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We report that population dynamics in fluctuating environments is characterized by a mathemat-
ically equivalent structure to steady state thermodynamics. By employing the structure, population
growth in fluctuating environments is decomposed into housekeeping and excess parts. The house-
keeping part represents the integral of the stationary growth rate for each condition during a history
of the environmental change. The excess part accounts for the excess growth induced by environ-
mental fluctuations. Focusing on the excess growth, we obtain a Clausius inequality, which gives
the upper bound of the excess growth. The equality is shown to be achieved in quasistatic environ-
mental changes. We also clarify that this bound can be evaluated by the “lineage fitness”, which is
an experimentally observable quantity.

I. INTRODUCTION

Steady state thermodynamics (SST) was established
for understanding a “thermodynamics” of transitions be-
tween nonequilibrium steady states (NESS) [1–10]. The
core of this theory was proposed by Oono and Paniconi
[1] in a phenomenological sense as a decomposition of to-
tal heat during transitions into housekeeping and excess
parts. The housekeeping heat represents the heat dissi-
pated to maintain NESS, whereas the excess heat is the
heat generated due to relaxation to NESS. Based on this
decomposition, a Clausius inequality is reformulated in
nonequilibrium situations. Although it was formulated
in physics, we clarify here that this decomposition also
contributes to evaluation of population growth in fluctu-
ating environments.

In this paper, we deal with a heterogeneous population
of organisms whose type (e.g. geno- and pheno- types)
switches stochastically over time [11–18]. The long term
expansion rate of population size (population growth) is
the major observable in population dynamics that char-
acterizes the competitive power of the population in evo-
lution. In a fixed environment, this quantity converges
to a stationary growth rate and can be evaluated by the
largest eigenvalue of the time-evolution operator of the
population dynamics [17]. However, fluctuations of en-
vironment disturb this convergence, and the population
growth deviates from the simple integral of the stationary
growth rates for each environmental state. This devia-
tion is the major impact of environmental fluctuations
[19–21]. By employing the same mathematical frame-
work as SST [22], we show that the total population
growth in a fluctuating environment can be generally
decomposed into house-keeping and excess parts. The
house-keeping growth is the integral of the stationary
growth rate for each environmental state, and the ex-
cess part is the difference between the total growth and
the house-keeping growth. If the type switching of indi-
viduals follows the detailed balance condition (DBC), the
excess growth is shown to satisfy a Clausius inequality in

which the entropy function is defined by the stationary
probability of the type switching, together with a “lin-
eage fitness”, which quantifies the prosperity of each type
in future. Moreover, Clausius equality is proved for qua-
sistatic cases, and thereby excess growth can be exactly
calculated from the lineage fitnesses at the boundaries
of a history of an environmental change. In addition,
in the SST framework, a loss of population growth from
the upper bound is interpreted as “entropy production”,
which is evaluated by employing a mathematically similar
method to that used in deriving the fluctuation theorem
in nonequilibrium physics. These results clarify the un-
derlying constraints and the thermodynamic structure of
the population dynamics and thereby pave the way for
further understanding and controlling of the population
growth (fitness) under fluctuating environments.

This paper is organized as follows. In the next section,
we provide a concrete setup of a population dynamics
and show a significance of Clausius inequality without
its mathematical derivation. After presenting the main
claim of this paper in Sec. II, we prove Clausius inequal-
ity in Sec. III and IV. In Sec. III, we consider quasistatic
cases, i.e., we derive Clausius equality; in Sec. IV, we deal
with non-quasistatic cases by proving Clausius inequality.
Finally, we summarize this study in Sec. V.

II. SETUP AND CLAUSIUS INEQUALITY

We consider a simple but general population dynamics
that consists of two processes, type switching and dupli-
cation. Let x ∈ Sx be a type of individual in a popula-
tion, and its switching dynamics is given by a continuous-
time ergodic Markov jump process generated by a tran-
sition rate matrix T (x|x′). Here, Sx denotes a finite set
of geno- or pheno- type, and off-diagonal and diagonal
elements of T (x|x′) represent a jump rate from x′ to
x, ω (x|x′), and an exit rate from x, ω (x) = Σx′ω (x′|x),
respectively. The duplication rate of the individuals with
type x in an environmental condition y ∈ Sy is denoted
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by µy (x), where Sy is a finite-dimensional space. For
instance, if we choose temperature and density of carbon
dioxide as the environmental condition, then y represents
a two-dimensional vector. From the above two processes,
the time evolution of the population is described by

∂N (x, t)

∂t
=

∑

x′

{µyt
(x) δx,x′ + T (x|x′)}N (x′, t) , (1)

where N (x, t) denotes the number of individuals with
type x and δ·,·′ is the Kronecker delta.

