x0,0) for X(0) = x0.
The statistical properties of a Brownian functional can
be analyzed using path integrals, and leads to the follow-
ing Feynman-Kac formula [28]: Let Q(s, t∣x0,0) be the
moment generating function (or Laplace transform of)
P (T, t∣x0,0),

Q(s, t∣x0, t0) = ∫ ∞

0

e−sTP (T, t∣x0,0)dT. (1.2)

Then Q satisfies the modified backward Fokker-Planck
equation (FPE)

∂Q

∂t0
= 1

2

∂2Q

∂x2
0

− sU(x0)Q, (1.3)

which is supplemented by the “final” condition
Q(s, t∣x0, t) = 1. For a general review of Brownian func-
tionals and their applications, see Ref. [31].
The goal of this paper is to derive the analog of Eq.

(1.3) for the functional T of Eq. (1.1), with X(t) the con-
tinuous component of a stochastic hybrid system rather
than Brownian motion. In section II, we define a stochas-
tic hybrid system and introduce our notation. In section
III we carry out the detailed derivation of the Feynman-
Kac formula for a stochastic hybrid system. We first
consider a particular realization σ of the discrete Markov
process n(t), and derive a stochastic Liouville equation
for the moment generatorQ. An analogous result was ob-
tained in a recent study of stochastically-gated Brownian
functionals [32]. Following along similar lines to this pre-
vious study, we analyze the stochastic Liouville equation
using methods recently developed for diffusion processes
in randomly switching environments [33]. We thus ob-
tain a Feynman-Kac formula in the form of a differential
Chapman-Kolmogorov (CK) equation. We illustrate the
theory in section IV by considering the occupation time
for a velocity jump process. Finally, in section V we re-
late the analysis to our recent path-integral construction
of stochastic hybrid systems [26, 27].

II. ONE-DIMENSIONAL STOCHASTIC
HYBRID SYSTEM

We begin by defining a stochastic hybrid system and,
in particular, a piecewise deterministic Markov process
(PDMP) [2, 23, 25]. For the sake of illustration, consider
a system whose states are described by a pair (x,n) ∈
Σ × {0,⋯,N0 − 1}, where x is a continuous variable in
Σ ⊂ R and n a discrete stochastic variable taking values
in the finite set Γ ≡ {0,⋯,N0 − 1}. (Note that one could

easily extend the analysis to higher-dimensions, x ∈ Rd.
However, for notational simplicity, we restrict ourselves
to the case d = 1. It is also possible to have a set of
discrete variables, but one can always relabel the internal
states so that they are effectively indexed by a single
integer.) When the internal state is n, the system evolves
according to the ordinary differential equation (ODE)

ẋ = Fn(x), (2.1)

where Fn ∶ R → R is a continuous function. For fixed
x, the discrete stochastic variable evolves according to a
homogeneous, continuous-time Markov chain with gen-
erator A(x). We make the further assumption that the
chain is irreducible for all x ∈ Σ, that is, for fixed x there is
a non-zero probability of transitioning, possibly in more
than one step, from any state to any other state of the
Markov chain. This implies the existence of a unique in-
variant probability distribution ρ(x) on Γ for fixed x ∈ Σ,
with components ρm(x), such that

∑
m∈Γ

Anm(x)ρm(x) = 0, ∀n ∈ Γ. (2.2)

The above stochastic model defines a one-dimensional
PDMP. It is also possible to consider generalizations of
the continuous process, in which the ODE (2.1) is re-
placed by a stochastic differential equation (SDE) or even
a partial differential equation (PDE). In order to allow
for such possibilities we will refer to all of these processes
as examples of a stochastic hybrid system.
The generator A is related to the transition matrix W

of the discrete Markov process according to

Anm =Wnm − δnm∑
k

Wkn.

Suppose that we decompose W by writing

Wnm(x) = Pnm(x)ωm(x),
with ∑n≠m Pnm(x) = 1 for all x. That is, for a given
x, the jumps times from state m are exponentially dis-
tributed with rate ωm(x) and Pnm(x) is the probability
distribution that when it jumps the new state is n for
n ≠ m. The hybrid evolution of the system with respect
to x(t) and n(t) can then be described as follows. Sup-
pose the system starts at time zero in the state (x0, n0).
Call x0(t) the solution of (2.1) with n = n0 such that
x0(0) = x0. Let θ1 be the random variable such that

P(θ1 < t) = 1 − exp(−∫ t

0

ωn0
(x0(t′))dt′) .

The exponential is the probability that no jump occurs
in the interval [0, t] so that P[θ1 < t] gives the probabil-
ity that the jump does occur before time t. Then in the
random time interval s ∈ [0, θ1) the state of the system is(x0(s), n0). We draw a value of θ1 from P(θ1 < t), choose
an internal state n1 ∈ Γ with probability Pn1n0

(x0(θ1)),
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and call x1(t) the solution of the following Cauchy prob-
lem on [θ1,∞):

{ ẋ1(t) = Fn1
(x1(t)), t ≥ θ1

x1(θ1) = x0(θ1)
Iterating this procedure, we construct a sequence of in-
creasing jumping times (θk)k≥0 (setting θ0 = 0) and a
corresponding sequence of internal states (nk)k≥0. The
evolution (x(t), n(t)) is then defined as

(x(t), n(t)) = (xk(t), nk) if θk ≤ t < θk+1. (2.3)

Given the above iterative definition of a PDMP, let
X(t) and N(t) denote the stochastic continuous and dis-
crete variables, respectively, at time t, t > 0, given the
initial conditions X(0) = x0,N(0) = n0. Introduce the
probability density pn(x, t∣x0, n0,0) with
P{X(t) ∈ (x,x+dx), N(t) = n∣x0, n0) = pn(x, t∣x0, n0,0)dx.
It follows that p evolves according to the forward differ-
ential Chapman-Kolmogorov (CK) equation [1, 34]

∂pn

∂t
= Lpn, (2.4)

with the operator L (dropping the explicit dependence
on initial conditions) defined according to

Lpn(x, t) = −∂Fn(x)pn(x, t)
∂x

+ ∑
m∈Γ

Anm(x)pm(x, t).
(2.5)

The first term on the right-hand side represents the prob-
ability flow associated by the piecewise deterministic dy-
namics for a given n, whereas the second term represents
jumps in the discrete state n. Now define the averaged
function F ∶ R → R by

F (x) = ∑
n∈Γ

ρn(x)Fn(x)
Intuitively speaking, one would expect the stochastic hy-
brid system (2.1) to reduce to the deterministic dynami-
cal system

{ ẋ(t) = F (x(t))
x(0) = x0

(2.6)

in the fast switching limit ωn →∞. For the Markov chain
then undergoes many jumps over a small time interval ∆t
during which ∆x ≈ 0, and thus the relative frequency of
each discrete state n is approximately ρn(x). This can
be made precise in terms of a law of large numbers for
stochastic hybrid systems proven in [24, 25].
In the following we will take either Σ = R or Σ = R+ =[0,∞). In the latter case we will impose the no-flux

boundary condition J(0, t) = 0 with

J(x, t) = N0−1∑
n=0

Fn(x)pn(x, t), x ∈ Σ. (2.7)

Note, however, that from a PDE perspective, the CK
equation is an N th

0 -order quasilinear equation on Σ. In
general, well-posed boundary conditions for a quasilinear
PDE have to be determined using the theory of charac-
teristics. In particular, for certain choices of the functions
Fn(x) it is necessary to supplement the no-flux bound-
ary condition at x = 0 by auxiliary boundary conditions.
For example, suppose that the functions Fn(x) do not
change sign within the interval Σ. In particular, there
exists an integer m, 1 ≤m ≤ N0−1, such that for all 0 < x
we have Fn(x) < 0 for 0 ≤ n ≤ m − 1 and Fn(x) > 0 for
m ≤ n ≤ N0 − 1. Assume that Fn(0) = 0 for 0 ≤ n ≤m − 1
and Fn(L) = 0 for m ≤ n ≤ N0−1. In that case the no-flux
boundary condition can only be satisfied if pn(0, t) = 0
for all m ≤ n ≤ N0 − 1. This issue does not arise for the
velocity jump process considered in section IV.

