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ABSTRACT 
 

We perform a tracer counter-permeation (TCP) analysis for a stochastic model of 
diffusive transport through a narrow linear pore where passing of species within the 
pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled 
but otherwise identical particles from two decoupled infinite reservoirs adsorbing into 
opposite ends of the pore, and desorbing from either end. In addition to transient 
behavior, we assess steady-state concentration profiles, spatial correlations, particle 
number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, 
we determine a generalized tracer diffusion coefficient, Dtr(x), at various positions, x, 
within the pore. Dtr(x) has a plateau value in the pore center scaling inversely with the 
pore length, but it is enhanced near the pore openings. The latter feature reflects the 
effect of fluctuations in adsorption-desorption, and it is also associated with a non-trivial 
scaling of the concentration profiles near the pore openings. 
 
PACS numbers: 05.60.Cd, 82.75.Jn, 82.39.Wj, 05.40.-a 
 
1. INTRODUCTION 
 

Starting in the 1950’s, interest developed in quantifying transport through finite 
length pores traversing biological membranes [1-3]. It was noted that such pores could 
be sufficiently narrow that passing of diffusing species within the pores could be strongly 
inhibited. It was subsequently recognized that analogous transport issues apply for 
separations and catalysis in nanoporous materials, particularly for zeolites [4,5]. The 
extreme case corresponding to the complete absence of passing in these systems is 
described as single-file diffusion (SFD). In a fundamental theoretical study of SFD in an 
infinite system in 1965, Harris [6] rigorously demonstrated the occurrence of anomalous 
behavior wherein the mean-square displacement of a tagged particle increases like the 
square root of time. (This contrasts the conventional linear time-dependence from 
Einstein’s law.) The anomalous behavior corresponds to a vanishing tracer diffusion 
coefficient, Dtr = 0, for SFD in an infinite system, and naturally also affects transport in 
finite SFD systems. Significantly for nanoporous materials, a number of experimental 
probes are sensitive to SFD dynamics and its impact of concentration profiles, so direct 
evidence of such anomalous dynamics can be obtained. These probes include pulsed-
field-gradient (PFG) Nuclear Magnetic Resonance (NMR) [7-9], hyperpolarized Xe129 
NMR spectroscopy [10,11] (which can monitor diffusion up to ~10 s versus ~100 ms for 
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PFG NMR, thereby treating systems with lower mobilities), and infrared micro-imaging 
and interference microscopy for larger systems with dimensions ~100 μm [12]. 

Simulation studies for finite SFD systems with periodic boundary conditions offer 
the possibility to precisely quantify tracer diffusivity of a tagged particle by tracking the 
mean-square displacement and applying Einstein’s law [13,14]. (Here, displacement 
must be suitably defined to allow unbounded growth.) Subsequent analyses extended 
consideration to finite pores with various types of boundary conditions, including free-
exchange with the environment which is of relevance for the applications described 
above [15]. In many previous studies, there were no interactions between particles 
except for steric interactions excluding overlap or passing.  Specifically, for discrete 
lattice-gas type models, the pore is divided into L adjacent cells each of which can be 
populated by at most a single particle. Particles can hop left or right to adjacent empty 
cells with a specified rate, h. This prescription of hopping dynamics automatically 
imposes SFD. For such models, the concentration C corresponds to probability that a 
cell is occupied, so that 0 ≤ C ≤ 1. Then, various studies above revealed that the overall 
tracer diffusivity for the pore of L cells has the form [14,15] 
 
Dtr ≈ D0 (1-C)/(CL), for large L.        (1) 
 
Here, D0 = a2h denotes the diffusivity in the zero-coverage limit, where ‘a’ denotes the 
cell width (or lattice-spacing) which is set to unity below. Thus, the effect of SFD is 
reflected in the C-dependence as well as the inverse proportionality to pore length, L. 
Refinements to (1) have been suggested for smaller L [14-16], a particularly effective 
version of which appears to be that in Ref. [17]. 

A significant development in the analysis of inhibited diffusion for finite systems 
with free-exchange with the environment was the consideration and analysis by Nelson 
and Auerbach of a so-called tracer counter-permeation (TCP) process [18]. In general 
terms, TCP applies to porous systems of finite width connected on either side to infinite 
well-stirred reservoirs which are decoupled from each other. The system involves a 
single-type of diffusing particle (in terms of interactions and diffusional dynamics), but 
particles in different reservoirs are labeled so as to be distinguishable. Particles in the 
left (right) reservoir diffuse through the finite porous system into the right (left) reservoir 
where they are immediately infinitely diluted (and thus do not reenter the porous 
system). The system reaches a steady-state with concentration profiles for the labeled 
particles varying roughly linearly with position, x, across the porous system. 
Measurement of the flux of labeled particles through the porous system together with 
the local concentration gradient yields a local or generalized tracer diffusivity, Dtr(x). 
This Dtr(x) is approximated by (1) in the system interior, but it is enhanced near the 
edges, especially for SFD. These features are of central interest in the current study. 

As an aside, we also note that recently a different strategy was introduced to 
analyze generalized tracer diffusivity in these above type of systems based on tracking 
of a tagged walker [19,20]. The tagged walker starts at a specified location, x, inside the 
porous system of finite width and wanders amongst a prescribed density of untagged 
particles. It is also specified to remain at the boundary once exiting the porous system. 
One tracks the root-mean-square (RMS) displacement and determines an “exit time”, 
Tx, based on when the RMS displacement increases to the distance of the closest 
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boundary.  Then, taking Dtr(x) ∝ (Tx)-1, one finds that Dtr(x) exhibits the same features as 
determined from a TCP analysis. This tagged walker approach has some advantages in 
applying directly to semi-infinite systems, and also in elucidating the form of Dtr(x). 

Finally, we also mention that it is well-recognized that there are different temporal 
regimes of tracer diffusivity in finite SFD systems with conventional diffusion occurring 
for short times crossing over to SFD for moderate times, and potentially to center-of-
mass diffusion for long times [11,15,17,21]. The latter crossover depends on location of 
the tagged particle within the pore, behavior reminiscent of the above position-
dependence to tracer diffusivity. 

Now, we return to the general analysis of TCP processes which is the central 
focus of this paper. It should be emphasized that TCP steady-states are not fully 
described by concentration profiles and fluxes alone, although these do suffice to 
determine Dtr(x). For a more complete characterization, spatial correlations and 
associated particle number fluctuations should also be assessed, although it appears 
that this has not been done previously. Spatial correlations have however been 
characterized in somewhat related non-equilibrium systems. Some of these involve 
single-component non-interacting lattice-gases for finite or semi-infinite non-interacting 
systems coupled to reservoirs having a different particle density [22-24]. Here, negative 
anti-clustering correlations develop under relaxation, although these features do not 
reflect tagged particle or SFD dynamics. Perhaps closer to the TCP scenario are finite 
or semi-infinite lattice-gas reaction-diffusion systems with SFD or less restrictive 
inhibited passing. In these systems, reaction induces subtle positive clustering 
correlations [19,25]. 