Under this setup, we consider population growth dur-
ing time interval [0, τ ], which is defined as

Ψ [Y ] ≡ log
{

N tot
τ [Y ] /N tot

0

}

. (2)

Here, Y denotes a history of the environmental change
Y = {y0, y∆t, ..., yτ−∆t, yτ}, where ∆t is an infinitesi-
mal time interval ∆t = τ/M(M → ∞) and N tot

t repre-
sents the total number of individuals in the population at
time t, which is evaluated as N tot

t = ΣxN (x, t). Accord-
ing to the SST framework, we decompose the population
growth as

Ψ [Y ] = Ψhk [Y ] + Ψex [Y ] , (3)

where Ψhk and Ψex denote the housekeeping and the ex-
cess growth, respectively. Here, the housekeeping growth
is defined as the integral of the stationary growth rate
for each condition during a history Y , that is

Ψhk [Y ] ≡

∫ τ

0

λ0 (yt) dt, (4)

where λ0 (y) is the stationary growth rate in an en-
vironmental condition y. From Eq. (1), the station-
ary growth rate is equal to the largest eigenvalue of
the time-evolution matrix Hy (·|·

′) ≡ µy (·) δ·,·′ + T (·|·′)
[17]. To be more precise, for any eigenvalue λi (y) of
Hy (·|·

′) , λ0 (y) > λi (y) has to hold for i 6= 0. In ad-
dition, the right eigenvector corresponding to the largest
eigenvalue (say vy (x)) with a normalization condition
Σxvy (x) = 1 expresses the occupation probability of type
x in the stationary growing population in environmental
condition y. On the other hand, the excess growth is
defined by

Ψex [Y ] ≡ Ψ [Y ]−

∫ τ

0

λ0 (yt) dt, (5)

which represents the deviation from the integral of the
stationary growth rate. That is, this growth represents
the growth generated when environment is switched. In
this study, we assume that the type-switching rate T (·|·′)
satisfies the detailed balance condition (DBC) [23],

T (x|x′)P st
T (x′) = T (x′|x)P st

T (x) , (6)

where P st
T denotes the stationary probability of the type-

switching rate T (·|·′). This assumption is not so restric-
tive biologically since geno- and pheno- type switching
dynamics are often described with this condition [15, 24].
(We also discuss non-DBC cases in Sec. V). Note that the
DBC condition here applies only to the type-switching
dynamics rather than the whole growing system. Since
population dynamics (growing systems) is different from
ordinary stochastic processes, we can no longer consider
the simple DBC for the whole process due to the dupli-
cation rate µy (x). In this paper, we argue that the SST
framework plays an essential role even for such growing
situations. As shown in the following sections, by em-
ploying the DBC, we obtain Clausius inequality,

Ψex [Y ] ≤ S (yτ )− S (y0) , (7)

where S (y) represents “entropy” in the population dy-
namics [25], which is given by

S (y) =
1

2
log

∑

x

P st
T (x) uy (x) . (8)

Here, uy (x) denotes the left eigenvector corresponding to
the largest eigenvalue λ0 (y) with a normalization condi-
tion Σxuy (x) vy (x) = 1. In the context of population
dynamics, uy (x) also represents the “lineage fitness” of
type x in environmental condition y, which quantifies
the future prosperity of each type [13–16] (also see FIG.
1 and a detailed explanation of “lineage fitness” is given
in Appendix A). Corresponding to Clausius equality in
thermodynamics, which holds for quasistatic protocols,
the equality of Eq. (7) is achieved in quasistatic environ-
mental changes. In addition, we can prove that S (y) ≤ 0
for arbitrary y and S (y) = 0 if y is a no selection situa-
tion, i.e. µy (x) = const. for arbitrary x. (Proof is shown
in Appendix B.) Therefore, the “entropy” S (y) may rep-
resent a kind of selection strength for the environmental
condition y. Furthermore, this entropy can be experi-
mentally observed as follows.
Here, we show an experimental method to evaluate the

entropy (8) without detail mathematical definitions and
calculations. (Mathematical details are shown in Sec. III
and IV. ) Suppose that a population is in the stationary
growing state with a fixed environmental condition y,
that is, the population has converged to the stationary
occupation probability vy. If we track the offspring of in-
dividuals with type x at initial time t = 0, the offspring
will change their types and grow in the population. The
fraction of the offspring (irrespective of their types) in
the population changes over time but finally converges
to some value as t → ∞ (say P st

