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We present a method for calculating analytically the thermal conductance of a classical harmonic
lattice with both alternating masses and nearest-neighbor couplings when placed between individual
Langevin reservoirs at different temperatures. The method utilizes recent advances in analytic
diagonalization techniques for certain classes of tridiagonal matrices. It recovers the results from
a previous method that was for alternating onsite parameters only, and extends the applicability
to realistic systems in which masses and couplings alternate simultaneously. With this analytic
result in hand, we show that the thermal conductance is highly sensitive to the modulation of the
couplings. This is due to the existence of topologically-induced edge modes at the lattice-reservoir
interface and is also a reflection of the symmetries of the lattice. We make a connection to a recent
work that demonstrates thermal transport is analogous to chemical reaction rates in solution given
by Kramers’ theory (Velizhanin et al., Sci. Rep. 5, 17506 (2015)). In particular, we show that the
turnover behavior in the presence of edge modes prevents calculations based on single-site reservoirs
from coming close to the natural – or intrinsic – conductance of the lattice. Obtaining the correct
value of the intrinsic conductance through simulation of even a small lattice where ballistic effects
are important requires quite large extended reservoir regions. Our results thus offer a route for both
the design and proper simulation of thermal conductance of nanoscale devices.

I. INTRODUCTION

It is widely known that thermal conduction through
translationally invariant harmonic lattices violates
Fourier’s law due to ballistic transport of phonons
through the lattice, which gives a constant thermal con-
duction versus length rather than a constant conductiv-
ity [1–3]. In recent years, however, there has been a
tremendous amount of interest in thermal transport in
nanoscale systems [4, 5], where there is an interplay be-
tween ballistic transport, disorder, and diffusion, which
requires a deep understanding of not only scattering
mechanisms but also transport in – and simulation of
– harmonic lattices themselves. Moreover, many tech-
nologies require us to harness, control, and understand
heat at the nanoscale. This has reached its ultimate ex-
pression in the field of “phononics”, which aims to bring
device functionality to thermal transport [6, 7], and in
the use of thermal transport to characterize nonlinearity
in biomolecules [8, 9].

One of the main approaches in theoretically investigat-
ing thermal transport uses Langevin equations (reviewed
in, e.g., Refs. [2, 3, 6]). In this approach, the system un-
der consideration (described by a given Hamiltonian) is
connected to Langevin reservoirs held at different tem-
peratures, which drives heat through the system. The
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resulting stochastic equations are typically solved nu-
merically, with the thermal current and other properties
(temperature profiles, etc.) extracted via time-averaged
correlation functions.

When Langevin reservoirs are connected to the two
ends of a uniform harmonic lattice, the thermal con-
ductance can be calculated exactly, as demonstrated in
Ref. [10]. Generalizing this technique to periodic har-
monic lattices with more than a single site/atom per unit
cell is an important open problem covering, e.g., nanos-
tructures built from polymers. For instance, phononic
devices could employ spatial patterns of DNA bases to
tune the operating temperature of a molecular thermal
switch based on denaturation [9], which makes use of
the different masses, stacking interactions, and hydrogen
bonding in DNA [11, 12]. This is a physical scenario that
goes well beyond phononics, and is relevant to probing
fluctuations at the nanoscale, sensing, and device appli-
cations [8, 13, 14].

Here, we develop a new method for exactly calculat-
ing thermal transport in harmonic lattices with alternat-
ing masses, onsite frequencies, and nearest-neighbor cou-
plings when placed between two Langevin reservoirs at
the boundary. An exact solution for the thermal conduc-
tance in lattices with alternating masses has only recently
been found [15, 16]. The methods of Refs. [10, 15, 16],
however, rely on a matrix decomposition that does not
apply to alternating nearest-neighbor couplings. In par-
ticular, we utilize some recently developed techniques for
diagonalizing analytically a class of tridiagonal matri-
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ces [17, 18] to construct a unified framework for obtaining
exact analytic expressions for the thermal conductance.

The analytic formulas we provide give insight into how
multi-band systems – which form from the splitting of the
bands in the presence of alternation – conduct heat and
what parameters control the conductance. We use these
expressions to show that when a lattice is connected to
reservoirs through a single site, the thermal conductance
differs substantially from the intrinsic conductance of the
lattice [19]. The origin of this large discrepancy is the
interfacial resistance due to the emergence of edge modes
– the topological nature of which we discuss in detail
elsewhere [20].

These results further support the need for using ex-
tended reservoirs [19] in simulations where the quantity of
interest is the intrinsic conductance of the lattice rather
than the conductance of the complete device (i.e., the
conductance including the contact resistance to the ex-
ternal reservoirs). It also simultaneously demonstrates
the need for analytic solutions to make deficiencies in
numerical methods readily apparent and to calibrate sim-
ulations.

The structure of the paper is as follows. In Section
II, we provide a detailed presentation of the theoreti-
cal analysis and method of calculation, with some of the
more technical aspects left to the appendices. In Section
III, we discuss the implications of the analytic formula,
focusing on the sensitivity of the thermal conductance
to the lattice structure and on the relation between the
conductance and the coupling to the reservoir, including
the turnover behavior of the conductance [19]. In Section
IV, we summarize the results and conclude.

II. THEORETICAL ANALYSIS

We follow the basic setup of Refs. [1, 10] and consider
the generic harmonic lattice with N sites in one dimen-
sion and with nearest-neighbor coupling,

H =

N∑
j=1

(
mj

2
ẋ2
j +

Dj

2
x2
j

)
+

N−1∑
j=1

Kj

2
(xj − xj+1)2, (1)

and connect two additional sites x0 and xN+1 to the ends
that are fixed at zero (x0,N+1 ≡ 0), which symmetrizes
the equations of motion. Sites 1 and N are coupled to in-
dependent Langevin reservoirs. We also include an onsite
harmonic potential, which is common in many problems
of interest, such as fluctuations of DNA bases [8]. We
will consider lattices that have two sites/atoms per unit
cell and thus the “triple” of parameters has the pattern
(m1, D1,K1), (m2, D2,K2), (m1, D1,K1), . . . For the cou-
pling to the two fixed sites, x0 and xN+1, we use K0 = K2

and KN as the alternate of KN−1, i.e., either K1 or K2

depending on whether the lattice has an odd or even
length, respectively. As might be expected, the results
will depend on whether the lattice is composed of an odd
or even number of sites, a fact which we will come back to

repeatedly. At the end of the calculation, the thermody-
namic limit N → ∞ will be taken while simultaneously
preserving the lattice parity (odd or even).

For this setup, the Newton-Langevin equations of mo-
tion are

mj ẍj = −(Dj +Kj−1 +Kj)xj +

Kj−1xj−1 +Kjxj+1 + γj ẋj + ηj , (2)

with γj = (γLδj,1 + γRδj,N ) and ηj = ηLδj,1 + ηRδj,N (
Ref. [10] takes γL,R = ΛL,Rm1,N ). The left (L) and right
(R) Langevin reservoirs have temperatures TL and TR,
giving the temperature difference ∆T = TL − TR. The
random forces ηL,R satisfy the fluctuation-dissipation
theorem, 〈ηL,R(ω)ηL,R(ω′)〉 = 4πγL,RTL,Rδ(ω + ω′).

The thermal current (across the whole device, includ-
ing the interfaces to the external reservoirs) can be cal-
culated from J = 〈(γLẋ1 + ηL)ẋ1〉 using the equations of
motion, Eq. (2) [1, 10]. In the steady state, the thermal
conductance , κ, simplifies to

κ =
J

∆T
= kBγLγR

ˆ ∞
−∞

dω

π
ω2|C1N (ω)|2 ×

[(K1,N − ω2γLγRK2,N−1)2 +

ω2(γLK1,N−1 + γRK2,N )2]−1. (3)

Here, Ki,j denotes the determinant of the matrix Φ start-
ing from the i-th site and ending with the j-th site (not to
be confused with the single-indexed force constants Kj).
kB is the Boltzmann constant. We note that κ should
not to be confused with the thermal conductivity, which
is the ratio of the thermal conductance κ and the length
of the lattice N in the infinite length limit. Thermal
conductivity diverges for the lattices we consider.

The matrix Φ comes from the equations of motion and
has a tridiagonal form for 1D, nearest-neighbor harmonic
lattices,

Φ =


α1 −K1 0 · · ·
−K1 α2 −K2 · · ·

. . .