In this contribution, we analyze TCP for a one-dimensional non-interacting lattice-
gas model for inhibited transport within a pore, which includes SFD as a special case. 
We consider both steady-state behavior, and also evolution starting from a natural 
uncorrelated initial state with exactly linear concentration profiles. In particular, we 
extract the tagged-particle steady-state concentration profiles and flux through the pore 
allowing assessment of the generalized tracer diffusivity, Dtr(x). We demonstrate 
convergence to a well-defined limiting behavior of concentration profiles near pore 
openings as the pore length increases. We also compare TCP results for Dtr(x) with 
those from the tagged walker approach. Beyond these basic studies of TCP profiles, we 
assess particle number fluctuations, spatial correlations, and other characterizations of 
steady-state configurations. In Sec.2, we describe our stochastic model, our choice of 
initial state for TCP analysis, and illustrate basic results for steady-state profiles. In 
Sec.3, we briefly provide some theoretical background for our TCP analysis presenting 
fundamental evolution equations, and discussing spatial correlations, particle number 
fluctuations, and the formulation of generalized tracer diffusivity. Results for model 
behavior from Kinetic Monte Carlo (KMC) simulations are presented in Sec.4. 
Conclusions are presented in Sec.5.  
 
2. TRACER-COUNTER PERMEATION (TCP) MODEL 
 

Our stochastic model is illustrated schematically in Fig.1. A narrow linear pore is 
divided into L adjacent cells. The pore is connected at each end to infinite reservoirs 
which can be represented by three-dimensional arrays of cells. All cells are populated 
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by at most a single particle. Within the pore, particles can hop to nearest-neighbor (NN) 
empty cells are rate h (per direction). In general, pairs of particles on NN cells can also 
exchange places at rate Pex h. Thus, Pex = 0 corresponds to SFD, and Pex = 1 
corresponds to uninhibited passing. Both hopping and exchange processes with the 
above rates also apply for pairs of sites where one is just inside the pore and the other 
is just outside. 

Infinite reservoirs adjacent to the left and right ends of the pore are decoupled 
from each other, and particles in these reservoirs are labeled or colored differently, blue 
(B) and red (R), respectively. The reservoirs are regarded as being well-stirred, and 
thus to have a random distribution of particles at a fixed concentration, <X0>. (One can 
regard this equilibration as being the result of very rapid hopping of particles within the 
reservoirs to adjacent empty sites.) As a result, B-type (R-type) particles reaching the 
right (left) reservoir are immediately infinitely diluted and do not reenter the pore. Also, 
given this reservoir dynamics, it follows that the rate for a particle at end sites within the 
pore to exit or desorb from the pore is given by wdes = h(1 - <X0>). The rate at which a 
reservoir particle just outside the pore enters or adorbs at an empty end site within the 
pore is given by wads = h<X0>. Thus, it is clear that it suffices to just simulate the state 
within the pore (not the reservoirs) with the appropriate adsorption and desorption rates. 

 

 
 
Fig.1. Schematic of TCP steady-state configurations for SFD: (a) configuration with 
interface between B-filled and R-filled regions of the pore in the middle of the pore; (b) 
configuration with the pore only populated by B allowing B desorption into R-reservior. 
 

In this study, we consider a specific initial value problem starting with exactly 
linear concentration profiles of blue (red) particles decreasing from <X0> just outside 
one end of the pore to zero just outside the other from left to right (from right to left) 
along the pore. In addition, pore sites are populated randomly with the appropriate 
concentrations, so there are no spatial correlations in the initial state. Consequently, 
initially particles are not strictly ordered with red on the right and blue on the left within 
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the pore, although it is more likely to find red (blue) on the right (left). The system then 
evolves to reach the true TCP steady-state where concentration profiles are roughly but 
not exactly linear, and where particles are strictly ordered. See Fig.2. Precise analysis 
of evolution in this system is achieved with the aid of KMC simulations. Some details of 
the KMC algorithm are provided in Appendix A. Certainly, other initial conditions could 
be chosen [26], which of course will not impact final steady-state behavior. However, 
the above choice is particularly natural in terms of ensuring simple evolution to the 
steady-state, as discussed further below. 

Next, we comment on a “color-blind” analysis of behavior where one cannot 
distinguish between differently colored or labeled particles. For the corresponding 
single-component system, it is clear that the initial uncorrelated state with uniform 
concentration (both inside the pore and in the reservoirs) also corresponds to the final 
steady state. Thus, for our specific choice of initial conditions, there is no evolution of 
the total concentration from its initial uniform state, and there is no development of non-
zero color-blind spatial correlations for particles X (i.e., correlations retain their zero 
initial values). The same would apply other random initial conditions provided that they 
also start with a uniform total concentration [26]. However, for other choices such as 
starting with an empty pore, there will be natural evolution governed by the simple 
diffusion equation of the concentration profile to a uniform state (see Sec.3A). There 
would generally be a subtle and transient development of negative anti-clustering 
spatial correlations [22-24], where these ultimately vanish in the steady-state.  
 

 
 
Fig.2. Concentration profiles for B and R particles for SFD with L = 100 and <X0> = 0.8: 
(a) the initial uncorrelated state with linear profiles; and (b) the final correlated steady-
state for TCP. 
 

Finally, we emphasize that while color-blind spatial correlations for particles X do 
not develop for our selected initial conditions, this is not the case for correlations 
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associated with labeled or colored particles, B and R. In Sec.4, we show that spatial 
correlations do develop for the latter. 
 