III. DERIVATION OF FEYNMAN-KAC
FORMULA

Let σ(t, t0) = {n(τ) ∈ Γ, t0 < τ ≤ t∣n(t0) = n0} denote
a particular realization of the discrete Markov process in
the interval [t0, t]. For a given realization σ, Eq. (2.1) re-
duces to a deterministic, non-autonomous ODE. Suppose
that the initial state of the continuous variable, x(t0) = y
is randomly generated from a density p0(y). Let

P (x, t) = ∫
Σ

P[x(t) = x∣x(t0) = y)p0(y)dy
denote the probability density of the state at time t for
fixed σ. The probability density evolves according to the
stochastic Liouville equation

∂

∂t
P (x, t) = [− ∂

∂x
Fn(t)(x)]P (x, t), (3.1)

with P (x, t0) = p0(x). Note that the density P (x, t) is
a random field with respect to realizations of σ. (For
notational simplicity we drop the explicit dependence on
σ from P (x, t).) One could numerically estimate P (x, t)
for a given σ by running multiple trials with initial con-
ditions generated by p0 - the important point being that
each trial has the same fixed realization σ. The corre-
sponding solution pn(x, t) of the CK equation (2.4) would
then be recovered by setting p0(x) = δ(x − x0) and av-
eraging over different realizations of the discrete process,
that is,

pn(x, t) = Eσ[P (x, t)1n(t)=n], (3.2)

where the subscript σ denotes expectation with respect
to σ.
Following our recent analysis of stochastically-gated

Brownian functionals [32], let Xσ(t) denote a sample tra-
jectory of the continuous process for a given realization
σ and introduce the analog of the Brownian functional
(1.1),

T (t, t0) = ∫ t

t0

U(Xσ(t′))dt′, (3.3)
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(For ease of notation, we suppress the explicit depen-
dence of T on σ.) The process Xσ(t) is not time-
homogeneous so the lower limit cannot always be set to
zero. Let P (T , t, t0) be the corresponding probability
density for T . Since T ≥ 0, we can introduce the analog
of the moment generating function (1.2):

Q(s, t, t0) = ∫ ∞

0

e−sT P (T , t, t0)dT . (3.4)

We will proceed by first deriving a Feynman-Kac formula
for Q and fixed σ, which takes the form of a stochastic Li-
ouville equations. We will then obtain the corresponding
Feynman-Kac formula averaged with respect to different
realizations σ, which takes the form of a differential CK

equation.

A. Stochastic Liouville equation for fixed σ

The next step is to introduce a path-integral represen-
tation of the sample paths Xσ(t), that is, the solution
trajectories of the Liouville equation (3.1) generated by
the distribution of initial conditions p0. First, discretize
time by dividing the given interval [t0, t] into N equal
subintervals of size ∆t such that t − t0 = N∆t and set
xj = Xσ(j∆t), nj = n(j∆t) for j = 0, . . . ,N . The proba-
bility density for x0, x1, . . . , xN given a particular realiza-
tion of the stochastic discrete variables nj , j = 0, . . . ,N−1,
is

Pσ(x0, x1, . . . , xN ) ≡ ∫
Σ

P (x0, x1, . . . , xN ∣n0, . . . , nN−1) = p0(x0)N−1∏
j=1

δ (xj+1 − xj −Fnj
(xj)∆t) .

We define corresponding discretized versions of the functional T and moment generating functional Q according toT = ∑N
j=0U(Xj)∆t, and

Q(s, t, t0) = ∫ ∞

0

e−sT ∫
ΣN+1

δ
⎛⎝T −

N∑
j=0

U(Xj)∆t
⎞⎠Pσ(x0, x1, . . . , xN) ⎡⎢⎢⎢⎣

N∏
j=0

dxj

⎤⎥⎥⎥⎦ dT
= ∫

ΣN+1
exp
⎛⎝−s

N∑
j=0

U(Xj)∆t
⎞⎠Pσ(x0, x1, . . . , xN ) ⎡⎢⎢⎢⎣

N∏
j=0

dxj

⎤⎥⎥⎥⎦ , (3.5)

where ΣN+1 denotes the N + 1-dimensional product space Σ ×Σ × . . . ×Σ ⊂ RN+1. Now taking the continuum limit
∆t → 0,N → ∞ such that N∆t = t − t0 yields the formal path-integral representation of the moment generating
function Q:

Q(s, t, t0) = ∫
Σ

[∫ x(t)=x

x(t0)=x0

exp(−s∫ t

t0

U(x(τ))dτ)Pσ[x]D[x]] p0(x0)dx0 dx, (3.6)

where

p0(x0)∫ x(t)=x

x(t0)=x0

Pσ[x]D[x] = lim
∆t→0,N→∞

∫
ΣN

Pσ(x0, x1, . . . , xN)N−1∏
j=1

dxj .

The next step is to introduce the propagator G according to

Q(s, t, t0) = ∫
Σ2

G(s, x, t∣x0, t0)p0(x0)dx0 dx, (3.7)

with

G(s, x, t∣x0, t0) = [∫ x(t)=x

x(t0)=x0

exp(−s∫ t

t0

U(x(τ))dτ)Pσ[x]D[x]] ≡ ⟨exp(−s∫ t

t0

U(x(τ))dτ)⟩x(t)=x
x(t0)=x0

(3.8)

where ⟨⋯⟩ denotes averaging over realizations of Xσ(t). Note that G satisfies the initial condition G(x, t0 ∣x0, t0) =
δ(x − x0). We can now proceed along analogous lines to the derivation of the Feynman-Kac formula for Brownian
motion. That is,

G(s, x, t +∆t∣x0, t0) = ⟨exp(−s∫ t+∆t

t0

U(x(τ))dτ)⟩x(t+∆t)=x

x(t0)=x0

≈ ⟨exp(−s∫ t

t0

U(x(τ))dτ)⟩x(t)=x−∆x

x(t0)=x0

e−sU(x)∆t

= e−sU(x)∆tG(s, x −∆x, t∣x0, t0).

We have split the time interval [t0, t + ∆t] into two
parts [t0, t] and [t, t + ∆t] and introduced the inter-

mediate state x(t) = x − ∆x with ∆x determined by
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∆x = Fn(t)(x −∆x)∆t. Expressing ∆x in terms of ∆t
and Taylor expanding with respect to ∆t yields the fol-
lowing PDE in the limit ∆t → 0:

∂G

∂t
= −∂Fn(t)(x)G

∂x
− sU(x)G. (3.9)

In contrast to the standard Feynman-Kac formula (1.3)
for Brownian motion, Eq. (3.9) is in the form of a
stochastic PDE (SPDE) due to the dependence of F on
the discrete state n(t). More precisely, Eq. (3.9) is a
piecewise deterministic PDE.