· · · 0 −KN−1 αN

 , (4)

where

αj = Dj +Kj−1 +Kj −mjω
2. (5)

The quantity C1N (ω) denotes the cofactor correspond-
ing to the element Φ1N . When the nearest-neighbor
coupling is uniform, K1 = K2 = · · · , the determi-
nants Ki,j can be obtained using a recursion relation [10]
Ki,j = αiKi,j−1 − K2

iKi,j−2. For a lattice with uni-
form Kj = K and alternating onsite parameters, this
recursion relation reduces to a product of 2× 2 matrices,
which gives Ki,j and analytic expressions for κ [10, 16].
A generalization of that method to non-uniform Kj is
not straightforward since there are two alternating re-
cursion relations and a compact expression does not fol-
low. Thus, instead of using the matrix-product method of
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Refs. [10, 16], we will take a different route to obtain an-
alytic expressions for the determinants using trigonomet-
ric functions, which then leads to analytic expressions for
the thermal conductance. Appendix A gives additional
technical details.

Before presenting the analytic expressions, we com-
ment on the effects of the onsite and nearest-neighbor
coupling constants. In the continuum limit, the Hamil-
tonian, Eq. (1) becomes

H =

ˆ Z

0

dz

(
m(z)

2
(∂tx)2 +

K(z)

2
(∂zx)2

)
, (6)

where z is the longitudinal coordinate and m(z) (K(z)) is
the local mass (coupling) which may be spatially varying.
The onsite coupling D has been included in K(z). Equa-
tion (6) suggests that one may interchange the roles of
m(z) and K(z) by swapping t and z, replacing spatially
varying masses with spatially varying couplings. How-
ever, thermal transport distinguishes the roles of t and
z because the inclusion of the two reservoirs at different
temperatures breaks the space-time symmetry: In the
presence of a steady-state current flowing from the hot
reservoir to the cold reservoir, the current is spatially di-
rectional. As a consequence, the thermal current in a lat-
tice with alternating couplings is different from one with
alternating masses due to the different configurations at
the system-reservoir interface. Our approach to the ther-
mal transport applies to the most generic case (including
the onsite harmonic potential). Special cases with only
alternating masses or only alternating couplings can be
readily deduced from the generic case and are presented
in Appendix B.

A. Band structure

When both the onsite parameters (masses and onsite
frequencies) and the nearest-neighbor harmonic coupling
constants are spatially alternating, the conductance can
be obtained analytically with the help of the method out-
lined in Appendix A, which also summarizes recently de-
veloped mathematical tools for analytically diagonalizing
certain tridiagonal matrices.

Setting

α1 = D1 +K1 +K2 −m1ω
2 (7)

and

α2 = D2 +K1 +K2 −m2ω
2, (8)

the characteristic polynomial of Φ follows from the con-
dition

α1α2 = K2
1 +K2

2 + 2K1K2 cos(q), (9)

which determines the two bands of propagating modes.
The determinant can then be found from the character-
istic polynomial. The band structure is independent of

whether the lattice has an even or odd number of sites
as its length scales to infinity. In the presence of the two
reservoirs with different temperatures coupled to the ends
of the alternating harmonic lattice, however, the thermal
conductance is different for even and odd lattices, includ-
ing in the infinite lattice limit. This is due to boundary
effects remaining in this limit for nonequilibrium condi-
tions.

The band structure of an infinite lattice is solely de-
termined by Eq. (9). This gives

cos q = −1 +
1

2K1K2
{m1m2ω

4 − [m1(D2 +K1 +K2) +

m2(D1 +K1 +K2)]ω2 +

[(D1 + 2K1)(D2 + 2K2) +

(D1 + 2K2)(D2 + 2K1)]/2}. (10)

We define X± = (D2+K1+K2)/m2±(D1+K1+K2)/m1.
Then the solution to the constraint is

ω2 = ω2
± =

1

2

[
X+ ±

√
X2
− + U

]
,

U = 4
(K1 −K2)2

m1m2
+ 8

K1K2(cos q + 1)

m1m2
. (11)

Since −1 ≤ cos q ≤ 1, for positive frequencies, there are
two bands ω+m ≤ ω ≤ ω+M and ω−m ≤ ω ≤ ω−M ,
where

ω±M =

√√√√√1

2

X+ ±

√
X2
− + 4

(K1 ±K2)2

m1m2

,
ω±m =

√√√√√1

2

X+ ±

√
X2
− + 4

(K1 ∓K2)2

m1m2

. (12)

The functional form of cos q and the band structure are
symmetric if one swaps either the onsite parameters or
the coupling constants. The full symmetry is broken for
the thermal conductance (Eqs. (19) and (24), derived in
the next section), which only partially respects this sym-
metry when the couplings to the reservoirs are identical.

The band structure depends on the parameters
(m,D,K) of the harmonic lattice (see, e.g., Ref. [19] for
a uniform lattice). For the dimerized harmonic lattice,
the total bandwidth,

Ω = (ω+M − ω+m) + (ω−M − ω−m), (13)

is shown in Figure 1 for certain ranges of parameters.
The thick mesh lines mark the lines of uniform coupling
constants and uniform onsite frequencies. Usually a uni-
form lattice has the largest total bandwidth in its im-
mediate neighborhood of parameters. However, for the
dimerized lattice, there are certain parameter sets that
can increase the bandwidth above the uniform lattice, as
seen in the figure. In the presence of periodicity, the to-
tal bandwidth is thus influenced by all the parameters.
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Figure 1. (Color online) Total bandwidth Ω for harmonic lat-
tices with alternating onsite frequencies (D2/D1) and alter-
nating harmonic coupling constants (K2/K1). Here, m1 = m2

and Ω0 =
√
K1/m1 (K1 and m1 are held fixed in the plot).

The thick mesh lines mark the lines of uniform coupling con-
stants and uniform onsite frequencies. Note the (relatively
shallow) peak in Ω for the uniform lattice.

For example, when K is uniform and D2/D1 > 1, Ω in-
creases when m2/m1 > 1 because a larger mass causes
the kinetic energy to offset the larger onsite harmonic
potential.

B. Thermal conductance

To obtain the full expression of the thermal conduc-
tance, we need the determinant of Φ shown in Eq. (4). If
the mass is uniform, one can treat mω2 as the eigenvalue
of Φ and follow the method described in Appendix A to
evaluate it. However, if the masses are alternating with
m1 and m2, we will use the mass-weighted coordinates
x̄j =

√
mjxj and rewrite the matrix as Φ̄ = ATΦA,

where A is a diagonal matrix with alternating diago-
nal elements 1/

√
m1 and 1/

√
m2. The eigenvalues of

Φ̄ are ω2, and the harmonic couplings are rescaled as
K1/
√
m1m2 and K2/

√
m1m2, respectively. Moreover,

det(Φ) = M̄ det(Φ̄), where M̄ = (m1m2)n if N = 2n
and M̄ = (m1m2)nmN with mN denoting the mass of
the N -th site if N = 2n + 1. Then Φ̄ has the structure
described in Appendix A, so the diagonalization method
applies. We follow the procedure to find its determinant
and eigenvalues and then transform them back to obtain
the determinant and eigenvalues of Φ.

We start with the even case, where N = 2n for a pos-
itive integer n. The determinants needed for evaluating

the conductance are

K1,N = (K1K2)n
sin[(n+ 1)q] + (K2/K1) sin(nq)

sin(q)
,

K1,N−1 = (K1K2)n−1α1
sin(nq)

sin(q)
,

K2,N = (K1K2)n−1α2
sin(nq)

sin(q)
,

K2,N−1 = (K1K2)n−1 sin(nq) + (K1/K2) sin[(n− 1)q]

sin(q)
.

(14)

The cofactor C1N of the present case is independent of
ω, and its absolute square is |C1,N |2 = (K1K2)2(n−1)K2

1 .
The thermal conductance, Eq. (3), then becomes

κ = kB
γLγR
π

ˆ
dωω2K2

1

BM1
, (15)

with

BM1 =

(
K1K2

sin[(n+ 1)q] + (K2/K1) sin(nq)

sin(q)
−

ω2γLγR
sin(nq) + (K1/K2) sin[(n− 1)q]

sin(q)

)2

+

ω2(γRα1 + γLα2)2

(
sin(nq)

sin(q)

)2

. (16)

Following Ref. [10], we treat nq as an independent vari-
able when n→∞ and average it from 0 to 2π:

ˆ 2π

0

dqF (q, nq)→
ˆ 2π

0

dq

ˆ 2π

0

dx

2π
F (q, x). (17)

With the help of

ˆ 2π

0

dx

2π
([a cos(x) + b sin(x)]2 + [c sin(x)]2)−1 =

1

|ac|
,

(18)
the final result is

κ = kB
2γLγR
π

ˆ
Ω

dω|ω sin(q)|

|γRα1 + γLα2|
(
K2

K1
+ γLγR

K1K2
ω2
) .