3. THEORY: CONCENTRATIONS, FLUCTUATIONS, CORRELATIONS, DIFFUSIVITY  
 
3A. Master equations for concentrations and related quantities 
 

Within the linear pore, we label cells from left to right by j = 1 to L. Let Bj (Rj) = 1 
correspond to a blue (red) particle in cell j, where Bj (Rj) = 0 otherwise. Thus, Xj = Bj + Rj 
= 1 (0) if cell j is occupied (empty), and Ej = 1 - Xj  = 0 (1) if cell j is empty (occupied).  
Below, we let C = B, R, or X. Then, NC = ∑1≤  j≤ L Cj gives the total number of C-type 
particles in the pore. If < > denotes an appropriate ensemble average, then <Cj> 
denotes the probability that cell j is occupied by a type C particle (i.e., the local 
concentration of such particles). Also, it follows that <Xj> = <Bj> + <Rj>, and <Xj> + <Ej> 
= 1. We also adopt a natural notation for the probabilities of multi-cell configurations, 
e.g., <BjEj+1> denotes the probability that cell j is occupied by B and cell j+1 is empty. 
The evolution of <Bj>, <Rj> and more complicated multi-cell probabilities is described by 
an exact set of hierarchical master equations. For example, for 1 < j < L, one has that 
 
d/dt <Bj> = -∇ JB(j>j+1).         (2) 
 
where JB(j>j+1) = h[<BjEj+1> - <EjBj+1>] + Pexh[<BjRj+1> - <RjBj+1>],   (3) 
 
and ∇ Kj = Kj - Kj-1 is a discrete derivative. Here JB(j>j+1) denotes the net flux of B from 
cell j to cell j+1. There are analogous equations for <Rj> with 1 < j < L. Both sets of 
equations are supplemented by modified equations for the end sites j = 1 and j = L 
appropriately accounting for adsorption and desorption processes. Separate equations 
can be obtained for the two-cell pair probabilities appearing in the flux terms which 
couple to triple-cell probabilities, etc. Two-cell spatial correlations control the flux, and 
we find that these are significant for small Pex [19,20]. 
 Despite the last observation, it is instructive to consider mean-field (MF) type 
factorization approximations to the above equations. In the simplest site-approximation, 
one ignores all spatial correlations, so that <BjEj+1> ≈ <Bj><Ej+1>, etc. Then, after 
utilizing this factorization, noting that <Ej> = 1 - <X0>, and also incorporating some 
simplifying cancellation, one obtains  
 
JB(j>j+1)|site = -h[(1 - <X0>) + Pex<X0>]∇<Bj>.      (4) 
 
Together with the theoretical formulation to be presented in Sec.3C, this result implies a 
position-independent tracer diffusivity 
 
Dtr(site) =D0[(1 - <X0>) + Pex<X0>].       (5) 
 
We will argue below that Dtr(site) might be expected to provide an upper bound to the 
actual position-dependent generalized tracer diffusivity. Finally, we should note that this 
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mean-field treatment becomes exact when Pex = 1 so passing is completely unhindered 
and Dtr = D0. 

Finally, we also note that adding equations for <Bj> and <Rj> yields classic 
discrete diffusion equations for d/dt <Xj> = -∇ JX(j>j+1) where JX(j>j+1) = -h∇<Xj> 
exploiting an exact cancellation of pair probability terms [19,27]. For the initial value 
problem considered in this study, at t = 0 for all j, we set <Xj> = <X0> the external 
reservoir concentration, and thus these quantities do not change in time. 
 
3B. Particle number fluctuations and spatial correlations 
 

In this study, we have a particular interest in characterizing particle number 
fluctuations and the associated spatial correlations. For C = B, R, or X, using that 
<(Cj)2> = <Cj>, one obtains the general fluctuation-correlation relation 
 
Var(NC) = <(NC - <NC>)2> = ∑i <Ci>(1 - <Ci>) + ∑∑ i≠j Cov(Ci, Cj),   (6) 
 
where the covariance Cov(Ci, Cj) = <CiCj> - <Ci><Cj> corresponds to a 2-point spatial 
correlation function for C-type particles. The sums in (6) range over all cells in the pore. 
There are a few basic results follow from this relation, and which are particularly 
relevant for our study, as described below.  

First, we consider “color-blind” fluctuations in the total number of particles X for 
any initial conditions with uniform total concentration and uncorrelated initial particle 
distributions [26]. This includes our choice with linear concentration profiles for B and R 
in Sec.2, but can also cover non-linear profiles. We have already indicated in Sec.2 that 
Cov(Xi, Xj) = 0 for i≠j not just for t = 0, but for all t ≥ 0, i.e., no correlations develop. 
Then, since also <Xj> = <X0> for all t ≥ 0, one finds from (6) that 
 
 Var(NX) = L<X0>(1 - <X0>) is constant, for all t ≥ 0.     (7) 
 
This appealing and simplifying feature is specific to this class of initial conditions.  

Second, for any random choice of initial state [26], not only are there no spatial 
correlations for X-type particles, but also no correlations for B- or R-type particles. Thus, 
one has that Cov(Ci, Cj) = 0 for i≠j, so that Var(NC) = ∑i <Ci>(1 - <Ci>) for C = B or R can 
be determined given the initial concentration profiles [26]. For example, one can readily 
exactly evaluate this sum for our prescribed initial linear profiles in Sec.2. Actually for 
our purposes assuming that L is not too small, it suffices to approximate this sum by an 
integral to obtain 
 
Var(NB) = Var(NR) ≈ ½ L<X0>[1 – (2/3)<X0>], at t = 0 for linear profiles.  (8) 
 
Unlike Var(NX), we will see that Var(NB) = Var(NR) varies strongly with time t, but the 
above analysis at least clarifies the initial value. 

Third, another basic result for particle number fluctuations which follows simply 
from the relation NX = NB + NR for any choice of initial condition is that  
 
Var(NX) = Var(NB) + Var(NR) + 2Cov(NB, NR), for all t ≥ 0,    (9) 
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where Cov(NB, NR) = <NBNR> - <NB><NR>. Consider any choice of random initial 
conditions with reflection symmetry of B and R concentration profiles about the pore 
center, including our choice in Sec.2 of linear profiles. Then, it follows that <Bj> = <RL-j> 
for all t ≥ 0, so that <NB> = <NR> and Var(NB) = Var(NR) for all t ≥ 0. Incorporating the 
latter identity into (8), one obtains 
 
Var(NX) = 2[Var(NB) + Cov(NB, NR)], for all t ≥ 0.     (10) 
 
We find that clustering correlations develop for B and R particles, i.e., Cov(Ci, Cj) > 0 for 
C = B or R, and in fact positive Var(NB) = Var(NR) is large relative to positive Var(NX). 
On the other hand, anti-clustering correlations develop between B and R particles, i.e., 
Cov(Bi, Rj) < 0, so that Cov(NB, NR) < 0. It also follows from (9) that Cov(NB, NR), like 
Var(NB), necessarily has a magnitude much larger than Var(NX). Also, significantly, 
since Var(NX) is constant in time, the variation in time of Cov(NB, NR) is determined by 
that of Var(NB) = Var(NR) (or visa versa). 
 