Having solved for G, the moment generating function
is obtained from Eq. (3.7). From the definition of Q, see
Eq. (3.4), we can then determine the k-th moment of the
functional (3.3) averaged with respect to the continuous
process Xσ(t):

⟨T k⟩ ≡ ∫ ∞

0

T kP (T , t, t − τ)dT
= (−1)k dk

dsk
Q(s, t, t − τ)∣

s=0

. (3.10)

(In the case of a PDMP, stochasticity for fixed σ arises
from the random distribution of initial conditions.) How-
ever, in order to determine statistics of the doubly
stochastic process, we also need to take expectations with

respect to realizations σ of the gate:

⟪T k(τ)⟫ = Eσ[⟨T k⟩] = (−1)k dk

dsk
Eσ[Q(s, t, t − τ)]∣

s=0

,

(3.11)
assuming we can reverse the order of expectation and dif-
ferentiation. Hence, calculating the moments of T with
respect to the doubly stochastic process, requires deter-
mining Eσ[Q]. The latter is the generator of moments
of T averaged with respect to realizations of the discrete
Markov process.
For calculational purposes, it will be simpler to fix the

initial state X(0) = x0 by taking p0(y) = δ(y − x0) and
working directly with the corresponding SPDE for Q =
Q(s, t∣x0, t0). Setting t0 = t − τ , it is straightforward to
show that Q satisfies the “backward” SPDE

∂Q

∂τ
= Fn(t−τ)(x0) ∂Q

∂x0

− sU(x0)Q, (3.12)

which is supplemented by the “final” condition
Q(s, t∣x0, t) = 1. That is, from properties of the prop-
agator G we can write

Q(s, t∣x0, t0) = ∫
Σ

dx∫
Σ

dx′G(s, x, t∣x′, t′)G(x′, t′∣x0, t0).
Differentiating both sides with respect to the intermedi-
ate time t′ and using the forward equation for G yields

0 = ∫
Σ

dx∫
Σ

dx′[∂t′G(s, x, t∣x′, t′)G(x′, t′∣x0, t0) +G(s, x, t∣x′, t′)∂t′G(x′, t′∣x0, t0)]
= ∫

Σ

dx∫
Σ

dx′ [∂t′G(s, x, t∣x′, t′)G(x′, t′∣x0, t0) +G(s, x, t∣x′, t′) (−∂x′Fn(t′)(x′) − sU(x′))]G(x′, t′∣x0, t0)
Integrating by parts with respect to x′, reversing the order of integration, and using the relationship between Q and
G shows that

∫
Σ

dx′G(x′, t′∣x0, t0) [∂t′ + Fn(t′)(x′)∂x′ − sU(x′)]Q(s, t∣x′, t′)

Finally, setting t′ = t0 = t − τ and using G(x′, t′∣x0, t
′) =

δ(x′ − x0) yields the backward equation for Q.

The next step is to average over different realizations
σ. As in our study of stochastically-gated Brownian func-
tionals [32], we will proceed by adapting our recent work
on stochastic diffusion equations in randomly switching
environments [33]. Since Q is a random field with respect
to realizations of the discrete Markov process n(t), there
exists a probability density functional ̺ that determines
the distribution of the densities q(x0, τ) =Q(s, t∣x0, t−τ)
for fixed s, t. The expectation Eσ[Q] then corresponds
to the first moment of this density functional. (This is
distinct from the first moment of T generated by Q.)
Rather than dealing with the probability density func-
tional directly, we spatially discretize the piecewise de-

terministic backward FPE (3.12) using a finite-difference
scheme and use this to derive corresponding differential
equations for Eσ[Q]. More precisely, we will derive equa-
tions for Eσ[Q] conditioned on the initial state n(t0) = n.

B. Dynamical equations for Eσ[Q]

Introduce the lattice spacing ℓ and set xj = jℓ, ℓ ∈ Z.
Let Qj(τ) = Q(s, t∣jℓ, t − τ), Uj = U(jℓ), and Fj,n =
F (jℓ, n), j ∈ Z. (For the moment we take Σ = R. If
Σ is a proper subset of R then j will be restricted to
some subset of the integers. Also note that here we are
discretizing the continuous variable x rather than time.)
Eq. (3.12) then reduces to the piecewise deterministic
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ODE (for fixed s, t)

dQi

dτ
= Fi,n∑

j∈Z

KijQj − sUiQi, if n(t − τ) = n (3.13)

with

Kij = 1

ℓ
[δi,j−1 − δi,j] (3.14)

Let Q(τ) = {Qj(τ), j ∈ Z} and introduce the probability
density

Prob{Q(τ) ∈ (Q,Q + dQ), n(t − τ) = n} = ̺n(Q, τ)dQ,
(3.15)

where we have dropped the explicit dependence on initial
conditions. The resulting CK equation for the discretized
piecewise deterministic PDE is [1, 34]

∂̺n

∂τ
= −∑

i∈Z

∂

∂Qi

⎡⎢⎢⎢⎢⎣
⎛⎝∑j∈Z KijQj

⎞⎠̺n(Q, τ)⎤⎥⎥⎥⎥⎦+ ∑
m∈Γ

A⊺nm̺m(Q, τ). (3.16)

Since the Liouville term in the CK equation is linear inQ,
we can derive a closed set of equations for the first-order
(and higher-order) moments of the density ̺n.
Let

Qk,n(s, τ) = E[Qk(s, τ)1n(t−τ)=n] = ∫ ̺n(Q, τ)QkdQ,

(3.17)
where

∫ F(Q)dQ = ⎡⎢⎢⎢⎣∏j ∫
∞

0

dQj

⎤⎥⎥⎥⎦F(Q)
for any F . Multiplying both sides of Eq. (3.16) by
Qk and integrating with respect to Q gives ((after inte-
grating by parts the right-hand side, and assuming that
̺n(Q, τ) → 0 as Q→∞)

dQj,n

dτ
= Fj,n∑

l∈Z

KjlQl,n−sUjQj,n+∑
m∈Γ

A⊺nmQm,k. (3.18)

If we now retake the continuum limit ℓ→ 0 and set

Qn(x; s, τ) = Eσ[Q(s, t∣x, t − τ)1n(t−τ)=n] (3.19)

for fixed t, then we obtain the system of equations

∂Qn

∂τ
= Fn(x)∂Qn

∂x
− sU(x)Qn + ∑

m∈Γ

A⊺mn(x)Qm.

(3.20)

We have dropped the subscript on the initial position x0.
Also note that taking expectation with respect to real-
izations σ eliminates the dependence on the final time
t. Eq. (3.20) is the desired Feynman-Kac formula. In
the above derivation, we have assumed that integrating
with respect to Q and taking the continuum limit com-
mute. (One can also avoid the issue that Q is an infinite-
dimensional vector by carrying out the discretization over
the finite domain [−L,L], and taking the limit L → ∞
once the moment equations have been derived.) Finally,
applying the final condition Q(s, t∣x0, t) = 1 implies thatQn(x; s,0) = 1.