(19)

In Eq. (3) both positive and negative ω are integrated.
The domain Ω denotes the bands of positive ω deter-
mined by Eq. (9) so a factor of 2 has been included. When
K1 = K2, the result reduces to that of a lattice with al-
ternating masses (for which the expression is shown in
Appendix B).

When γL = γR, Eq. (19) remains the same if one swaps
the onsite parameters (so that α1 ↔ α2) and keeps the
Kj fixed. In contrast, the expression changes if one swaps
only K1 and K2. In this configuration, the alternating
sites show up in pairs – dimers – but there is a harmonic
coupling that is unpaired. This is the reason behind this
partial symmetry. When γL 6= γR, this symmetry regard-
ing the onsite parameters is further broken. Ultimately,
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though, this difference in conductance is due to a topo-
logical change in the lattice structure when K1 and K2

are swapped. We discuss this in detail in Ref. [20].
Next we study the odd lattice, N = 2n+1 for a positive

integer n. The conducting bands are still determined by
Eq. (9), but the determinants take on different forms than
for the even case:

K1,N = (K1K2)nα1
sin[(n+ 1)q]

sin(q)
,

K1,N−1 = (K1K2)n
sin[(n+ 1)q] + (K2/K1) sin(nq)

sin(q)
,

K2,N = (K1K2)n
sin[(n+ 1)q] + (K1/K2) sin(nq)

sin(q)
,

K2,N−1 = (K1K2)n−1α2
sin(nq)

sin(q)
. (20)

The absolute square of the cofactor is |C1N |2 =
(K1K2)2n. The conductance, Eq. (3), is then

κ = kB
γLγR
π

ˆ
dω

ω2

BM2
, (21)

with

BM2 =

(
α1 sin[(n+ 1)q]

sin(q)
− ω2γLγRα2 sin(nq)

K1K2 sin(q)

)2

+

ω2 ([(γL + γR) sin[(n+ 1)q]+(
K1

K2
γL +

K2

K1
γR

)
sin(nq)

]
1

sin(q)

)2

.

(22)

Again we treat nq as an independent variable when n→
∞ and average it from 0 to 2π. Using the integral

ˆ 2π

0

dx

2π
([A sin(x) +B cos(x)]2 +

[C sin(x) +D cos(x)]2)−1 = |CB −AD|−1, (23)

the final result is

κ = kB
2γLγR
π

ˆ
Ω

dω|ω sin(q)|
∣∣∣∣α1

(
K1

K2
γL +

K2

K1
γR

)
+

γLγR(γL + γR)ω2α2

K1K2

∣∣∣∣−1

. (24)

The domain of integration Ω only covers positive ω so
a factor of 2 is included. When m1 = m2 = m, this
expression reduces to that of a lattice with alternating
coupling constants, as shown in Appendix B.

When γL = γR, swapping K1 and K2 keeps the ex-
pression intact, but swapping the onsite parameters (so
that α1 ↔ α2) leads to a different value for the con-
ductance. This partial symmetry is further broken when
γL 6= γR. The bands are fully symmetric when K1 and
K2 are swapped or α1 and α2 are swapped. Thus the
presence of the reservoirs and the thermal current re-
duces this full symmetry.

The special case of a harmonic lattice with alternat-
ing onsite parameters and uniform nearest-neighbor cou-
plings is similar to the even case here. The special case
of a harmonic lattice with uniform onsite parameters and
alternating near-neighbor couplings is similar to the odd
case when the lengths are identical. These cases are sum-
marized in Appendix B

III. DISCUSSION

The setup we considered above consists of a one-
dimensional (or quasi-one-dimensional) lattice connected
only at its boundaries to thermal reservoirs. Such a setup
can be made by examining the low-energy properties
of, e.g., an alternating copolymer bonded at its ends to
two crystals, which act as the thermal reservoirs. When
the thermal reservoirs are well approximated by ohmic,
Langevin reservoirs, the equations we derived, Eqs. (19)
and (24), give the conductance of the full device, which
includes contributions from the contact resistance to the
thermal reservoirs. This full device conductance is sur-
prisingly variable even when the Langevin coupling is
fixed or otherwise restricted to a limited range (as is of-
ten the case), which we will now discuss. Afterward, we
will discuss how this relates to the intrinsic conductance
of the lattice [19].

A. Full device conductance

Figure 2 shows the conductance of several lattices ver-
sus the friction coefficient γL = γR = γ. One can im-
mediately see the expected crossover behavior from a
small γ regime – where κ ∝ γ – to a large γ regime
– where κ ∝ 1/γ. This can be readily verified by
Eqs (19) and (24) since both of them have the form
κ = γA

´
Ω
dωω| sin[q(ω)]|/|B(ω) + γ2C(ω)|−1. When

γ → 0, they become κ → γA
´

Ω
dωω| sin[q(ω)]/B(ω)| =

C1γ. In the other limit when γ → ∞, they become
κ → γA

´
Ω
dωω| sin[q(ω)]/[γ2C(ω)| = C2/γ. The coef-

ficients C1 and C2 can be obtained by numerical calcula-
tions or, as will be shown in Appendix C, analytically.

The underlying physics of this turnover is the same as
that described by Kramers’ transition state theory: In
the small γ regime, the implicit reservoirs are too weakly
coupled to the system to effectively pump in energy. In
other words, the free lattice – the lattice not connected
to Langevin reservoirs – ushers away energy faster than
it can be input by the reservoir. In the strong γ regime,
the implicit reservoirs are too strongly coupled to the end
lattice sites so that they effectively decouple them from
the lattice (i.e, friction distorts the natural lattice dy-
namics creating a mismatch between the sites connected
to the reservoirs and the rest of the lattice). Propagating
modes that are carrying energy are thus reflected at the
interfaces between the free lattice and the sites connected
to the reservoirs [19]. These reflections, or “recrossings”,
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prevent energy from being transferred into and out of the
sites connected to the reservoirs.

The figures, though, also show a surprising feature:
Lattices that are equivalent in terms of their phonon
bands can give a drastically different conductance. Fig-
ure 2(a), for instance, plots the conductance for the
same lattice parameters (m1/m2, D1/D2,K1/K2) =
(f, f, f) with f = 2 except in four different con-
figurations: An even lattice [m1,m2,m1, . . . ,m2], an
odd lattice [m1,m2,m1, . . . ,m2,m1], and both lattices
but with the ordering of parameters switched, “OS”,
[m2,m1,m2, . . . ,m1] and [m2,m1,m2, . . . ,m1,m2]. All
these lattices have the same phonon bands. Yet, in the
small γ regime, the conductance differs by a factor of
4. Figure 2(b), which uses f = 20, shows a variation
in conductance by almost three orders of magnitude for
the same four configurations. These differences can be
made even more dramatic when lattices with the same
phonon bands but different parameters are considered
(i.e., the bands, Eq. (12), are identical under the change
f to 1/f . Yet, this changes the conductance via an ef-
fective change in the value of γ). We remark that the
OS cases are not equivalent to a simple swap of the two
reservoirs. In exchanging the alternating parameters, the
nearest-neighbor couplings at the system boundary also
change, e.g., from K2 to K1.

Indeed, some of this difference is expected. Consider-
ing, for instance, the Casher-Lebowitz formula for a uni-
form lattice with parameters (m,D,K), in the infinite-
length limit one can show that [19]

κ =
kBγ

2m
(25)

in the small γ regime. This indicates that when
changing the mass of the lattice site connected to
the Langevin reservoir, the conductance should change.
When altering the configuration, for instance, from even
[m1,m2,m1, . . . ,m2] to odd [m1,m2,m1, . . . ,m2,m1],
the conductance should change as we have two m1 masses
connected to the reservoirs instead of one m1 and one m2.
This, however, will only account for at most an order
of magnitude of the differences observed above. Thus,
there is yet another physical effect that is resulting in
these large differences for lattices that have equivalent
phonon bands. Before revealing this effect, we will first
develop a quantitative description of the small γ regime,
which will allow us to describe the drastic differences in
the conductance.