Ry
(x)). Then, the lineage

fitness of type x is given as uy (x) = P st
Ry

(x) /vy (x), see
FIG. 1. Accordingly, if we employ a labeling technique
with which individuals with specific types can be labeled
and their offspring inherit the label, we can estimate the
lineage fitness experimentally by measuring the fraction
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of the labeled offspring in the population. DNA barcod-
ing may work for such labeling techniques. Furthermore,
it is known that the convergence fraction P st

Ry
(x) [26] is

given by the stationary probability of the retrospective
processes Ry [13–18] (see Sec. IV, B). Thus, we can also
calculate the lineage fitness by tracing the lineage of the
growing population time-backwardly. Next, we consider
how to observe P st

T (x) in experiments. Since P st
T is the

stationary probability of the type-switching process T ,
we can obtain it by tracing the lineage of the population
time-forwardly (see Appendix C). Taking these facts into
account, we find that the entropy (8) can be evaluated
experimentally.
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FIG. 1. (color online). Types of individuals are represented by
colors. In experiments, we can calculate the lineage fitness by
the following steps: (i) we observe the fraction of individuals
with type x at initial time, that is the occupation probability
vy (x); (ii) we culture the population in a fixed environmental
condition y for a sufficiently long time; (iii) we finally observe
the fraction of the offspring of the individuals with type x
at initial time, which is denoted as P st

Ry
(x); (iv) we obtain

the lineage fitness of type x, uy (x), by the ratio, uy (x) =
P st

Ry
(x) /vy (x).

Before working on the derivation of Clausius in-
equality (7), we consider both the quasistatic and the
non-quasistatic situations. In quasistatic environmental
changes, Clausius equality, Ψex [Y ] = S (yτ ) − S (y0), is
achieved. Therefore, the excess growth can be exactly
evaluated by observing entropies at the boundaries of an
environment-switching history Y , although it is a func-
tional of the history Y . On the other hand, in non-
quasistatic situations, a loss of population growth from
the upper bound occurs as

σ [Y ] ≡ {S (yτ )− S (y0)} −Ψex [Y ] . (9)

By using the analogy with the second law of thermo-
dynamics, this loss mathematically corresponds to “en-
tropy production”. As shown in the following sections,
this entropy production is evaluated with a mathemati-
cally similar form to the Kawai-Parrondo-Vanden Broeck
type fluctuation theorem (work theorem) [27],

σ [Y ] = Dsym [Y ] +
∑

x

vyτ
(x) log uyτ

(x) , (10)

whereDsym represents the symmetrized Kullback-Leibler
divergence,

Dsym [Y ] ≡
∑

X

PB [X |Y ] log
PB [X |Y ]

P
1/2
R [X |Y ]P

1/2

R̃

[

X̃|Ỹ
] .

(11)
The definition and meaning of path probabilities, PB , PR

and PR̃, are shown in Sec. IV. Here, X represents a type-

switching history X = {x0, x∆t, ..., xτ−∆t, xτ}; X̃ and Ỹ
represent time reversal of X and Y , respectively.

III. DERIVATION OF CLAUSIUS EQUALITY

Let us begin with derivation of the Clausius equality,
i.e. we consider quasistatic environmental change. For
simplicity, we rewrite Eq. (1) by using bra-ket notation
as

∂

∂t
|N (t)〉 = Ĥyt

|N (t)〉 , (12)

where Ĥy represents the time-evolution operator, Ĥy =

µ̂y + T̂ that satisfies 〈x|Ĥy |x
′〉 = Hy (x|x

′); |N (t)〉 de-
notes the population vector: 〈x|N (t)〉 = N (x, t). In this
notation, the population growth Ψ is expressed by

eΨ[Y ] =

〈

P

∣

∣

∣

∣

T exp

[
∫ τ

0

Ĥyt
dt

]
∣

∣

∣

∣

N (0)

〉

/ 〈P|N (0)〉 ,

(13)
where T exp [·] denotes the time-ordered exponential and
〈P| is defined as 〈P|x〉 = 1 for any |x〉; thus, 〈P|N (0)〉 =
N tot