IV. OCCUPATION TIME OF A TWO-STATE
VELOCITY JUMP PROCESS

As an illustration of the above analysis, consider the
velocity jump process

dx

dt
= ξ(t) ≡ [v+ + v−]n(t) − v−, n(t) ∈ {0,1}. (4.1)

The term ξ(t) is often referred to in the physics litera-
ture as dichotomous noise [35]. The discrete state n(t)
evolves according to a two-state Markov chain with ma-
trix generator

A = ( −β α
β −α ) . (4.2)

If Pnn0
(t) = P[N(t) = n∣N(0) = n0] then the master

equation for n(t) takes the form

dPnn0

dt
= ∑

m=0,1

AnmPmn0

Using the fact that P0n0
(t)+P1n0

(t) = 1 we can solve this
pair of equations to give

P0n0
(t) = δ0,n0

e−t/τc + k−

τc
(1 − e−t/τc), τc = 1

α + β .
We deduce that τc is the relaxation time of the Markov
chain with Pmn0

(t)→ ρm in the limit t→∞ and

ρ0 = α

α + β , ρ1 = β

α + β . (4.3)

Suppose that the dichotomous noise term ξ(t) is unbiased
so that in the stationary state ⟨ξ(t)⟩ = 0. One then finds
that the stationary autocorrelation function is

⟨ξ(t)ξ(t′)⟩ = D

τc
e−∣t−t

′∣/τc , (4.4)

with noise amplitude D = αβτ3c (Γ+ + Γ−)2. This shows
that dichotomous noise is a form of colored noise.
In terms of the piecewise deterministic ODE (2.1), we

have F1(x) = v+ and F0(x) = −v−. The corresponding
CK equation (2.4) reduces to

∂p0

∂t
= v− ∂p0

∂x
+ αp1 − βp0 (4.5a)

∂p1

∂t
= −v+ ∂p1

∂x
+ βp0 − αp1. (4.5b)

Similarly, the backwards CK equation (3.12) for Qn re-
duces to the pair of equations

∂Q0

∂τ
= −v− ∂Q0

∂x
− sU(x)Q0 − βQ0 + βQ1 (4.6a)

∂Q1

∂τ
= v+ ∂Q1

∂x
− sU(x)Q1 + αQ0 − αQ1. (4.6b)
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Laplace transforming these equation with respect to τ by
setting

Q̃n(x; s, z) = ∫ ∞

0

e−zτQn(x, s, τ)dτ (4.7)

= ∫ ∞

0
∫ ∞

0

e−zτ−sT Eσ[P (T , t∣x, t − τ)1n(t−τ)=n]dT dτ,

we have

−1 = −v− ∂Q̃0

∂x
− sU(x)Q̃0 − (z + β)Q̃0 + βQ̃1 (4.8a)

−1 = v+ ∂Q̃1

∂x
− sU(x)Q̃1 + αQ̃0 − (z + α)Q̃1. (4.8b)

A. Infinite line

Suppose that x(t) ∈ R and consider the occupation
time T defined by Eq. (3.3) with U(x) = Θ(x). For
the given choice of U(x), we have to solve Eqs. (4.8)
separately in the two regions x > 0 and x < 0, and then
impose continuity of the solutions at the interface x = 0.
In order to determine the far-field boundary conditions
for x→ ±∞, we note that if the system starts at x = ±∞
then it will never cross the origin a finite time τ in the
future, that is,

P (T , t∣∞, t − τ) = δ(t − T ), P (T , t∣ −∞, t − τ) = δ(T ).
Substituting this into the definition of Q̃n shows that

Q̃n(∞; s, z) = 1

z + s , Q̃n(−∞; s, z) = 1

z
. (4.9)

Therefore, setting

Q̃n(x; s, z) = u+n(x; s, z) + 1

z + s , x > 0,
Q̃n(x; s, z) = u−n(x; s, z) + 1

z
, x < 0,

we have

0 = −v− ∂u+0
∂x
− (z + s + β)u+0 + βu+1 (4.10a)

0 = v+ ∂u+1
∂x
+ αu+0 − (z + s + α)u+1 . (4.10b)

and

0 = −v− ∂u−0
∂x
− (z + β)u−0 + βu−1 (4.10c)

0 = v+ ∂u−1
∂x
+ αu−0 − (z + α)u−1 . (4.10d)

with corresponding boundary conditions u±n(±∞; s, z) =
0. Eqs. (4.10) can be rewritten in the matrix form

∂

∂x
( u+0
u+1
) +M(z + s)( u+0

u+1
) = 0, x ∈ (0,∞), (4.11)

and

∂

∂x
( u−0
u−1
) +M(z)( u+0

u+1
) = 0, x ∈ (−∞,0), (4.12)

with

M(z) =
⎛⎜⎜⎜⎜⎝

z + β
v−

− β

v−

α

v+
−z + α

v+

⎞⎟⎟⎟⎟⎠
. (4.13)

The matrix M(z) has eigenvalues
λ±(z) = −Γ ±

√
Γ2 + z2 + (α + β)z

v−v+
, (4.14)

where

Γ = (z + α)v− − (z + β)v+
2v−v+

. (4.15)

The corresponding eigenvectors are

w±(z) =
⎛⎜⎜⎜⎜⎝

z + α
v+
− λ±(z)
α

v+

⎞⎟⎟⎟⎟⎠
. (4.16)

In order that the solutions u±n vanish in the limits x →±∞, they have to take the form

u+n(x; s, z) = Aw+n(z + s)e−λ+(z+s)x, x ∈ (0,∞) (4.17a)

u−n(x; s, z) = Bw−n(z)e−λ−(z)x, x ∈ (−∞,0). (4.17b)

We thus have two unknown coefficients A,B, which are
determined by imposing continuity of the solutions Q̃±n,
n = 0,1, at x = 0. This yields the two conditions (n = 0,1)

Aw+0 (z + s) + 1

z + s = Bw−0 (z) + 1

z
(4.18a)

Aw+1 (z + s) + 1

z + s = Bw−1 (z) + 1

z
(4.18b)

Adding and subtracting these equations gives

AD+(z + s) = BD−(z)
AS+(z + s) = BS−(z) + 2

z
− 2

z + s ,
where

S±(z) = w±0 (z) +w±1 (z), D±(z) = w±0 (z) −w±1(z).
Hence

A = [S+(z + s) − S−(z)D+(z + s)
D−(z) ]−1 [2

z
− 2

z + s] (4.19a)

B = [S+(z + s)D−(z)
D+(z + s) − S−(z)]−1 [2

z
− 2

z + s] (4.19b)
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In general it is not possible to derive an exact analytical
expression for the double-inverse Laplace transform ofQ̃(x0; s, z). However, we can determine the behavior of
the averaged probability density Eσ[P (T , t∣x, t − τ)] in
the large-time limits T , τ →∞; this corresponds to taking
the limits s, z → 0 in Laplace space. (Note that a natural
time-scale is τc = 1/α (for α < β) so that the large-time
regime is characterized by τ ≫ τc.) For example, suppose
that the mean field version of Eq. (4.1),

dx

dt
= (v+ + v−)ρ1 − v− = ρ1v+ − ρ0v−,

represents unbiased motion. That is, βv+ − αv− = 0. In
particular, take v+ = v− = v and α = β so that Γ = 0 and
λ±(z) = ±λ(z) with

λ(z) =
√

z2 + 2αz
v2

.