B. Small γ conductance

For small γ, the lattice can be thought of as inde-
pendent phonon modes, as any correlations induced by
the reservoirs will be higher order in γ. Moreover, just
as with Kramers’ theory and the lattices examined in
Ref. [19], this regime reflects that the modes are remov-
ing energy away from the interface faster than it can be

restored by the reservoir, and thus the conductance (or
current) is controlled completely by the rate of heat input
into that mode from the reservoir, i.e., by the effective
coupling of the reservoirs to the mode.

Defining an effective coupling to the left, γ̃qL, and
right, γ̃qR, reservoirs for each mode, we can understand
this regime in a very simple fashion from the stochastic
nature of the reservoir: The energy input from the left
reservoir into mode q is JqL = kB γ̃qL(TL − Tq) and from
the right JqR = −kB γ̃qR(TR − Tq), where the minus sign
just reflects that we want the right moving current on
both ends. In the steady state, JqL = JqR = Jq. Using
this to eliminate the unknown quantity Tq (the “temper-
ature” of mode q), we find

Jq = kB

(
γ̃qLγ̃qR
γ̃qL + γ̃qR

)
∆T ≡ κq∆T, (26)

where κq is the conductance of mode q. We note that
the effective rate that matters for the thermal current
(or conductance) in this regime is the reduced, effective
γ.

The effective reservoir coupling will depend on the
weight of the mode on the left or right end sites:

γ̃qL = γLu
2
q1, γ̃qR = γRu

2
qN (27)

where uqn are the real-valued polarization vectors for
the normal mode q at site n,= 1, . . . , N . Given H =
1
2p

ᵀM−1p+ 1
2x

ᵀKx, uqn =
[
M−1/2T

]
nq

, where T is the

orthogonal transformation that diagonalizes the mass-
weighted coupling matrix M−1/2KM−1/2.

Essentially, Eq. (26) indicates that the conductance for
each mode is given by two resistors in series,

kB
κq

=
1

γLu2
q1

+
1

γRu2
qN

, (28)

reflecting the resistance at the two contacts and the (rela-
tively) negligible resistance of the bulk lattice. The total
conductance is then given by

κ =
∑
q

κq. (29)

We give a rigorous derivation of these formulas in
Ref. [20]. We note that Eqs. (26) and (29) yield some
of the expressions in Ref. [21].

For instance, for a uniform lattice with parameters
(m,D,K), the polarization vector is given by

uqn =

√
2

m(N + 1)
sin(nq), (30)

where q = kπ/(N + 1) for k, n = 1, . . . , N for a finite
length lattice. For the coupling to the right reservoir (at
site N), we use that sin(Nkπ/(N + 1)) = sin(((N + 1)−
1)kπ/(N + 1)) = − sin(1kπ/(N + 1)). Taking Eq. (30)
and the continuum limit, one obtains for Eq. (29)

κ ≈ 2kBγ

mπ

ˆ π

0

dq
sin(q)2 sin(q)2

sin(q)2 + sin(q)2
=
kBγ

2m
, (31)
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(a) (b)

Figure 2. (Color online) Thermal conductance, κ, versus γ for even and odd lattices. The parameters are
(m1/m2, D1/D2,K1/K2) = (f, f, f) (short dotted black line and solid red line for the even and odd lattices, respectively)
and the same set of parameters but with the ordering switched, “OS” (dashed lines), so that (m1, D1,K1) changes places with
(m2, D2,K2) (dash-dot-dot black line and dashed red line for the even and odd lattices, respectively). (a) The conductance
for f = 2. All lines correspond to the same set of alternating parameters – i.e., the same bulk properties. The only difference
is whether the lattice is of odd or even length and the ordering of the parameters. (b) The conductance for f = 20. For
small γ, all curves rise linearly with γ, while for large γ they decay as 1/γ. The green dash-dotted line indicates the intrinsic
conductance, κ0 of Eq. (34), which is directly proportional to the bandwidth. Many of the lattice configurations fail to even
come close to the intrinsic conductance. The circles are direct numerical simulations on a N = 128 length lattice (N = 129 for
the odd case) following Ref. [19].

which is exactly the Casher-Lebowitz formula in this
limit. Since we worked with the finite lattice modes,

Eq. (30), q goes from 0 to π. We can replace 2
´ π

0
→
´ 2π

0
if desired.

Equation (29) is exact for the conductance in the small
γ regime. Since it is a linear sum of the contribution
of each mode, it can be separated into total contribu-
tions from each of the two bands. Figure 3 shows κ
and Eq. (29) separated into the individual band contri-
butions. The linear regime in the cases shown is domi-
nated by one of the two bands. Essentially, this is due to
the large differences in masses, as discussed in the figure
caption. We note that features observable in the con-
ductance versus γ are due to the distinct contributions
of each of the bands and when they turn over into the
large γ regime. We further discuss the small (and large)
γ regimes in Appendix C.

We are now in a position to understand why there is
a such a drastic difference between the conductance of
lattices that one might expect to be identical. One effect
is due to the different masses, as mentioned above. It is
clear from the form of the effective coupling coefficients,
Eq. (27), that this can not be the only effect – the or-
thogonal transformation T will by definition have all its
matrix elements on, e.g., site n sum to 1 when squared
(likewise, the polarization vectors when summed over q
at a particular site n have to sum to the inverse mass at
that site). Thus, the modes present and their weight at

the end sites (which are in contact with the reservoirs)
play a crucial role.

C. The role of edge modes

The large variability of the conductance – even for lat-
tices with the same bulk properties – is due to the for-
mation of edge modes, the appearance of which is de-
termined by the configuration of the lattice. The edge
modes are states that have a frequency within the phonon
band gap, and consequently decay exponentially away
from the interface. Their coupling to one of the reser-
voirs is large and the other exponentially small, and (in
light of Eq. (29)) this will have an effect on the thermal
conductance. This will not be a trivial effect – i.e., zero
contribution from 1 or 2 modes out of the (thermody-
namically) large number of modes N . Rather, the edge
modes will deplete the couplings of the other modes to
the Langevin reservoirs, therefore reducing the conduc-
tance. Edge modes appear in other physical contexts, see,
e.g., Refs. [22, 23]. We will discuss their topological ori-
gin in Ref. [20]. Here, we will limit the discussion to the
effect of these modes on the conductance and, then, how
extended reservoir simulations can correctly obtain the
bulk, or intrinsic, conductance even when these modes
are present.
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Figure 3. (Color online) The band-delineated conductance
in the small γ regime. The three lines in the legend show
the conductance for (m1/m2, D1/D2,K1/K2) = (f, f, f) with
f = 20. The remaining lines show Eq. (29) divided into the
contributions from each band for a finite lattice with N = 128
(dashed and dotted black lines) and N = 129 (short dotted
and short dashed red lines). Since Eq. (29) is linear, each nor-
mal mode contributes separately to the conductance. Each
band has a majority and minority sublattice, where most of
the mode amplitude (the local masses times the polarization
vector) is on the majority lattice. For even lattices, both
bands have a direct connection to the Langevin reservoirs.
However, one band has a majority lattice that has a larger
mass, and therefore the polarization vector – the quantity
that determines the contribution to the conductance for small
γ – is more balanced, i.e., u2

q1 and u2
qN are similar in magni-

tude (For example, when the odd sublattice is the majority
sublattice and m1 � m2, then m1u

2
q1 � m2u

2
qN , but u2

q1 is

of the same order as u2
qN ). The other band – the higher fre-

quency band – has a majority amplitude on the small mass
sublattice, which means its polarization vector on the large
mass sublattice is further suppressed (i.e., multiplied by the
inverse of the large mass). This leads to a large imbalance in
u2
q1 and u2

qN and the weaker of the two dominates the conduc-
tance, decreasing its magnitude. For odd lattices, one band
is connected at both ends to the Langevin reservoirs, whereas
the other band is only connected through its minority sublat-
tice. Thus, not only is there a splitting of the contribution of
the two bands, but the high frequency band can be the dom-
inant contribution at small γ. The turnover occurs earlier for
this band, and later for the band only indirectly coupled to
the Langevin reservoirs, which gives a “two peak” structure
to the conductance versus γ.

For any harmonic lattice, we have the sum rules∑
q

u2
qn =

1

mn
(32)

for each site n. The sum here is over all modes, edge
or otherwise. The sum rules come from the transforma-
tion of the mass-weighted coordinates to normal modes,

where the orthogonal transformation matrix has each col-
umn or row normalized to 1. Returning to the original
coordinates gives the sum rules.