3C. From hydrodynamic transport theory to generalized tracer diffusivity 
 

Here, we will exploit a fundamental result for transport in diffusive non-interacting 
lattice-gas systems with particles labeled by two colors, B and R, but otherwise having 
identical interactions and diffusive dynamics. In the so-called hydrodynamic regime of 
low concentration gradients, one regards local concentrations <B>, <R>, and <X> = 
<B> + <R> as functions of a continuous spatial variable, x. One would identify x = ja for 
cell index j in 1D where ‘a’ is the cell spacing. Then, a rigorous treatment of collective 
diffusion yields for the diffusion flux of B particles [28,29] 
 
JB = - D0(<B>/<X>)∇<X> - Dtr [(<R>/<X>)∇<B> - (<B>/<X>)∇<R>],    (11) 
 
where ∇ is the gradient operator (so ∇ = ∂/∂x in 1D), and <X> = <B> + <R> is the total 
concentration. Here D0 (Dtr) is the collective (tracer) diffusion coefficient for the 
corresponding single-component system. An analogous expression applies for JR.  

For the case of interest here with hopping to NN empty sites at rate h, and 
exchange at rate Pexh, one has that D0 = a2h is independent of both concentration and 
Pex. However Dtr exhibits a non-trivial decrease with decreasing Pex and with increasing 
concentration. See Ref. [30] for further characterization of Dtr. An immediate 
consequence of (11) for TCP with position-independent <X> is that 

  
JB = -Dtr ∇<B> and JR = -Dtr ∇<R>,        (12) 
 
i.e., in this case, collective diffusion is controlled entirely by tracer diffusivity. See Ref. 
[17,18] for an alternative derivation of these results. 

It is natural to translate and generalize these latter relations for fluxes to a 
discrete lattice setting for TCP by defining a position-dependent generalized tracer 
diffusion coefficient for each NN pair (j, j+1) of cells as [18,19] 
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Dtr(j, j+1) = - JB / ∇<Bj> = - JR / ∇<Rj>.       (13) 
 
Clearly, this Dtr(j, j+1) is symmetric about the pore center. We emphasize here that JB = 
-JR is constant throughout the pore in the TCP steady-state. Furthermore, these 
constant fluxes equal the exit flux of species from the pore, i.e., 
 
JR = -wdes<R1> and JB = wdes <BL>,       (14) 
 
so that the fluxes are completely determined by end-cell concentrations. Inspection of 
Fig.2b immediately reveals that Dtr(j, j+1) will adopt a constant minimum plateau value, 
Dtr(min), in the pore center where the concentration profiles for TCP are linear. 
However, Dtr(j, j+1) will be enhanced near the pore openings where concentration 
gradients are reduced in amplitude. 

For SFD (Pex = 0), it is reasonable to expect that at least for large L, Dtr(min) 
should correspond to the value predicted for the overall pore tracer diffusivity in (1) with 
C = <X0>. Then, approximating the concentration gradient near the pore center by   
∇<Rj ≈  L/2> ≈ <X0>/L, one concludes that for SFD, the TCP end cell concentrations 
satisfy 
 
<R1> = <BL> ≈ 1/L2, for large L (for SFD).      (15) 
 
According to the above analysis, these concentrations should be roughly independent of 
<X0>. In fact, our simulation results in Sec.4C will reveal the scaling behavior <Rj> ≈ 
r(j)/L2 for large L, where r(j) is independent of L and increases faster than linearly with j. 

Refinements of the result (15) are appropriate to account for finite-length 
corrections and for low reservoir concentrations. More specifically, these become 
significant for <X0>L = O(1) where on average there is on the order of one particle (or 
less) in the pore. These refined results can be obtained from modified versions of (1) 
such as that given in Ref.[10], and from alternative concentration gradient estimates 
[31]. They imply a crossover from (15) to <R1> ≈ <X0>/L for <X0>L <<1 ensuring that Dtr 
≈ D0 in this low concentration regime. 
 
4. KMC SIMULATION RESULTS 
 

In the following, we focus on behavior for SFD (Pex = 0). First, we discuss particle 
number fluctuations in Sec.4A and associated spatial correlations in Sec.4B. These 
quantities are of fundamental interest in characterizing non-equilibrium steady states. 
Furthermore, assessment of their transient behavior provides a valuable tool for 
assessing the onset of the steady-state (which is needed in precise analysis of steady-
state properties avoiding corruption by transients) as exploited in Sec.4C. Finally, in 
Sec.4D, we present limited results allowing passing of particles within the pore (Pex > 0). 
Again, details of the KMC simulation algorithm are described in Appendix A. 
 
4A. Particle number fluctuations for SFD 
 

For SFD with <X0> = 0.8 and L = 100, the evolution of particle number 
fluctuations from their values for the uncorrelated initial state towards steady-state 
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values are shown in Fig. 3. Exact initial values for the quantities shown are given by (7) 
and (8). A key feature is the development of large amplitude fluctuations in NB and NR 
relative to those for N, i.e., Var(NB) = Var(NR) >> Var(N), which reflects clustering rather 
than a random distribution of species B and R. The correspondingly large negative 
steady-state value of Cov(NB, NR) is determined by the identity (9).  
 

 
 
Fig.3. SFD results for time evolution of particle number fluctuations for <X0> = 0.8 and L 
= 100. Behavior is shown for ht from 0 to 4×106. 
 

Elucidation and rough estimation of steady-state values of Var(NB) or Var(NR) 
comes from recognition of the feature for SFD that all configurations within the pore 
have B particles to the left and R particles to the right with an interface between B and R 
particles somewhere within the pore. Given the quasi-linear concentration profiles for B 
and R particles, it follows that the location x = j (setting a = 1) of this interface within the 
pore is to described by a uniform (constant) normalized probability distribution, p(x) = 
1/L in a natural lowest-order approximation. For location x, the mean total number of B 
and R particles in the pore is roughly <NB(x)> ≈ (L - x)<X0> and <NR(x)> ≈ x<X0>, 
respectively. Thus, provided that L is not too small, one estimates for C = B or R that 
 
<(NC)m> ≈ ∫0<x<L dx p(x) <NC(x)>m, and <NBNR> = ∫0<x<L dx p(x) <NB(x)><NR(x)>.  (16) 
 
From these relations, one can evaluate steady-state Var(NC) = <(NC)2> - <NC>2 and 
Cov(NB, NR) to obtain 
 
Var(NB) = Var(NR) ≈ <X0>2L2/12, and Cov(NB, NR) ≈ -<X0>2L2/12.   (17) 
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This analysis predicts that Var(NB) = Var (NR) = -Cov(NB, NR) ≈ 530 for SFD with <X0> = 
0.8 and L = 100 compared with the simulated value of around 420. This indicates that 
our approximate formulation captures at least the key features of behavior. Both of 
these values far exceed the much smaller exact value of Var(N) = 16, where we also 
note that (17) does not exactly reproduce the relation (9).  
 We emphasize that the above characterization of ordered steady-state 
configurations (with B to the left and R to the right) does not apply for our choice in 
Sec.2 of random initial state with linear concentration profiles of B and R. In that case, 
such ordering is not imposed.  Consequently, the much smaller initial Var(NB) = Var(NR) 
≈ 18.7 are given by (8) rather than (17). 