In the asymptotic limit s, z → 0 we then find that λ(z)→√
2αz/v, S±(z) → 2α/v and D±(z) → ∓λ(z). Therefore

the leading order approximation of the coefficients is

A ∼ v

α

√
z(√z + s +√z) [1z − 1

z + s] . (4.20)

The corresponding asymptotic solution for Q̃n(0; s, z) be-
comes

Q̃n(0; s, z) ∼
√
z(√z + s +√z) 1z +

√
z + s(√z + s +√z) 1

z + s
= 1√

z(z + s) . (4.21)

Finally, inverting the double Laplace transform with re-
spect to s and then z gives

Eσ[P (T , t∣x, t − τ)] ∼ 1

π
√T (τ − T ) , 0≪ T < τ, (4.22)

which is independent of x, t. This is identical to the well
known “arcsine’ law [29] for the probability density of
the occupation time for pure Brownian motion starting
at the origin (see also section VC).

The asymptotic connection to Brownian motion is not
surprising, given the relationship of the two-state velocity
jump process to the telegrapher’s equation. Setting v± =
v and α = β and adding Eqs. (4.5a) and (4.5b) shows
that the marginal probability density p(x, t) = p0(x, t) +
p1(x, t) satisfies the telegrapher’s equation [36, 37]

[ ∂2

∂t2
+ 2α ∂

∂t
− v2 ∂2

∂x2
]p(x, t) = 0. (4.23)

(The individual densities p0,1 satisfy the same equation.)
One finds that the short-time behavior (for t≪ τc = 1/2α)
is characterized by wave-like propagation with ⟨x(t)⟩2 ∼(vt)2, whereas the long-time behavior (t≫ τc) is diffusive
with ⟨x2(t)⟩ ∼ 2Dt, D = v2/2α. For certain initial condi-
tions one can solve the telegrapher’s equation explicitly.
In particular, if p(x,0) = δ(x) and ∂tp(x,0) = 0 then

p(x, t) = e−αt

2
[δ(x − vt) + δ(x + vt)] + αe−αt

2v

⎡⎢⎢⎢⎣I0(α
√
t2 − x2/v2) + t√

t2 − x2/v2 I0(α
√
t2 − x2/v2)⎤⎥⎥⎥⎦× [Θ(x + vt) −Θ(x − vt)],

where In is the modified Bessel function of n-th order
and Θ is the Heaviside function. The first two terms
represent the ballistic propagation of the initial data
along characteristics x = ±vt, whereas the Bessel function
terms asymptotically approach Gaussians in the large
time limit. In particular p(x, t) → 0 pointwise when
t→ 0.

Using similar arguments, we can also determine what
happens in the case of a biased velocity jump process for
x(0) = 0. If βv+ > αv− then we expect the system to be
located in R

+ at large times t and so T ≈ t, whereas if
βv+ < αv− then we expect the system to be located in R

−

at large times t and so T ≈ 0. In order to construct a non-
trivial example of biased motion, we consider a velocity

jump process on the semi-infinite line R
+.

B. Semi-infinite line

One well-known example of a two-state velocity jump
process on the semi-infinite line is the Dogterom-Leibler
model of microtubule catastrophes [5, 38]. This is a prob-
abilistic model of the length x(t) of a microtubule, which
switches between growth and shrinkage phases according
to a two-state Markov process with generator (4.2), and
v± represent the corresponding elongation and shrinkage
velocities. A non-trivial steady-state solution can be ob-
tained on the semi-infinite line, x > 0, for v+ ≠ v−. This
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can be established by adding equations (4.5a) and (4.5b)
and setting ∂tp0,1 = 0. This gives v+p

′
1(x) − v−p′0(x) = 0,

and thus v+p1(x) − v−p0(x) = constant. Integrability of
p0,1(x) means that the constant must be zero and, hence,
p1(x) = P (x)/v+, p0(x) = P (x)/v− with P satisfying the
equation

dP (x)
dx

= [ β
v−
− α

v+
]P (x) = −V

κ
P (x),

where

V = ρ0v− − ρ1v+, κ = v+v−

α + β .
Here −V is the mean velocity and κ has the units of diffu-
sivity. It immediately follows that there exists a steady-
state solution, P (x) = P (0)e−V x/κ, 0 < x < ∞, if and only
if V > 0. In the regime V < 0, catastrophe events are
relatively rare and the microtubule continuously grows
with mean speed ∣V ∣, whereas, for V > 0 the catastro-
phe events occur much more frequently so that there is
a balance between growth and shrinkage that results in
a steady-state distribution of microtubule lengths.
Let us now introduce an occupation time for the inter-

val [L,∞), L > 0, given by

T (t) = ∫ t

0

Θ(Xσ(τ) −L)dτ. (4.24)

Here T (t) is the amount of time up to time t that the con-
tinuous variable Xσ(τ) spends in the region x > L, given
a particular realization σ of the discrete Markov process
n(t) ∈ {0,1}. Following a similar argument to the analy-
sis of Brownian functionals in Ref. [39], we assume that
in the large time limit we can replace averaging over dif-
ferent realizations of the stochastic process by averaging
with respect to the stationary density pn(x). That is, for
large τ

E[Θ(Xσ(τ) −L)] (4.25)

→ Z(L) ≡ ∫ ∞

L
[p0(x) + p1(x)]dx = e−V L/κ. (4.26)

Therefore, the average occupation time ⟪T (t)⟫ scales lin-
early with time t for t →∞:

⟪T (t)⟫ ≡ ∫ t

0

T P(T , t)dT → Z(L)t, (4.27)

where

P(T , t) = Eσ[P (T , t∣x0, t0)].
From the central limit theorem, we expect that in the
large time limit the probability density P will take the
form of a Gaussian distribution of T around the mean
value ⟨T ⟩:

P(T , t) ∼ exp(− [T − ⟪T (t)⟫]2
2Σ2(t) ) , (4.28)

with the variance Σ2 = ⟪T 2⟫ − ⟪T ⟫2.
One can calculate the variance using Eq. (3.11) for

k = 2, with the Laplace transforms of Q0,1 satisfying Eqs.
(4.8) on x ∈ R

+ for U(x) = Θ(x − L). Modifying the
analysis of the infinite line case accordingly, we find that

Q̃n(x; s, z) = A+w+n(z + s)e−λ+(z+s)x + 1

z + s , L < x < ∞
(4.29a)

Q̃n(x; s, z) = B+w+n(z)e−λ+(z)x +B−w−n(z)e−λ−(z)x + 1

z
(4.29b)

for 0 < x < L. Conditions on the coefficients A+,B± are
obtained by a reflecting boundary condition at x = 0,

B+w
+
0 (z)+B−w−0(z) = B+w+1 (z)+B−w−1 (z), (4.30a)

and the two matching conditions at x = L:
A+w

+
n(z + s)e−λ+(z+s)L + 1

z + s
= B+w+n(z)e−λ+(z)L +B−w−n(z)e−λ−(z)L + 1

z
. (4.30b)

In the asymptotic limit z → 0, we have

Γ(z) ∼ V

2κ
, λ+(z) ∼ z

V
, λ−(z) ∼ −V

κ
,

and

w+0 (z) ∼ α

v+
+ z

V
, w−0 ∼ β

v−
,

while w±1 (z) = α/v+ for all z, see Eqs. (4.14) and (4.16).
Hence, taking s, z → 0 in Eq. (4.30a) shows that

B− ∼ κz

V 2
B+, (4.31)

whereas subtracting the pair of Eqs. (4.30b) for n = 0,1
shows that

B− ∼ κz

V 2
e−V L/κ(A+ −B+). (4.32)

Comparing Eqs. (4.31) and (4.32) yields the asymptotic
relationship

B+ ∼ e−V L/κA+

1 + e−V L/κ
.