By definition, a localized mode is one that has a large
amplitude on a particular site or region of sites. This
means that u2

qn will be large and roughly independent of
N , i.e., it will not depend on the lattice length. This will
“deplete” the amplitude of all other modes, as now in-
stead of summing to 1

mn
, they will sum to 1

mn
−
∑
q∈E u

2
qn,

where E is the set of all localized (or, as is the case here,
edge) modes.

To give a more detailed example, one should look at
the eigenvalues of Φ in Eq. (4), which can be deter-
mined by the technique summarized in Appendix A. We
focus on the case when only the nearest-neighbor cou-
plings alternate (so that m1 = m2 = m and D1 =
D2 = D). When the lattice is semi-infinite in length
with the left boundary open, in addition to the delocal-
ized modes, there is also a normal mode with amplitude
∝ (1, 0, (−K1/K2), 0, (−K1/K2)2, · · · ) from the left edge
(and potentially from the right edge as well. So long
as the lattice is long enough, one need not worry about
interaction between the edges). This mode decays with
exponent ξ = − ln(K1/K2) and thus only exists when
K1 < K2. Properly normalizing and mass-weighting,
this yields u2

q1 = (1− (K1/K2)2)/m, leaving a total of

∑
q∈Ω′

u2
qn =

1

m

(
K1

K2

)2

(33)

to contribute to the effective coupling of the delocalized
modes to the Langevin reservoir at the left. The quan-
tity Ω′ designates the bands of the propagating phonon
modes, i.e., q ∈ Ω′ excludes the edge mode. In other
words, the presence of the edge modes can drastically de-
plete the coupling of the remaining modes to the reser-
voir. For the examples shown in Fig. 2, for instance,
changing the configuration from one where K1 > K2

(short dotted black lines) to one with K1 < K2 (dash-
dot-dot black lines, i.e., the parameters all swapped), in-
troduces two edge modes (note that the thermal conduc-
tance is always computed with N finite, and then limit
N → ∞ is taken at the end of the calculation, so there
are always two open boundaries). The conductance drops
by exactly a factor of f2 = (K1/K2)2 (or 4 and 400 for
the parameters in that figure). Moreover, note that when
swapping the parameters for γL = γR = γ and N even,
there is no trivial mass effect as discussed above, as one
has an m1 mass on one side and an m2 mass on the other
in both cases.

When the lattice is odd in length, there is always one
edge mode, either at the left or right edge. In addition to
the trivial mass effect, there is also a non-trivial suppres-
sion of the conductance similar to the even length case
(full expressions can be found in Appendix C). Outside
of the linear regime, there is intricate behavior of the con-
ductance – sometimes including a minimum in its value
versus γ – due to the nontrivial change in which band is
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directly connected to both reservoirs through its majority
lattice, as discussed in the Fig. 3 caption.

The physical effect of structural configurations on the
conductance can be used in the design of nanoscale
devices that rely on thermal transport. For instance,
simply discarding (or adding) a monomer of an alter-
nating copolymer (A − B − A − B − A − B − A →
B−A−B−A−B−A) can significantly change the con-
ductance. Moreover, this effect can be used in tandem
with nonlinearity, as was proposed in Ref. [9]. Exploit-
ing, e.q., more complicated copolymers and the ability to
alter the ends separately from the bulk of the lattice, one
can introduce or remove edge modes, seeing in practice
the large changes observed here. These results suggest
that the tuning structural parameters and configurations
give a powerful method to engineer thermal transport.
The suppression of thermal conductance here is not a
reflection of thermal rectification, where nonlinearity or
multi-band effects are usually required [24]. The emer-
gence of localized modes reduces the coupling between
the reservoirs and the conducting modes, so only revers-
ing the two reservoirs does not lead to rectification. Our
results are consistent with previous studies showing that
classical harmonic systems do not exhibit thermal recti-
fication [24–27].

D. Intrinsic conductance

We have seen above that when contacting the system
at just the boundaries, the conductance is highly sensi-
tive to the configuration of the lattice, even when the
bulk properties do not change. Another bulk property
is the intrinsic conductance of the lattice. For a har-
monic system, the intrinsic thermal conductance is de-
termined by the maximum rate at which the lattice can
conduct heat when placed between two thermal reser-
voirs in equilibrium [19]: When two lattices initially dis-
connected and in equilibrium at different temperatures
are connected, the thermal current flowing from left to
right is JL→R = kBTLl

−1
L

∑
q>0 vq, where vq is the group

velocity of a phonon with momentum q > 0 and lL is the
length of the left lattice. Similarly for the current flowing
from right to left. When taking the infinite lattice limit,
one finds [19]

κ0 =
kBΩ

2π
, (34)

where Ω is the total bandwidth (note we use Ω to des-
ignate both the bandwidth and the bands). From this
expression and the analytic form for Ω derived in the
previous section, Eq. (13), one can obtain the conduc-
tance for the lattice only (without contact effects). The
bandwidth (or intrinsic conductance times 2π) is shown
in Figure 1. Note that for more intricate systems, such as
nanoscale devices where both diffusive and ballistic trans-
port play a role, the intrinsic conductance is defined as
the lattice conductance in the absence of contact effects.

When considering the whole system, including the con-
tacts to the reservoirs, the conductance always has to be
lower due to a contribution to the resistance from the
contacts (which will depend on γ). The behavior of the
conductance in the small and large γ regimes thus leads
to a peak in the conductance, κP < κ0, at the crossover.
The periodicity, however, significantly alters κP. Indeed,
for some configurations of the lattice, as we have seen,
there are edge modes at the interface. Thus, there is no
reason to expect that κP will ever get close to κ0. Fig-
ure 4 plots the relative difference

κ0 − κP

κ0
, (35)

which can be seen as a measure of the simulation fidelity
when trying to extract the intrinsic conductance with-
out an adequate treatment of contact effects. The peak
conductance differs drastically from the intrinsic conduc-
tance for essentially all parameters. Only for the lattice
without edge modes (all configurations at K1 = K2 or
the even length lattice where the weaker bonds contact
the hard wall) does it come reasonably close (but still off
by about 20%).

Previously, we demonstrated that extended reservoirs
allow one to extract the intrinsic conductance of the lat-
tice of interest [19]. Extended reservoirs are regions of
length Nr on each end of the lattice, where all the sites
in the region are connected to Langevin reservoirs. This
allows γ to be very weak while pumping in sufficient en-
ergy to ensure that the free lattice – the lattice of interest
– limits the conductance. The use extended reservoirs re-
sults in the formation of a “plateau” in the conductance
versus γ, where the plateau conductance is the intrinsic
conductance.

Figure 5 shows the development of a plateau region as
Nr is increased for a configuration without edge modes.
Clearly, the intrinsic conductance for this system can
be accurately calculated via this simulation approach.
However, above we saw that the different configurations
had drastically different behavior (both qualitatively and
quantitatively). Figure 6 shows the plateau formation for
f = 2 and f = 20 for all the configurations (even, odd,
even OS, odd OS). Indeed, the extended reservoirs wash
out the effect of the edge modes and other boundary ef-
fects, allowing the computed conductance to plateau at
the intrinsic conductance of the lattice. While requiring
reasonably large extended reservoir regions, this demon-
strates the power of the simulation approach for deter-
mining the intrinsic conductance of a lattice of interest,
rather than a full device configuration (where the inter-
faces are approximated by Langevin reservoirs, opposed
to the actual, atomically detailed interface). In Ref. 19,
we demonstrated that this plateau behavior applies to
nonlinear systems, where both diffusive and ballistic ef-
fects are present.
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Figure 4. (Color online) The relative difference between the
peak thermal conductance (versus γ) and the intrinsic con-
ductance versus K1/K2 = f . All four lattices are shown (the
short dotted black line shows the even lattice, the dash-dot-
dot black line the even lattice with the parameters swapped,
the solid red line the odd lattice, and the dashed red line
the odd lattice with the parameters swapped). The param-
eters are (m1/m2, D1/D2,K1/K2) = (f, f, f). This shows
that there is a nonlinear relation between the conductance of
a system with only its boundaries attached to thermal reser-
voirs and the intrinsic conductance of the lattice only. When
the relative difference between these two quantities is O(1), it
means that κP is negligibly small compared to κ0. Often the
intrinsic conductance is the desired quantity, as a particular
device setup is not of interest, but rather, e.g., scaling proper-
ties of the lattice conductance with length, nonlinearity, etc.
This shows that contacting the lattice at the boundary can
not achieve this result.