Another issue related to our analysis of particle number correlations is a 
determination of the characteristic time scale, tc, for reaching the steady state, recalling 
that Var(NB) = Var(NR) and Cov(NB, NR) necessarily relax at the same rate. It has been 
suggested previously that tc corresponds to the intra-crystalline residence time, L2/Dtr, 
which using (1) implies that tc ~ L3 [17]. Results presented below appear consistent with 
this scaling behavior. Reliable assessment of this transient regime is important to 
enable precise determination of steady-state flux and concentration gradients which in 
turn determine Dtr(x). 
 
4B. Spatial correlations for SFD 
 

We have considered in detail NN pair correlations, Cov(Bj, Bj+1) = <BjBj+1>-
<Bj><Bj+1>. For SFD with <X0> = 0.8 and L = 100, Fig.4 shows the development of 
these correlations (from their zero initial values) on the same time scale, tc, as the 
achievement of steady-state behavior for particle number fluctuations.  Elucidation and 
rough estimation of this behavior comes from adopting the above characterization of the 
ensemble of steady-state configurations with B on the left and R on the right separated 
by an interface at position x with uniform probability distribution, p(x). Again setting a = 
1, it follows that  
 
<Bj> ≈ ∫j<x<L p(x)<X0> = (1- j/L)<X0>, and        (18) 
 
<BjBj+1> ≈ ∫j<x<L p(x)<X0>2 = (1- j/L)<X0>2,      (19) 
 
since the interface must be to the right of site j for the configuration to contribute to 
these quantities. With an analogous analysis for Cov(Rj, Rj+1), we conclude that in the 
steady-state one has 
 
Cov(Bj, Bj+1) = Cov(Rj, Rj+1) ≈ (j/L)(1- j/L)<X0>2.      (20) 
 
This analysis predicts that the maximum value <X0>2/4 = 0.16 for <X0> = 0.8 occurs for j 
= L/2. This prediction is quite close to the KMC estimate of 0.155. 
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Fig.4. Evolution of NN pair correlations for SFD with <X0> = 0.8 and L=100: (a) Cov(Bj, Bj+1)  
for cells j = 1 to 9 at the end of the pore (from bottom to top); (b) Cov(Bj, Bj+1) for cells j = 
10,20,…, and 50 (from bottom to top). Behavior is shown for ht from 0 to 4×106. 
 

In fact, the above analysis can be readily extended to assess more general 2-
point spatial correlations in the steady-state to obtain  
 
Cov(Bj, Bj+k) = Cov(Rj, Rj+k) ≈ (j/L)(1 – j/L – k/L)<X0>2 > 0,    (21) 
 
Cov(Bj, Rj+k) ≈ -(1 - j/L)(j/L+ k/L)<X0>2 < 0, and      (22) 
 
Cov(Rj, Bj+k) ≈ -(j/L)(1 - j/L- k/L)<X0>2.       (23) 
 
The last result is trivial since <RjBj+k> = 0 in the steady-state. The positive (negative) 
covariance for pairs of particles of the same (different) types is consistent with and 
supports the statements made in Sec.4A. 
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4C. Characterization of steady-state pore configurations for SFD 
 

We have noted above that steady-state configurations within the pore are 
ordered in that B particles are on the left and R on the right. We also introduce the 
location, x, of the interface between B and R populated regions within the pore which in 
a simple low-order coarse-grained picture is described by a uniform probability 
distribution, p(x) = 1/L. One might expect that p(x) is not exactly uniform due to “edge 
effects” at the pore openings. Thus, here we provide a more precise analysis.  

First, we must precisely define the interface between B and R regions. Perhaps 
the simplest choice is to define the location as the left-most R particle (or the right-most 
B particle) which just adopts integer values. If there are no R (B) particles in the pore, 
then we define the interface location as j = L+1 (j = 0). Results are shown in Fig.5a for 
this distribution, pR(x), for R particles for <X0> = 0.8 and L = 50. These do indicate a 
uniform distribution except near pore openings. 

A more appealing symmetric definition takes the position of the interface to be 
mid-way between the right-most B particle and the left-most R particle in the case where 
the pore is populated by both B and R particles. Note that this position can adopt both 
integer and half-integer values. We use the same definition if the pore has no R (B) 
particles, but assign the position of the right-most R (left-most B) particle as j = L+1 (j = 
0). Results for the associated distribution, p(x), are shown in Fig.5b for <X0> = 0.8 and L 
= 50. There is a higher probability for half-integer positions than for integer positions 
which is understood since in the regime of nearly completely filled pore, only half-integer 
positions can be adopted. A more detailed analysis follows noting that a separation, s, 
between the right-most B and left-most R occurs with probability <X0>(1 - <X0>)s. From 
this one concludes that the ratio of probabilities for half-integer versus integer positions 
is given by 1/(1 - <X0>) = 5.This fine-structure is washed out in a coarse-grained picture 
again producing a uniform distribution except near pore openings. 
 

 
 
Fig.5. Interface location distribution for SFD with <X0> = 0.8 and L=50. 
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Additional analysis for <X0> = 0.8 and L = 100 shows similar edge effects where 
the deviation from a uniform distribution is apparent within 10 cells of the pore ends. 
 
4D. Generalized tracer diffusivity for SFD 
 

For SFD with <X0> = 0.8, results for Dtr(j, j+1) versus j are shown in Fig.6 for L = 
10, 30, 100, and 300. We highlight the enhanced values near the left end of the pore by 
just showing behavior in this end region rather than the entire pore. However, the 
development of a plateau with smaller Dtr-value in the pore center is also clear for all 
these cases. The insets show evolution of Var(NB) and Cov(BL/2, BL/2 +1) from the 
random initial state. As indicated in the introduction to Sec.4, these latter results are 
used to estimate the onset of the steady-state regime (denoted by a vertical dotted line). 
Only after this onset is data analyzed to determine steady-state values for JB and ∇<Bj> 
which are used to evaluate Dtr(j, j+1). For contrast with the above analysis, we also 
present results in Fig.7 for SFD with a lower <X0> = 0.2 where the effects of the SFD 
constraint are less severe. Correspondingly, Dtr(j, j+1) values are significantly higher. 
Note also that the steady state is achieved significantly more quickly (by a factor of ~10) 
for <X0> = 0.2 relative to <X0> = 0.8. 
 