Finally, substituting for B+ in Eq. (4.30b) gives to lead-
ing order

α

v+
A+ ∼ (1 + e−V L/κ) (1

z
− 1

z + s) , s, z → 0

α

v+
B+ ∼ e−V L/κ (1

z
− 1

z + s) , s, z → 0.

Combining these various results establishes that the
leading order asymptotic behavior of the solutionQ̃n(x; s, z) is

Q̃n(x; s, z) ∼ 1 + e−V L/κ

z
− e−V L/κ

z + s (4.33)
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for all x ∈ R+ and n = 0,1. It follows that
∂Q̃n(x; s, z)

∂s
∣
s=0

∼ −Z(L)
z2

,
∂2Q̃n(x; s, z)

∂s2
∣
s=0

∼ 2Z(L)
z3

,

and hence

⟪T ⟫ ∼ Z(L)τ, ⟪T 2⟫ ∼ Z(L)τ2. (4.34)

Therefore, the leading order form of the variance is

Σ2 ∼ Z(L)(1 −Z(L))τ2. (4.35)

Note that this result differs from an analogous result ob-
tained for the occupation time of Brownian motion in an
attractive or stable potential [39]. In the latter case, one
finds that both the mean and variance of the occupation
time vary linearly with τ .

V. PATH-INTEGRAL REPRESENTATION OF
Eσ[Q]

In our derivation of the Feynman-Kac formula for a
stochastic hybrid system, see section III, we considered
a particular realization of the discrete Markov process

n(t) and obtained a stochastic Liouville equation for the
continuous process x(t). We then averaged over different
realizations of the discrete process by adapting the mo-
ments method of Ref. [33]. Here we explore an alterna-
tive approach to the analysis of functionals of stochastic
hybrid system based on our recent path-integral repre-
sentation of PDMPs [26, 27].

A. Construction of path-integral

In order to derive the Feynman-Kac formula and in-
troduce notation, we first briefly recap the construction
of the path-integral representation of stochastic hybrid
systems [26, 27]. The first step is to discretize time and
write down the path-integral representation of Q(s, t, t0)
given by Eq. (3.5). We now note that the joint probabil-
ity distribution Pσ(x0, x1, . . . , xN) for a fixed realization
σ can be written as

Pσ(x0, x1, . . . , xN ) = N−1∏
j=0

δ (xj+1 − xj −Fnj
(xj)∆t)

Inserting the Fourier representation of the Dirac delta
function gives

Pσ(x0, x1, . . . , xN ) = N−1∏
j=0

[∫ ∞

−∞
e−ipj (xj+1 − xj −Fnj

(xj)∆t) dpj
2π
] .

In contrast to our previous approach, section III, we now average with respect to the intermediate states nj , j = 1,N−1
and fix nN . This gives

P (x0, x1, . . . , xN ;n0, nN) = ∑
n1,...,nN−1

⎛⎝
N−1∏
j=0

Tnj+1,nj
(xj)⎞⎠Pσ(x0, x1, . . . , xN), (5.1)

where

Tnj+1,nj
(xj) ∼ Anj+1,nj

(xj)∆t + δnj+1,nj
(1 −∑

m

Am,nj
(xj)∆t) + o(∆t) = (δnj+1,nj

+Anj+1,nj
(xj)∆t) .

For a fixed x, we introduce the matrix operator Q(x,φ) with φ a parameter and [26, 27]

Qnm(x,φ) = Anm(x) + φδn,mFm(x). (5.2)

Let Λr(x,φ), r ∈ Γ, denote the set of eigenvalues of Q with corresponding eigenvectors R(r)(x,φ) and adjoint

eigenvectors ξ(r)(x,φ). That is,
∑
m∈Γ

[Anm(x) + φδn,mFm(x)]R(r)m (x,φ) = Λr(x,φ)R(r)n (x,φ), (5.3)

for fixed x,φ, and

∑
r

ξ(r)m (x,φ)R(r)n (x,φ) = δm,n ∑
m

ξ(r)m (x,φ)R(s)m (x,φ) = δr,s
Inserting multiple copies of the above completeness relation with (x,φ) = (xj , φj) at the jth time-step, we have

P (x0, x1, . . . , xN ;nN , n0) = ∑
n1,...,nN−1

N−1∏
j=0
∫ ∞

−∞
Gnj+1,nj

(xj+1, xj , qj , φj)dqj
2π
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with [26, 27]

Gnj+1,nj
(xj+1, xj , qj , φj) ∼ ∑

rj ,m

R(rj)nj+1
(xj , φj)ξ(rj)m (xj , φj)Tm,nj

(xj)e−iqj (xj+1 − xj − Fnj
(xj)∆t)

∼ ∑
rj

exp([Λrj(xj , φj) − iqj xj+1 − xj

∆t
]∆t) exp ([iqjFnj

(xj) − φjFnj
(xj)]∆t)

×R(rj)nj+1
(xj , φj)ξ(rj)nj

(xj , φj),
to leading order in O(∆x,∆t). Now integrating over intermediate states xj , leads to

P (xN , nN ∣x0, n0) = ⎡⎢⎢⎢⎣
N−1∏
j=1
∫ ∞

−∞
dxj

⎤⎥⎥⎥⎦P (x0, x1, . . . , xN ;n0, nN) (5.4)

= ⎡⎢⎢⎢⎣
N−1∏
j=1
∫ ∞

−∞
dxj

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
N−1∏
j=0
∫ ∞

−∞

dqj

2π

⎤⎥⎥⎥⎦ ∑
n1,...,nN−1

∑
r0,...,rN−1

⎡⎢⎢⎢⎣
N−1∏
j=0

R(rj)nj+1
(xj , φj)ξ(rj)nj

(xj , φj)⎤⎥⎥⎥⎦
× exp⎛⎝∑j [Λrj(xj , φj) − iqj xj+1 − xj

∆t
]∆t
⎞⎠ exp ([iqjFnj

(xj) − φjFnj
(xj)]∆t) .

By inserting the eigenfunction products and using the
Fourier representation of the Dirac delta function, we
have introduced sums over the discrete labels rj and new
phase variables qj . Suppose that we can perform a so-
called Wick rotation in the complex q plane so that qj
becomes pure imaginary and then perform the change of
variables iqj → qj [40, 41]. Noting that the discretized
path integral is independent of the φj , we are free to set
φj = qj for all j, thus eliminating the final exponential

factor. This choice means that we can perform the sum-
mations with respect to the intermediate discrete states
nj using the orthogonality relation

∑
n

R(r)n (xj , φj−1)ξ(r′)n (xj+1, φj) = δr,r′ +O(∆x,∆φ).
We thus obtain the result that rj = r for all j. Finally,
taking the continuum limit of equation (5.4) we obtain
the following path-integral from x(0) = x0 to x(τ) = x

P (x,n, τ ∣x0 , n0,0) =∑
r

x(τ)=x

∫
x(t0)=x0

exp(−∫ τ

0

[qẋ −Λr(x, q)]dt)R(r)n (x, q(τ))ξ(r)n0
(x0, q(t0))D[q]D[x]. (5.5)