IV. CONCLUSION

We derived a compact, exact analytic expression for
the thermal conductance of a harmonic lattice with al-
ternating onsite and nearest-neighbor coupling constants.
The derivation is based on a recently developed method
for diagonalizing a class of tridiagonal matrices. This ap-
proach is different from the methods of Refs. [10, 15, 16]
and allows one to explore inhomogeneous couplings.
Moreover, this approach may be generalized to more com-
plicated periodicity. We used the analytic expressions
to examine the effects of onsite parameters and nearest-
neighbor couplings, as well as the boundaries, in deter-
mining the thermal conductance. The results clarify the
effect of the reservoirs on the conductance, which is more
complex when the lattice is not uniform. This intricate
behavior is mainly due to the presence of an interfacial
resistance due to edge modes in the alternating lattice.
Their topological origin will be discussed in Ref. [20].
Moreover, the findings presented here support the use
extended reservoirs to compute the thermal conductance.

Figure 5. (Color online) Thermal conductance, κ, ver-
sus γ for an even lattice with a free lattice length of
128 and (m1/m2, D1/D2,K1/K2) = (f, f, f) with f = 2.
The lines show different extended reservoir lengths, Nr =
1, 4, 16, 64, 256, 1024. The green dash-dotted line indicates the
intrinsic conductance, κ0 of Eq. (34). The extended reservoirs
ensure the development of a plateau region at the intrinsic
conductance of the lattice. This allows the extraction of the
intrinsic conductance of the lattice from numerical simula-
tions.
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Appendix A: Eigenvalues of a class of tridiagonal
matrices

We consider the following types of tridiagonal matrices
(N is a positive integer, which in the main text represents
the total number of sites)

AN =


b1 a1 0 ... 0
c1 b2 a2 0 ...
0 c2 b1 a1 0
...

. . . c1
. . .

. . .

0 · · · 0
. . . bN

 (A1)

where ai, bi, ci, i = 1, 2 are complex numbers. To simplify
the notation, we consider

a1c1 = d2
1 and a2c2 = d2

2. (A2)

The matrices studied in Refs. [28–31] are special cases of
those considered by Kouachi [17, 18] and here we further
generalize the formalism to matrices with alternating di-
agonal and band-diagonal elements.
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(a) (b)

Figure 6. (Color online) Thermal conductance, κ, versus γ for an even lattice with a free lattice length of 128 (or 129) and
(m1/m2, D1/D2,K1/K2) = (f, f, f) with f = 2 and f = 20. The short dotted black line and solid red line are for the even
and odd lattices, respectively, and the dash-dot-dot black line and dashed red line are for the even and odd lattices with the
parameters switched, respectively. Lighter lines show single site reservoir regions, Nr = 1, and darker lines, Nr = 1024. (a) For
f = 2, the plateau forms and washes out differences in the conductance due to the configuration. (b) For f = 20, a plateau
starts to form and washes out configuration effects.

The forms of the characteristic determinant ∆0
N of the

class of matrices AN depends on whether N is odd (N =
2n+ 1) or even (N = 2n){

∆0
2n+1 = (d1d2)

n
Y1

sin(n+1)θ
sin θ ,

∆0
2n = (d1d2)

n sin(n+1)θ+
d2
d1

sin(nθ)

sin θ ,
(A3)

with

Y1 = b1 − λ, Y2 = b2 − λ. (A4)

Here, λ denotes the eigenvalue that will be found. By
expanding ∆0

N in terms of its last column and using
Eqs. (A2) and (A4), we get

∆0
N =

{
Y1∆0

N−1 − d2
2∆0

N−2, when N = 2n+ 1,
Y2∆0

N−1 − d2
1∆0

N−2, when N = 2n.
(A5)

We begin by proving the second line of Eq. (A3). By
writing the expressions of ∆0

N for N = 2n + 2, 2n + 1
and 2n respectively, multiplying ∆0

2n+1 and ∆0
2n by Y2

and (d1d2) respectively and adding the three resulting
equations, we get

∆0
2n+2 =

(
Y1Y2 −

(
d2

1 + d2
2

))
∆0

2n−(d1d2)
2

∆0
2n−2. (A6)

By imposing the condition

Y1Y2 = d2
1 + d2

2 + 2d1d2 cos θ, (A7)

where Y1 and Y2 are given by Eq. (A4), the above recur-
rent sequence can be written as

∆0
2(n+1)−(2d1d2 cos θ) ∆0

2n+(d1d2)
2

∆0
2(n−1) = 0, (A8)

whose characteristic algebraic equation has the form
u2 − 2 (d1d2 cos θ)u + (d1d2)

2
= 0. It has two solu-

tions of the form u = d1d2e
±iθ. The general solu-

tion of the recurrent sequence can be written as ∆0
2n =

(d1d2)
n [
C1e

−niθ + C2e
niθ
]
. Using the expressions for

n = 1 and n = 2, it follows that

C1 =

∆0
4e
iθ

(d1d2)2
− ∆0

2e
2iθ

(d1d2)

eiθ − e−iθ
(A9)

and

C2 =
−∆0

4e
−iθ

(d1d2)2
+

∆0
2e
−2iθ

d1d2

eiθ − e−iθ
. (A10)

Then

∆0
2n

(d1d2)
n =

∆0
2

(d1d2)

(
e(n−2)iθ−e−(n−2)iθ

eiθ−e−iθ

)
− ∆0

4

(d1d2)2

(
e(n−1)iθ−e−(n−1)iθ

eiθ−e−iθ

)
. (A11)

By using sinω = eiω−e−iω
2i we obtain

∆0
2n

(d1d2)
n =

∆0
2

(d1d2) sin (n− 2) θ − ∆0
4

(d1d2)2
sin (n− 1) θ

sin θ
.

(A12)
From Eq. (A7) we have ∆0

2 = Y1Y2 − d2
1 =

(d1d2)

(
sin 2θ+

d2
d1

sin θ

sin θ

)
and ∆0

4 =
(
Y1Y2 − d2

1

)2 −
d2

2Y1Y2 = (d1d2)
2

(
sin 3θ+

d2
d1

sin 2θ

sin θ

)
, then Eq. (A12) be-
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comes

∆0
2n

(d1d2)
n =

sin 2θ sin (n− 2) θ − sin 3θ sin (n− 1) θ

sin2 θ
+(

d2

d1

)
sin θ sin (n− 2) θ − sin 2θ sin (n− 1) θ

sin2 θ
.

(A13)

Using the trigonometric formula

2 sin η sin ζ = cos (η − ζ)− cos (η + ζ) (A14)

we get

∆0
2n

(d1d2)
n =

1

2 sin2 θ
([cos (n+ 2) θ − cosnθ] +

d2

d1
[cos (n+ 1) θ − cos (n− 1) θ]

)
.(A15)

Using Eq. (A14) again, we deduce the expression of ∆0
2n

given in Eq. (A3).
For the first formula of Eq. (A3), we have, from

Eq. (A5)

∆0
2n+1 =

∆0
2n+2 + d2

1∆0
2n

Y2
. (A16)

Applying the second formula of Eq. (A3), we get

∆0
2n+1 =

∆0
2n+2 + d2

1∆0
2n

Y2

= (d1d2)
n d1d2[sin(n+2)θ+sinnθ]+(d21+d22) sin(n+1)θ

Y2 sin θ .

(A17)

Using the formula

2 sin η cos ζ = sin (η + ζ) + sin (η − ζ) (A18)

for η = (n+ 1)θ and ζ = θ, we deduce

∆0
2n+1 = (d1d2)

n

[(
d2

1 + d2
2 + 2d1d2 cos θ

)
sin(n+ 1)θ

]
Y2 sin θ

.

(A19)
Then from Eq. (A7), we get the first formula of Eq. (A3)
and complete the proof.

Furthermore, the eigenvalues of the class of matrices
AN are given by

λk =

b1,
(b1 + b2)±

√
(b1 − b2)

2
+ 4

(
d2

1 + d2
2 + 2d1d2 cos kπ

n+1

)
2

for k = 1, · · · , n

 (A20)

when N = 2n+ 1, and

λk =
(b1 + b2)±

√
(b1 − b2)

2
+ 4 (d2

1 + d2
2 + 2d1d2 cos θk)

2
(A21)

for k = 1, · · · , n when N = 2n. Here, θk are the solutions
of

sin(n+ 1)θk +
d2

d1
sin(nθk) = 0 (A22)

when N = 2n. Their validity can be checked explicitly.