 
 
Fig.6. Dtr(j, j+1)/D0 versus cell index j at the left end of the pore for SFD with <X0> = 0.8. 
Dashed horizontal blue line: estimate D0 (1-<X0>)/[1+<X0>(L-1)] of Dtr(min). Insets: 
Var(Nb) and rescaled Cov(BL/2, BL/2 +1) [by 34.62, 222.56, 2559.6, and 24066 for L =10, 
30, 100, and 300, respectively]. Behavior is shown for ht from 0 to 5×104, 105, 4×106, 
and 108 for L = 10, 30, 100, and 300, respectively. The dashed vertical black line shows 
the onset of the steady-state. 
 

In Table I, we provide additional information pertaining to these simulations. 
Precise KMC values for <R1> are compared with estimates <R1> ≈ [(L-1)2 +(L-1)<X0>]-1, 
modifying (12) using Ref.[16] for Dtr(min) and ∇<Rj ≈ L/2> ≈ <X0>/(L-1) (cf. [31]). KMC 
values do reveal the weak dependence on <X0> suggested in our previous discussion. 
Also presented are precise KMC values for the flux, JB, obtained from directly counting 
the number of B’s desorbing from the right end of the pore. We find essentially identical 
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values for JB area obtained from JB = wdes <BL> = wdes <R1>. Finally, we give precise 
KMC values for Dtr(min) and compare them with reliable estimates from the slightly 
modified version of (1) given in Ref. [16]. 
 

 
 
Fig.7. Dtr(j, j+1)/D0 versus cell index j at the left end of the pore for SFD with <X0> = 0.2. 
Dashed horizontal blue line: estimate D0 (1-<X0>)/[1+<X0>(L-1)] of Dtr(min). Insets show 
Var(Nb) and a rescaled Cov(BL/2, BL/2 +1) [by 34.62, 222.56, 2559.6, and 24066 for L =10, 
30, 100, and 300, respectively]. Behavior is shown for ht from 0 to 2.5×103, 7×103, 
3×105, and 3.5×106 for L = 10, 30, 100, and 300, respectively. The dashed vertical black 
line shows the onset of the steady-state. 
 
<X0>=0.8 <R1> JB Dtr(min) <X0>=0.2 <R1> JB Dtr(min) 
L = 10 1.23E-2 

(1.08E-2) 
2.461E-3 
 

2.30E-2 
(2.44E-2) 

L = 10 1.04E-2 
(0.79E-2) 

8.305E-3 3.40E-1 
(2.86E-1) 

L = 30 1.34E-3 
(1.14E-3) 

2.684E-4 8.00E-3 
(8.26E-3) 

L = 30 1.62E-3 
(1.01E-3) 

1.298E-3 1.33E-1 
(1.18E-1) 

L = 50 4.70E-4 
(4.06E-4) 

9.397E-5 4.87E-3 
(4.98E-3) 

L = 50 5.95E-4 
(3.37E-4) 

4.760E-4 7.86E-2 
(7.41E-2) 

L = 100 1.13E-4 
(1.01E-4) 

2.256E-5 2.46E-3 
(2.49E-3) 

L = 100 1.14E-4 
(0.97E-4) 

1.143E-4 3.88E-2 
(3.85E-2) 

L = 300 1.20E-5 
(1.11E-5) 

2.402E-6 8.31E-4 
(8.33E-4) 

L = 300 1.42E-5 
(1.10E-5) 

1.138E-5 1.31E-2 
(1.32E-2) 

L = 500 4.21E-6 
(4.01E-6) 

8.412E-7 4.93E-4 
(5.00E-4) 

L = 500 4.90E-6 
(3.92E-6) 

3.921E-6 7.94E-3 
(7.94E-3) 

 
Table I. Selected KMC results for SFD with various L. KMC <R1> with analytic estimate 
in parentheses.  KMC flux from counting particles traveling through the pore. KMC 
Dtr(min) with analytic estimate in parenthesis. Behavior is shown for <X0> = 0.8, 0.2. 
 

Next, we provide a more detailed discussion and assessment of the enhanced 
generalized tracer diffusivity near the pore end, as well as of the convergence of these 
enhanced values to well-defined limiting behavior for a semi-infinite pore as L→∞. To 
understand the enhancement, we argue that fluctuations associated with adsorption-
desorption processes (which couple the pore interior to the well-stirred exterior 
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reservoirs) naturally induce Dtr values closer to mean-field predictions near the pore 
openings. Furthermore, it is reasonable to expect that the site-approximation estimate, 
Dtr(site) =  D0(1 - <X0>), for SFD from (5) provides an upper bound on all Dtr(j, j+1), and 
in particular on Dtr(max) = max Dtr(j, j+1) = Dtr(1, 2). The factor 1 - <X0> simply reflects 
blocking of hopping by empty sites, but this formulation neglects any “back-correlation” 
in diffusion which generally produces lower values of Dtr [32]. In fact, for large L, we find 
that  
 
Dtr(max)/Dtr(site) = 0.742 (0.273) for <X0> = 0.2 (0.8).      (24) 
 
Thus, as might be expected, mean-field type behavior is more closely achieved for 
lower <X0> where SFD effects are reduced. Since for Dtr(max) = Dtr(1, 2), both cells are 
inside the pore, one might further argue that behavior should be even better captured by 
a mean-field type pair approximation which to some extent accounts for correlations 
between NN pairs of sites. The corresponding estimate of tracer diffusivity is Dtr(pair) =      
(2 - <X0>)(2 + <X0>)-1Dtr(site) [19]. Thus, for large L, we find that 
 
Dtr(max)/Dtr(pair) = 0.907 (0.650) for <X0> = 0.2 (0.8),      (25) 
 
so indeed this pair approximation captures the maximum effective tracer diffusivity 
significantly better than the site approximation. 