Finally, since the generator A of the Markov chain is
assumed to be irreducible, we can apply the Perron-
Frobenius theorem [42] to the linear operator on the left-
hand side of equation (5.3). That is, there exists a real,
simple Perron eigenvalue labeled by r = 0, say, such that
Λ0 > Re(Λr) for all r > 0. Moreover, ξ(0) is the only posi-
tive eigenvector so it can be taken to determine the initial
distribution of n0 and thus we restrict the sum over r in
Eq. (5.5) to r = 0. (Setting φ = 0 in Eq. (5.3) it can be

seen that R
(r)
n (x,0) and ξ

(r)
n (x,0) correspond to the right

and left eigenvectors of A. Hence, R
(r)
n (x,0) = ρn(x) and

ξ
(r)
n (x,0) = 1 for all n ∈ Γ.) We thus obtain the following

path-integral for a 1D stochastic hybrid system [26, 27]:

P (x,n, τ ∣x0, n0,0) =
x(τ)=x

∫
x(0)=x0

D[x]D[q]e−S[x,q] (5.6)

×R(0)n (x, q(τ))ξ(0)n0
(x0, q(t0)),

with the action

S[x, q] = ∫ t

t0

[qẋ −Λ0(x, q)]dt′. (5.7)

Although the above derivation uses formal path-integral
methods, it generates the same action S obtained rig-
orously using large deviation theory, as detailed in the
monograph by Kifer [25]. Eq. (5.6) is the starting point
for obtaining a variational principle that can be used to
solve first passage time problems associated with the es-
cape from a fixed point attractor of the underlying deter-
ministic system (2.6) in the weak noise (fast switching)
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limit (see also section VC). This involves finding the most
probable paths of escape, which minimize the action S
with respect to the set of all trajectories emanating from
the fixed point. We now have a classical variational prob-
lem, in which the Perron eigenvalue Λ0(x, q) is identified
as a Hamiltonian and the most probable paths are the
zero energy solutions to Hamilton’s equations [26, 27]

ẋ = ∂H
∂q

, q̇ = −∂H
∂x

, H(x, q) = Λ0(x, q). (5.8)

B. Derivation of Feynman-Kac formula

Let us now return to the representation of Q(s, t∣x0, t0)
given by Eqs. (3.7) and (3.8) with p0(y) = δ(y − x0).
Taking expectations with respect to the realizations σ of
the discrete Markov process, now yields a path-integral
representation of Qn(x0; s, τ) given by

Qn0
(x0; s, τ) = ∑

n∈Γ
∫
Σ

Gnn0
(s, x, q, t∣x0, q0, t0)dxdq dq0,

(5.9)

with τ = t − t0 and

Gnn0
(s, x, q, t∣x0 , q0, t0) = R(0)n (x, q) [∫ x(t)=x,q(t)=q

x(t0)=x0,q(t0)=q0
exp(−S[x, q] − s∫ t

t0

U(x(τ))dτ)D[q]D[x]] ξ(0)n0
(x0, q0) (5.10)

We can now proceed along analogous lines to the derivation of the Feynman-Kac formula in section III. That is,

Gnn0
(s, x, q, t +∆t∣x0, q0, t0) = e−q∆x+Λ0(x,q)∆t−sU(x)∆tGnn0

(s, x −∆x, t∣x0, q0, t0)≈ Gnn0
(s, x −∆x, t∣x0, q0, t0) + [Λ0(x, q) − q∆(x) − sU(x)∆t]Gnn0

(s, x, t∣x0, q0, t0)= Gnn0
(s, x −∆x, t∣x0, q0, t0) − [q(t)∆x + sU(x)∆t]Gnn0

(s, x, q, t∣x0 , q0, t0)+ ∑
m∈Γ

[Anm(x) + qδn,mFm(x)]Gmn0
(s, x, q, t∣x0 , q0, t0)∆t,

where we have used Eq. (5.3). Again we have split the
time interval [t0, t+∆t] into two parts [t0, t] and [t, t+∆t]
and introduced the intermediate state x(t) = x−∆x with
∆x determined by x = x−∆x+Fn(x−∆x)∆t. Expressing
∆x in terms of ∆t and Taylor expanding with respect to
∆t we find that the two multiplicative terms in q cancel.
Hence, we obtain the following CK equation in the limit
∆t → 0:

∂Gnn0

∂t
= −∂Fn(x)Gnn0

∂x
− sU(x)Gnn0

+ ∑
m∈Γ

Anm(x)Gmn0
.

(5.11)

After integrating with respect to q and q0, this is pre-
cisely the forward version of the CK equation for Qn, see
Eq. (3.20). Thus our analysis of section III is equivalent
to deriving the Feynman-Kac formula directly from the
path-integral representation of stochastic hybrid systems
constructed in Refs. [26, 27].

C. Gaussian approximation

In section IV, we analyzed the occupation time for a
simple two-state velocity jump process. A major simpli-
fying feature of this model is that the functions Fn and
transition rates α,β are independent of x. Solving the
Feynman-Kac formula given by Eq. (3.20) or (5.11) for

more general two-state stochastic hybrid system is non-
trivial. However, progress can be made by carrying out a
Gaussian approximation of the stochastic hybrid system
in the so-called fast switching regime.

In the case of the unbounded domain Σ = R, there is no
natural scale for the continuous variable x (except possi-
bly from the particular structure of the functions Fn(x)).
Therefore, we are free to fix the units of x by introducing
a quantity X0 such that the transition rates of the dis-
crete Markov process are much faster than v/X0 where
v is a typical value of the “velocity” ẋ. (For the velocity
jump process in section IV, we would have v±/X0 ≪ α,β.)
We can interpret the choice of X0 as defining a fast-
switching regime, such that ∆X/X0 ≪ 1 over a time-
interval ∆t for which α∆t≫ 1. The fast switching regime
can be implemented by setting X0 = 1 and introducing
the rescalingA→A/ε with 0 < ε≪ 1 [26]. Repeating the
derivation of the propagator (5.10) we obtain the same
expression except that S[x, q] → S[x, q]/ε. Introduce the
modified propagator

G(s, x, q, t∣x0 , q0, t0) = ∑
n,n0

ξ(0)n (x, q)Gnn0
(s, x, q, t∣x0, q0, t0)

×R(0)n0
(x0, q0) (5.12)

After performing the rescaling q → −iq/ǫ, Eqs. (5.10) and
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(5.7) yield the path-integral

G(s, x, q, t∣x0 , q0, t0) = ∫ x(t)=x,q(t)=q

x(t0)=x0,q(t0)=q0
D[q]D[x]

× exp(−1
ε
∫ t

t0

[iεqẋ −Λ0(x, iεq)]dτ − s∫ t

t0

U(x)dτ)
(5.13)

The Gaussian approximation involves Taylor expanding
the Perron eigenvalue Λ0 to second order in ε, which
yields a quadratic in q:

G(s, x, q, t∣x0 , q0, t0) ∼ ∫ x(t)=x,q(t)=q

x(t0)=x0,q(t0)=q0
D[q]D[x]

× exp(−∫ t

t0

[iq(ẋ −A(x)) + εq2B(x)]dτ − s∫ t

t0

U(x)dτ) ,
where

A(x) = ∂

∂p
Λ0(x, p)∣

p=0

, B(x) = 1

2

∂2

∂p2
Λ0(x, p)∣

p=0

.