Appendix B: Special cases

1. Alternating masses

A harmonic lattice with alternating masses corre-
sponds to the case where Dj = D and Kj = K for all
j and the masses appear as m1,m2,m1,m2, · · · . The
techniques presented in Ref. [10] can be generalized to
solve this case [16]. However, we present an alternative

derivation as explained in the main text. For the alter-
nating mass lattice, it is based on a technique presented
in Ref. [18]. First we impose the following condition

α1α2 = 4K2 cos2
(q

2

)
= 2K2[cos(q) + 1]. (B1)

This relation guarantees the consistency of the recursion
relation for the characteristic polynomial of Φ in Eq. (4).
In the thermal conduction problem, Eq. (B1) determines
the conduction band of waves that can propagate through
the lattice. Since the masses are alternating, we use the
mass-weighted coordinates x̄j =

√
mjxj to rewrite the

equations of motion, which then possess a matrix eigen-
value problem discussed in Appendix A.

Using the results of Ref. [18] and transforming back
to the original coordinates, the determinant of Φ can be
explicitly written down. If the lattice consists of N = 2n
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sites, it follows that

K1,N = K2n sin[(n+ 1/2)q]

sin(q/2)
,

K2,N−1 = K2n−2 sin[(n− 1/2)q]

sin(q/2)
,

K1,N−1 = K2(n−1)α1 sin(nq)

sin(q)
,

K2,N = K2(n−1)α2 sin(nq)

sin(q)
. (B2)

Moreover, |C1N |2 = K4n−2. Eq. (3) then becomes

κ =
γLγR
πK2

ˆ
dωω2

M
. (B3)

The domain of the integral is determined by Eq. (B1)
and

M =

[(
1− γLγRω

2

K2

)
cos(q/2)

sin(q/2)
sin(nq)+(

1 +
γLγRω

2

K2

)
cos(nq)

]2

+[
ω

K2 sin(q)
(γRα1 + γLα2)

]2

sin2(nq). (B4)

In the limit n → ∞, we follow Ref. [10] and treat nq as
an independent variable running from 0 to 2π. Eq. (18)
leads to

κ =
2γLγR
π

ˆ
Ω

dω|ω sin(q)| ×

[(1 + γLγRω
2/K2)|γRα1 + γLα2|]−1. (B5)

The domain Ω only includes positive ω. This expression
recovers the known result in Refs. [10, 16].

One may want to check if this reduces to the case of a
uniform lattice in the limit m1 → m2. When m1 = m2 =
m, α1 = α2 = α and Eq. (B1) gives α = 2K cos(q/2). If
we define q̄ = q/2 and let γL = γR = γ, one can see that

κ =
γ

πK

ˆ
Ω

dω|ω sin(q̄)|
(

1 +
γ2ω2

K2

)−1

. (B6)

This reproduces the result for a uniform harmonic lattice
[10].

2. Alternating bonds

Next we consider a harmonic lattice with identical on-
site parameters m and D so that α = D+K1+K2−mω2.
For convenience, the length of the lattice is N = 2n + 1
so that the alternating bonds are in pairs. We will use
the results of Ref. [17] for solving this problem.

By imposing the constraint

α2 = K2
1 +K2

2 + 2K1K2 cos(q), (B7)

the propagating modes can be determined. Moreover,
the determinant of Φ is given by Ref. [17]. The needed
expressions are

K1,N = (K1K2)n
α sin[(n+ 1)q]

sin(q)
,

K1,N−1 = (K1K2)n
sin[(n+ 1)q] + (K2/K1) sin(nq)

sin(q)
,

K2,N = (K1K2)n
sin[(n+ 1)q] + (K1/K2) sin(nq)

sin(q)
,

K2,N−1 = (K1K2)n−1α sin(nq)

sin(q)
. (B8)

Moreover, |C1N |2 = (K1K2)2n. Eq. (3) becomes

κ =
γLγR
π

ˆ
dω
ω2

B
. (B9)

Here,

B =

(
α

sin[(n+ 1)q]

sin(q)
− γLγRω

2

K1K2
α

sin(nq)

sin(q)

)2

+

ω2

[
(γL + γR) sin[(n+ 1)q]

sin(q)
+(

K1

K2
γL +

K2

K1
γR

)
sin(nq)

sin(q)

]
(B10)

In the limit n→∞, we treat nq as an independent vari-
able and integrate from 0 to 2π to average its effect. Then
Eq. (23) leads to

κ =
2γLγR
π

ˆ
Ω

dω
|ω sin(q)|

|α|
[(

K1γL
K2

+ K2γR
K1

)
+ (γL+γR)γLγRω2

K1K2

] .
(B11)

The domain of the integral Ω is determined by Eq. (B7)
and only includes positive ω.

We can check if the limit K1 → K2 recovers the
uniform-lattice result. When K1 = K2 = K, the con-
straint, Eq. (B7), becomes α2 = 2K2[1 + cos(q)] =
4K2 cos2(q/2). Thus α = 2K cos(q/2) and if we define
q̃ = q/2 and use γL = γR = γ, the thermal conductance
becomes

κ =
γ

πK

ˆ
Ω

dω|ω sin(q̃)|
(

1 +
γ2ω2

K2

)−1

. (B12)

Again this reduces to the case of a uniform harmonic
lattice.

3. Band structure

The band structure of the two special cases are an-
alyzed here. We begin with the alternating-mass case.
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In this case K is uniform and we have alternating on-
site parameters (m1, D1) and (m2, D2). The constraint
Eq. (B1) leads to

cos q = −1 +
1

2K2

{
m1m2ω

4 − [m1(D2 + 2K)+

m2(D1 + 2K)]ω2 + (D1 + 2K)(D2 + 2K)}.
(B13)

Then | sin q| =
√

1− (cos q)2 will be used in the evalua-
tion of the thermal conductance. The bands are given by
the solution of ω as a function of q. After some algebra
we have

ω2 = ω2
± = R+ ±

√
R2
− + 2

K2

m1m2
(cos q + 1).(B14)

Here, R± = (D1 +2K)/(2m1)± (D2 +2K)/(2m2). Since
only ω2 is involved in the constraint, for each band with
positive ω there is a symmetric band with negative ω. In
performing the integral of the conductance, we integrate
over the bands with positive ω and add a factor of two
to the final result. For positive ω, there are two bands
ω+m ≤ ω ≤ ω+M and ω−m ≤ ω ≤ ω−M , where

ω+M =

√√√√R+ +

√
R2
− + 4

K2

m1m2
,

ω+m =

√
2 max

(
D1 + 2K

2m1
,
D2 + 2K

2m2

)
,

ω−M =

√
2 min

(
D1 + 2K

2m1
,
D2 + 2K

2m2

)
,

ω−m =

√√√√R+ −

√
R2
− + 4

K2

m1m2
. (B15)

Then the thermal conductance, Eq. (B5), is readily eval-
uated by integrating over the two bands.

For the alternating-bond case, the onsite parameters
are m and D and they are uniform. The coupling con-
stants are K1 and K2. The constraint of Eq. (B7) leads
to

(D +K1 +K2 −mω2)2 = (K1 −K2)2 +

2K1K2(cos q + 1).(B16)

The solution to the constraint gives

ω2 = ω2
± =

1

m
[(D +K1 +K2)±√

(K1 −K2)2 + 2K1K2(cos q + 1)]. (B17)

For positive frequencies there are two bands ω+m ≤ ω ≤

ω+M and ω−m ≤ ω ≤ ω−M , where

ω+M =

√
D + 2K1 + 2K2

m
,

ω+m =

√
1

m
max(D + 2K1, D + 2K2),

ω−M =

√
1

m
min(D + 2K1, D + 2K2),

ω−m =

√
D

m
. (B18)

The conductance, Eq. (B11), can be evaluated accord-
ingly.

Appendix C: Small and large γ regimes

Here we will derive analytic expressions in the limiting
regimes. The small γ regime is especailly helpful in un-
derstanding the sensitivity of the conductance to changes
in configuration, which we will also discuss.