We now consider limiting behavior for large L. Fig.8 compares on the same plot 
Dtr(j, j+1) values for different pore lengths. For <X0> = 0.2 where Dtr(j, j+1) decays more 
slowly into the pore, the convergence to a limiting form as L→∞ is particularly clear. For 
<X0> = 0.8, the more rapid decay tends to hide this feature, but it does still apply. As 
indicated in Sec.3C, this behavior is associated with a scaling of the concentration 
profile near the pore end of the form <Rj> ≈ r(j)/L2 for large L, with r(1) = O(1) and where 
r(j) is independent of L. This latter behavior is shown in Fig.9 for <X0> = 0.2. It is 
apparent that the function r(j) exhibits a faster than linear polynomial-type increase with 
j. From (13), one obtains 
 
Dtr(j, j+1) = - JR / ∇<Rj> ≈ h(1-<X0>)r(1)/[r(j)-r(j-1)] ≈ h(1-<X0>)r(1)/[dr(j)/dj],  (26) 
 
thus indicating algebraic decay with increasing j. 
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Fig.8 Comparison of the rescaled Dtr(j, j+1) for SFD for the left half of the pore for 
various pore lengths shown. (a) <X0> = 0.2; (b) <X0> = 0.8. 
 

 
 
Fig.9. Scaling of concentration profile near the pore opening for SFD with <X0> = 0.2:  
L2 <Rj> versus cell index j for various L. 
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Finally, we compare results from above TCP analysis with that in Ref. [19,20] 
based on a suitably defined time to exit the pore, Tj(<X0>), for a tagged walker (TW) 
starting at site j. Specifically, one defines a generalized tracer diffusion coefficient for 
each site j as Dtr(j) = Tj(0)/Tj(<X0>). However, there is some arbitrariness (in contrast to 
the TCP approach) in the definition of exit time, and thus in the TW determination of 
Dtr(j). Furthermore, one cannot directly compare with the “more natural” results for TCP 
where Dtr(j, j+1) = Dtr(j, j+1)|TCP is defined for NN pairs of sites (rather than for single 
sites). However, it is reasonable to assign the TW estimate of Dtr(j, j+1) as Dtr(j, j+1)|TW 
= ½ [Dtr(j) + Dtr(j+1)]. Also, the TW approach has some advantages in applying directly 
to semi-infinite systems, and also in elucidating the form of Dtr(j) ~ Dtr(j, j+1)|TW ~ 1/j2 
decay at least for large <X0> with strong SFD effects. In Table II, we compare 
predictions from the TW and TCP approaches both for Dtr(j, j+1) near the pore end for L 
= 100. While there is some minor difference in numerical values from the two 
approaches, they are consistent in describing the key trends in behavior. 
 
<X0> 
=0.8 

Dtr(j,j+1)/D0 
TCP 

Dtr(j)/D0 
TW 

Dtr(j,j+1)/D0
TW 

<X0>
=0.2 

Dtr(j,j+1)/D0
TCP 

Dtr(j)/D0 
TW 

Dtr(j,j+1)/D0
TCP 

j = 1 0.0524 0.0928 0.0653 j = 1 0.562 0.810 0.757 
j = 2 0.0229 0.0378 0.0293 j = 2 0.431 0.705 0.645 
j = 3 0.0129 0.0208 0.0171 j = 3 0.342 0.584 0.530 
j = 4 0.0084 0.0134 0.0114 j = 4 0.281 0.476 0.430 
j = 5 0.0061 0.0094 0.0082 j = 5 0.233 0.385 0.349 
j = 6 0.0048 0.0070 0.0063 j=10 0.120 0.168 0.159 
 
Table II. Comparison of TCP and TW predictions for generalized tracer diffusivity,     
Dtr(j, j+1), for SFD with L = 100 and <X0> = 0.8 and 0.2. One also finds that Dtr(min) = 
0.00246 (0.00287) for TCP (TW) when <X0> = 0.8, and Dtr(min) = 0.039 (0.066) for TCP 
(TW) when <X0> = 0.2. 
 
4E. Behavior with passing Pex >0 
 

Finally, we comment briefly on behavior for Pex > 0 which corresponds to relaxing 
the SFD constraint. Note that now one no longer has a simple characterization of 
configurations in the steady-state ensemble with B particles to the left and R to the right 
separated by a localized interface. We have performed detailed analysis for Pex = 0.25. 
The key observation is that even introducing “smaller” non-zero value of Pex dramatically 
reduces the development of spatial correlations relative to SFD. Thus, we find that 
Var(NB) = Var(NR) remains close to the initial value given by (5), where again Var(NX) = 
L<X0>(1 - <X0>) is exactly time-invariant. 

Next, we present results for the generalized tracer diffusivity, Dtr(j, j+1), in Fig.10 
for various Pex > 0. Again, one finds a plateau in the pore center with enhanced values 
near the pore end. Now, the plateau value, Dtr(min), depends only weakly on pore 
length, L, and remains finite in the limit L→∞. As noted in Sec.3C, behavior of Dtr(min) 
which corresponds to the non-zero tracer diffusion coefficient for an infinite pore is 
characterized in Ref.[30].  From Fig.10, one finds that there is only weak enhancement 
of Dtr(j, j+1) for larger Pex, but enhancement becomes stronger approaching the SFD 
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regime for smaller Pex. In all cases, the maximum enhanced value, Dtr(max) = Dtr(1, 2), 
is bounded above by the mean-field estimate Dtr(site) =D0[(1 - <X0>) + Pex<X0>] from 
(5). However, the latter is quite close to Dtr(max) for larger Pex and lower <X0>. 
 

 
 
Fig.10. Generalized tracer diffusion coefficient, Dtr(j, j+1)/D0 versus j for the left half of a 
pore with L = 100 for selected values of Pex > 0 (shown): (a) <X0> = 0.2; (b) <X0> = 0.8. 
 
5. CONCLUSIONS 
 

We have provided a comprehensive analysis of TCP for a stochastic model of 
diffusive transport through a narrow linear pore of finite length where differently colored 
red (R) and blue (B) particles adsorb at opposite ends of the pore and desorb from 
either end. We consider passing of species within the pore to be inhibited, and focus on 
the case where passing excluded (single-file diffusion). The following features are 
characterized: (i) quasi-linear concentration profiles of R and B particles and associated 
diffusion fluxes through the pore; (ii) particle number fluctuations within the pore; (iii) 
associated NN pair correlations of R and B particles within the pore; (iv) location of the 
interface between regions in the pore populated by R and B particles; and significantly 
(v) determination of the generalized tracer diffusivity and detailed analysis of its 
behavior including enhancement near pore openings and associated scaling of 
concentration profiles in that region. 