(5.14)
We can now perform the integration over the “momenta”
by defining

G(s, x, t∣x0, t0) = ∫ dq dq0 ∫ D(q)G(s, x, q, t∣x0 , q0, t0)
either directly or by returning to the discretized path-
integral, Taylor expanding to second order in qj , and
then performing the Gaussian integration with respect
to qj before taking the continuum limit:

G(s, x, t∣x0 , t0) =
x(τ)=x

∫
x(0)=x0

D[x] exp(−∫ t

t0

[ẋ −A(x)]2
4ǫB(x) dτ)

× exp(−s∫ t

t0

U(x)dτ) . (5.15)

Finally, noting that ξ
(0)
n (x,0) = 1 and R

(0)
n (x,0) = ρn(x),

and using Eqs. (5.9) and (5.12), we can make the follow-
ing identification under the Gaussian approximation:

Q(x0; s, τ) ≡∑
n0

Qn0
(x0; s, τ)ρn0

(x0)
≈ ∫

Σ

G(s, x, t∣x0 , t − τ)dx. (5.16)

The path-integral in Eq. (5.15) is identical in form to
the one obtained in the derivation of the Feynman-Kac
formula for the Brownian functional (1.1) of a particle
with position X(t) satisfying the Ito SDE [28, 31]

dX = A(X)dt +√2ǫB(X)dW (t). (5.17)

Hence, we deduce that in the fast switching regime, the
moment generating function Q of the stochastic hybrid
system satisfies the Feynman-Kac formula

∂Q(x; s, τ)
∂τ

= A(x)∂Q(x; s, τ)
∂x

+ εB(x)∂2Q(x; s, τ)
∂x2− sU(x)Q(x; s, τ). (5.18)

Let us apply the above analysis to a two-state version
of the stochastic hybrid system (2.1) for which N0 = 2
and the matrix A is given by Eq. (4.2), with possibly x-
dependent transition rates α,β. The eigenvalue equation
(5.3) can be written as the two-dimensional system

( −β(x) + pF0(x) α(x)
β(x) −α(x) + pF1(x) )( R0

R1

) = λ( R0

R1

) .
(5.19)

It follows that the Perron eigenvalue (satisfying
Λ0(x,0) = 0) is given by

Λ0(x, p) = 1

2
[Σ(x, p) +√Σ(x, p)2 − 4γ(x, p)](5.20)

where

Σ(x, p) = p(F0(x) +F1(x)) − [α(x) + β(x)],
and

γ(x, p) = (pF1(x) − α(x))(pF0(x) − β(x)) − α(x)β(x).
A little algebra shows that

Z(x, p) ≡ Σ(x, p)2 − 4γ(x, p)
= [p(F0 −F1) − (β − α)]2 + 4αβ > 0

so that as expected Λ0 is real. In order to calculate the
terms A(x) and B(x) appearing in the SDE (5.17), we
differentiate Λ0(x, p) with respect to p. First,

∂Λ0

∂p
= F0 +F1

2
+ ∂Z

∂p

1

4
√
Z

= F0 +F1

2
+ F0 −F1

2

p(F0 −F1) − (β − α)√[p(F0 −F1) − (β − α)]2 + 4αβ
On setting p = 0, we have

A(x) = ρ0(x)F0(x) + ρ1(x)F1(x) (5.21)

as expected. Similarly,

∂2Λ0

∂p2
= [F0 −F1]2
2
√[p(F0 −F1) − (β − α)]2 + 4αβ
− [F0 −F1]2

2

[p(F0 −F1) − (β − α)]2
([p(F0 −F1) − (β − α)]2 + 4αβ)3/2 ,

so that

B(x) = (F0(x) − F1(x))2α(x)β(x)
(α(x) + β(x))3 . (5.22)

In the special case of the unbiased velocity jump process
considered in section IV, with α = β independent of x
and F1(x) = v = −F0(x), we recover a diffusion process
with effective diffusivity D = εv2/2α and zero drift.
It is important to note that the fast switching regime is

distinct from the large-time regime t≫ τc = 1/2α consid-
ered in section IV. In the former case we fix the scale of
the continuous variable x by setting X0 = 1. This means
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that any important features of the functions Fn(x) at
finer spatial scales will be lost. With this caveat, the
usefulness of working in the fast switching regime is that
we have replaced a system of PDES (3.20) by a scalar
PDE (5.18). Such a reduction becomes even more signif-
icant when the number of discrete states satisfies N0 > 2.
However, solving the scalar equation (5.18) is still a non-
trivial problem for general functions A(x) and B(x). On
the other hand, it might be possible to adapt recent work
on Brownian functionals [39] when B(x) is independent
of x. This would occur in the two-state model, for exam-
ple, if α,β are independent of x and F0(x) − F1(x) is a
non-zero constant.

VI. DISCUSSION

In this paper we derived a Feynman-Kac formula for
functionals T of a stochastic hybrid system evolving ac-
cording to a piecewise deterministic Markov process. We
considered two complementary approaches. The first in-
volved fixing a particular realization σ of the discrete
process, deriving a stochastic Liouville equation for the
moment generating function Q of T , and then averag-
ing with respect to σ. This generated a differential CK
equation for the σ-averaged moment generating functionQ. The second method derived the CK equation directly
by constructing the Feynman-Kac formula for a path-
integral representation of the full stochastic hybrid sys-
tem.
One immediate extension of our theory would be to

develop analytical and numerical tools for solving more
complicated examples of stochastic hybrid systems than
the velocity jump process of section IV. Two simplifying
aspects of the latter were the small number of discrete
states (n = 0,1), and the x-independence of the genera-
tor A and functions Fn. As highlighted in section VC,
one possible approach would be to perform a Gaussian
approximation in the fast switching regime. In addition
to considering more complicated 1D examples, other pos-
sible extensions include higher-dimensional piecewise de-
terministic dynamics (x ∈ Rd) and stochastic versions of
the continuous process. In the last case, the piecewise de-

terministic ODE (2.1) is replaced by the piecewise SDE

dX = Fn(X)dt +√2Bn(X)dW (t),
where W (t) is a Wiener process and Bn(X) is an n-
dependent noise amplitude. The corresponding CK equa-
tion (2.5) becomes (assuming Ito calculus, say)

Lpn(x, t) = −∂Fn(x)pn(x, t)
∂x

+ ∂2Bn(x)pn(x, t)
∂x2+ ∑

m∈Γ

Anm(x)pm(x, t).

It is straightforward to extend the derivation of the
Feynman-Kac formula in section III or V to include the
intrinsic noise term. For example, the stochastic Liouville
equation (3.9) becomes a stochastic Fokker-Planck equa-
tion, which after averaging with respect to realizations
of the discrete Markov process, yields a generalization of
the Feynman-Kac formula (3.20) that includes diffusion
terms.
A final issue concerns identifying concrete applications

where functionals other than those associated with first
passage time problems might be relevant. One important
application area of stochastic hybrid systems is to gene
regulatory networks. Hybrid models arise when a partial
thermodynamic limit of a biochemical master equation is
taken. This yields a piecewise deterministic or stochas-
tic differential equation for the concentrations of proteins
and mRNA, while the remaining discrete variables rep-
resent the activation states of one or more genes [17–21].
One quantity of interest is the amount of time that a pro-
tein concentration remains above some threshold, which
can be formulated in terms of the occupation time of a
stochastic hybrid system on R

+.
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