1. Small γ

When N is odd, Eq. (24) gives the device conductance
in all regimes. Dropping the higher order terms in γ
yields

κ = kB
2γLγR
π

ˆ
Ω

dω
|ω sin(q)|

α1

(
K1

K2
γL + K2

K1
γR

) (C1)

= kB
2γLγR

π
(
K1

K2
γL + K2

K1
γR

) ˆ
Ω

dω
|ω sin(q)|

D1 +K1 +K2 −m1ω2

When N is even, the corresponding equation is Eq. (19).
Dropping the higher order terms in γ yields

κ = kB
2γLγR
π

K1

K2

ˆ
Ω

dω|ω sin(q)|
|γRα1 + γLα2|

(C2)

Both of these integrals have the same form.
Changing variables to momentum, brings the integrals

to

1

π

ˆ
dq

A sin2 q

B + C cos q
(C3)

Integrating separately over each band and adding the
results yields

κ =
2A

B +
√
B2 − C2

. (C4)

For the odd length lattice, we have

A = kB
2γLγRK1K2/m1

K1

K2
γL + K2

K1
γR

(C5)
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B = K2
1 +K2

2 , and C = 2K1K2. This yields the conduc-
tance (for K1 < K2)

κ =
kBγLγR/m1

γL + f−2γR
, (C6)

which is an exact expression in this regime for the odd
lattice. As in the main text, f = K1/K2.

For the even length lattice (and K1 < K2), the coeffi-
cients are

A = kB2γLγRK
2
1 (m2γL +m1γR) , (C7)

B = γLγR(D′2m1−D′1m2)2 +(m2γL+m1γR)2K2, (C8)

and

C = 2K1K2(m2γL +m1γR)2, (C9)

where K2 = K2
1 + K2

2 and D′i = Di + K1 + K2. The
resulting expression is complicated. However, as can be
seen directly from the integral itself, when swapping K1

and K2 to get the conductance in the absence of edge
modes, κ̄, the ratio is

κ

κ̄
=

(
K1

K2

)2

. (C10)

This equation (and the one for odd lattices, Eq. (C6)) is
reflective of the topological origin of the excess resistance
seen in Fig. 2. When simply swapping parameters or
going from an even to odd length lattice, one introduces
edge modes that suppress the coupling between the bulk
modes and the external reservoirs.

2. Large γ

When N is odd, Eq. (24) gives the device conductance
in all regimes. Dropping the higher order terms in γ
yields

κ = kB
2K1K2

π(γL + γR)

ˆ
Ω

dω

ω

∣∣∣∣ sin(q)

α2

∣∣∣∣ . (C11)

When N is even, the corresponding equation is Eq. (19).
Dropping the higher order terms in γ yields

κ = kB
2K1K2

π

ˆ
Ω

dω

ω

∣∣∣∣ sin(q)

γRα1 + γLα2

∣∣∣∣ . (C12)

Both of these integrals have the same form.
Changing variables to momentum, brings the integrals

to

1

π

ˆ
dq

A sin2 q

(B + C cos q) (B′ − C ′ cos q)
(C13)

Integrating separately over each band and adding the
results yields

κ =
A

CC ′

(
1− C ′

√
B2 − C2 + C

√
B′2 − C ′2

B′C +BC ′

)
. (C14)

For the odd length lattice, we have

A = 2K2
1K

2
2D
′
1, (C15)

B = K2, (C16)

C = 2K1K2, (C17)

B′ = D′1D
′
2 −K2, (C18)

and

C ′ = 2K1K2. (C19)

This yields (for K1 < K2)

κ =
D′1D

′
2 −

√
(D′1D

′
2 −K2)2 − 4K2

1K
2
2 +K2

1 −K2
2

D′2(γL + γR)/2
.

(C20)
For the even length lattice, we have

A = 2K2
1K

2
2

(
D′1m

2
2γL +D′2m

2
1γR

)
, (C21)

B = (D′2m1 −D′1m2)2γLγR + (m2γL +m1γR)
2
K2,
(C22)

C = 2K1K2 (m2γL +m1γR)
2
, (C23)

B′ = D′1D
′
2 −K2, (C24)

and

C ′ = 2K1K2. (C25)

3. Uniform lattice in these regimes

For a uniform lattice coupled to two reservoirs with
couplings γL and γR, we can obtain its expression from
those of alternating lattices. Explicitly, α = D + 2K −
mω2 = 2K cos q̃ with q̃ = q/2 and

κ = kB
2γLγR
π

ˆ
Ω

dω
|ω sin q|

(γL + γR)α
(

1 + γLγR
K1K2

ω2
) .(C26)

In the limit γL, γR → 0, using ωdω = (K/m) sin(q̃)dq̃
and sin(q) = 2 sin(q̃) cos(q̃) one obtains

κ→ kB
γLγR

π(γL + γR)

ˆ 2π

0

dq̃
K sin2 q̃

m

=
γLγR

(γL + γR)

(
kB
m

)
. (C27)
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This analysis also applies to a uniform lattice with dif-
ferent γL and γR in the large γ regime, where we have

κ→ kB
2γLγR
π

ˆ
Ω

dω|ω sin q|
(γL + γR)αγLγRK2 ω

=
kBK

2

π(γL + γR)

ˆ 2π

0

K
mdq̃ sin q̃(2 sin q̃ cos q̃)

(2K cos q̃) 1
m (D + 2K − 2K cos q̃)

= kB
K

(γL + γR)

(
1−

√
D(D + 4K)

2K
+

D

2K

)
. (C28)

When γL = γR = γ, those expressions recover Eqs. (25)
and (C31).

4. Compact expressions for special choices of γ’s

For the case of N = 2n, γL = Λm1 and γR = Λm2,
an analytic expression for κ in the small γ regime (corre-
sponding to Λ→ 0) can be found from the full expression
of Eq. (19). In this limit,

κ→ kB
2Λm1m2

π

ˆ
Ω

dωω| sin(q)|
(m2α1 +m1α2)(K2/K1)

.(C29)

From the constraint, Eq. (9), that leads to the band struc-
ture, we obtain ωdω = K1K2 sin(q)dq/(m1α2 + m2α1).
Moreover, using α1α2 = K2

1 +K2
2 +2K1K2 cos q, m2α1−

m1α2 = m2(D1 +K1 +K2)−m1(D2 +K1 +K2) ≡M,
and defining ν ≡M2/(m1m2)+4(K2

1 +K2
2 ), one can use

the fact that M and ν are independent of ω to obtain

κ = kB
2ΛK2

1

π

ˆ 2π

0

dq
sin2(q)

ν + 8K1K2 cos(q)

= kBΛ
(ν −

√
ν2 − 64K2

1K
2
2 )

16K2
2

. (C30)

Thus κ is linear in the friction coefficient, as expected.

For a uniform harmonic lattice in the large γ limit, the
thermal conductance takes the form [19]

κ→ kB
K

2γ

(
1−
√
mD

2K
Ω

)
. (C31)

The bandwidth for the uniform lattice is Ω =
K
m (
√
D/K + 4−

√
D/K).

When N is even, Eq. (19) allows a compact expression
in the large γ regime. Similar to the small γ expansion,
we choose γL = Λm1 and γR = Λm2, where Λ is the large
parameter. The leading term in the thermal conductance
becomes

κ→ kB
2Λm1m2

π

ˆ
Ω

dω|ω sin q|
(m2α1 +m1α2)Λ2m1m2

K1K2
ω2
.(C32)

The simplification is similar to that in the small γ cal-
culation. ωdω = K1K2 sin qdq/(m2α1 + m1α2). More-
over, (m1α2 +m2α1)2 = m1m2(ν + 8K1K2 cos q), where
ν = M2/(m1m2) + 4(K2

1 + K2
2 ) and M = m2(D1 +

K1 +K2)−m1(D2 +K1 +K2). We also solve Eq.(9) to
get ω2

± = (A± B)/(2m1m2), where A = m2(D1 + K1 +

K2) +m1(D2 +K1 +K2) and B =
√
M2 + 4m1m2α1α2.

The two solutions of ω2 correspond to the two bands
and we need to integrate over both bands. The identity
1/ω2

+ + 1/ω2
− = 4m1m2A/(A2 − B2) helps the merge

of the integrations over the two bands. By defining
ρ = 4[2K1K2 +D1D2 + (D1 +D2)(K1 +K2)], A2−B2 =
m1m2(ρ − 8K1K2 cos q). The thermal conductance be-
comes

κ = kB
K2

1K
2
2

Λπ

4A
m1m2

ˆ 2π

0

dq sin2(q)[(ν − 8K1K2 cos q)×

(ρ− 8K1K2 cos q)]−1

=
kB
Λ

A
8m1m2(ν + ρ)

[ν + ρ−√
(ν + 8K1K2)(ν − 8K1K2)−√
(ρ+ 8K1K2)(ρ− 8K1K2)]. (C33)

For a uniform lattice with γ = Λm, this expression fully
recovers Eq. (C31).
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