 The generalized tracer diffusivity provides a comprehensive characterization of 
transport within the pore, and has been shown to be invaluable in elucidating behavior 
of more complex reaction-diffusion processes [19,20,25,30]. From the broader 
perspective on non-equilibrium systems and steady-states, it is instructive to provide a 
complete characterization of these states. As indicated above, we have performed such 
a analysis for TCP, specifically characterizing particle number fluctuations and spatial 
correlations. 
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APPENDIX A: KMC SIMULATION ALGORITHM 
 

We utilize a rejection-free simulation algorithm where at each simulation step, 
some process is implemented and the probability that a specific process is implemented 
is proportional to the physical rate of that process. Time is advanced by an incremental 
amount, Δt = -ln(xran)/Rtot, where Rtot denotes the total rate of all processes at that stage 
in the simulation, and xran is a random number uniformly distributed on [0,1].  Just 
tracking behavior once the system has reached a steady-state, we use an ergodic 
average to calculate probabilities of various configurations. For example, one has 
 
<Cj> = ∑1≤m≤N Cj Δtm/∑1≤m≤N Δtm,        (A1) 
 
where simulation steps are labeled by m (and N is the total number of steps), and again 
Cj = 1 (0) if cell j is occupied by a particle of type C. In the simplest approach, one could 
check the state of each cell after each simulation step and update the sums 
appropriately. However, in each simulation step the state of no more than two cells 
changes, so this approach is quite inefficient.  

Instead, to develop a more efficient  algorithm focused on updating only when 
cells change state, we track the time at which each cell's state was last changed. 
Specifically, we create a listing of the last modified time for each cell. At the end of the 
equilibration phase we set the values for all cells to the current time, which is the start of 
the production part of the simulation. These times are updated every time a cell's state 
changes. At any time, the time a particle has been in the cell is the current time less our 
stored time of when the site's status last changed. At each simulation step, this value is 
calculated only for the cells where a change occurs. Those values are added to the 
accumulated statistics. At the end of the simulation, the occupancy time is calculated for 
all cells and added to the accumulated total. Failure to do so would omit the current 
configuration from the averaging. 

This method ensures that the time spent on calculating statistics for each 
simulation step is independent of the size of the system, compared to the simple 
method which requires more time for larger systems. The cost of this faster method is 
the additional bookkeeping. For all but the smallest system sizes, this overhead should 
be significantly less than the time saved by not updating occupancy times for cells that 
have not changed state. 
 
APPENDIX B: GENERALIZED TCP FORMULATIONS 
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In a more general formulation of TCP, the reservoir at the left end of the pore has 
a concentration f<X0> of B-particles and (1 - f)<X0> of R-particles. The reservoir at the 
right end has a concentration f<X0> of R-particles and (1 - f)<X0> of B-particles. Since 
the reservoirs are infinite, these concentrations do not change either during initial 
transient behavior or in the steady-state. We naturally restrict our attention to ½ ≤ f ≤ 1. 
Detailed specification of the model follows that presented for the standard formulation 
analyzed in this paper which corresponds to f = 1. The main difference from f = 1 for the 
general case ½ ≤ f ≤ 1 is that now both B and R particles can adsorb into both ends of 
the pore. Specifically, the rate of B [R] adsorption to empty cells at the left end of the 
pore is given by wadsL(B) = hf<X0> [wadsL(R) = h(1 - f)<X0>]. R (B) adsorption to empty 
cells at the right end of the pore is given by wadsR(R) = hf<X0> [wadsR(B) = h(1 - f)<X0>]. 
Desorption rates for either species at either end of the pore remain as wdes = h(1 -<X0>).  

The more general formulation does not provide independent information from the 
standard formulation for f = 1. The linearity of the master equations describing behavior 
of the stochastic model, together with the linearity of the boundary conditions specifying 
adsorption-desorption kinetics, implies simple relationship between behavior for ½ < f < 
1 and f = 1. See also below. For example, it is natural to define excess concentrations, 
<δCj>, and naturally rescaled versions, <Cj*>, of these as 
 
<δCj> = <Cj> - (1-f)<X0> and <Cj*> = (2f-1)-1<δCj>  for C = B and R.   (B1) 
 
Then, the above-mentioned linearity implies that <Cj*> = <Cj>|f=1.  

For general ½ < f < 1, generalized tracer diffusivity is still determined from (13), 
i.e., Dtr(j, j+1) = - JB / ∇<Bj> = - JR / ∇<Rj>. For example, JB can be determined from the 
difference between desorption and adsorption rates at the right end of the pore  
 
JB = wdes<BL> - wadsR(B)(1-<X0>) = wdes (2f-1) <BL*>.     (B2)  
 
It also follows from (B1) that ∇<Bj> = (2f-1)∇<Bj*>. Thus, it immediately follows that  
Dtr(j, j+1) is independent of f. We have checked this result comparing simulation values 
obtained for f = 1, f = 0.8, and f = 0.6. 
 Finally, the simple relationship between behavior for ½ < f < 1 and f = 1 deriving 
from the linearity of the master equations and boundary conditions extends to multi-cell 
probabilities. In fact, this is a feature needed for rigorous proof of this relationship.  
 
APPENDIX C: TCP ANALYSIS FOR OTHER MODELS OF DIFFUSIVE DYNAMICS 
 

The TCP formulation for assessing tracer diffusivity in a porous system of finite 
width is quite general applying for many possible prescriptions of diffusive dynamics. 
One simple modification to the current model would be to introduce a different hop rate, 
h′ ≠ h, for adsorption and desorption at the pore ends, where the rate h still describes 
hopping to NN empty cells within the pore. With this choice, the equilibrium state of the 
system still has a common uniform total density of particles inside and outside the 
pores. The case h′ << h is of some physical relevance reflecting possible slow 
desorption from the porous material [18].  
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A significantly different prescription of diffusive dynamics implemented by Nelson 
and Auerbach [18] uses a two-dimensional lattice to describe the porous material 
allowing the possibility of anisotropic diffusion within the material. Specifically, one can 
introduces distinct rates, hx, for hopping in the x-direction across the porous material, 
and hy for hopping in the orthogonal direction.  (In simulations, one would impose 
periodic boundary conditions for the porous material of finite size in the y-direction.) 
Introducing an anisotropic diffusion ratio, η = hy/hx, it is clear that η = 0 reduced to a 
one-dimensional SFD model analogous to that treated in this paper. Even for η << 1, 
SFD is relaxed as differently labeled particles can pass each other in two-dimensions 
noting that diffusion in this case is mediated by vacancies. An interesting feature of this 
model noted in Ref.[18] is that for η >> 1 with rapid diffusion in the y-direction relative to 
the x-direction, any correlation between hopping in the x-direction is washed out by 
facile hopping in the y-direction. Thus, one finds mean-field behavior in this regime 
where Dtr(j, j+1) = D0(1 - <X0>).  
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