0 . We write eigenvalues of Ĥy as λi (y), where i = 0
indicates the largest eigenvalue. In addition, we denote
left and right eigenvectors as 〈λi (y)| and |λi (y)〉, respec-
tively. These vectors are normalized as 〈λi (y) |λj (y)〉 =
δi,j and 〈P|λ0 (y)〉 = 1. Thus, we can write the station-
ary occupation probability vy and lineage fitness uy as
vy (x) = 〈x|λ0 (y)〉 and uy (x) = 〈λ0 (y) |x〉, respectively.
By inserting the completeness relation for eigenvectors
Σi |λi (y)〉 〈λi (y)| = 1 into all time slices of Eq. (13), we
have

eΨ[Y ] =
∑

iτ ,iτ−∆t,...,i0

〈P|λiτ (yτ )〉

× 〈λiτ (yτ ) |e
Ĥyτ ∆t|λiτ−∆t

(yτ−∆t)〉 × · · ·

× 〈λi∆t
(y∆t) |e

Ĥy∆t
∆t|λi0 (y0)〉 〈λi0 (y0) |N (0)〉 /N tot

0 .

(14)

By assuming that the initial population is stationary,
that is |N (0)〉 = N tot

0 |λ0 (y0)〉, and by taking into ac-
count that the environmental changes are quasistatic, we
reach

eΨ[Y ] = 〈λ0 (yτ ) |e
Ĥyτ ∆t|λ0 (yτ−∆t)〉 × · · ·

× 〈λ0 (y∆t) |e
Ĥy∆t

∆t|λ0 (y0)〉 . (15)
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Here, we employ the adiabatic approximation in which
the summation in Eq. (14) is dominated by the eigenvec-
tors corresponding to the largest eigenvalue λ0, because,
in quasistatic cases, the system is always in stationary
growing states for each environmental condition. By tak-
ing the logarithm of both sides of Eq. (15), we obtain the
population growth,

Ψ [Y ] =

∫ τ

0

λ0 (yt) dt−

∫ τ

0

dt 〈λ0 (y) |∇y |λ0 (y)〉·ẏ, (16)

where we use 〈λ0 (yt+∆t) |λ0 (yt)〉 = e−〈λ0(y)|∇y|λ0(y)〉·ẏ∆t

and ∇y denotes differentiation with respect to y. The
dots · and ẏ represent inner product and time differenti-
ation, respectively, and thus ẏ · ∇y = Σi (dyi/dt) (∂/∂yi)
where i expresses the dimension of the environment.
Taking into account the definition of the housekeep-
ing growth, Eq. (4), we can evaluate the excess
growth by the second term of Eq. (16): Ψex [Y ] =
−
∫ τ

0
dt 〈λ0 (y) |∇y|λ0 (y)〉· ẏ. This representation implies

that the excess growth can be given by the geometric
phase (Berry phase) [21, 28–30]. By using the complete-
ness relation Σx |x〉 〈x| = 1, we find a more familiar form
without bra-ket notation:

Ψex [Y ] = −

∫ τ

0

dt ẏ ·
∑

x

uy (x)∇yvy (x) . (17)

Next, by using the DBC assumption for the type-
switching operator T̂ , we calculate a potential of the
integrand in Eq. (17). From the DBC, we can obtain
a relation between the stationary occupation probability
vy and the lineage fitness uy as

C (y) vy (x) = P st
T (x)uy (x) , (18)

where the constant C (y) is given by C (y) =
ΣxP

st
T (x) uy (x) = ΣxP

st
T (x)u2

y (x). (Derivation of Eq.
(18) is described in Appendix D.) This representation,
C (y) = ΣxP

st
T (x) u2

y (x), leads to

−∇y

{

1

2
logC (y)

}

= −
∑

x

P st
T (x) uy (x)

C (y)
∇yuy (x) .

(19)
By using Eq. (18), we have

−
∑

x

P st
T (x) uy (x)

C (y)
∇yuy (x) = −

∑

x

vy (x)∇yuy (x) .

(20)
From Σxvy (x)∇yuy (x) = −Σxuy (x)∇yvy (x) [31], we
finally get

−∇y

{

1

2
logC (y)

}

=
∑

x

uy (x)∇yvy (x) . (21)

By substituting Eq. (21) into Eq. (17), we obtain Clau-
sius equality:

Ψex [Y ] = S (yτ )− S (y0) , (22)

where S (y) denotes “entropy” defined in Eq. (8), be-
cause

S (y) =
1

2
logC (y) =

1

2
log

∑

x

P st
T (x) uy (x) , (23)

where we use C (y) = ΣxP
st
T (x)uy (x).

IV. DERIVATION OF CLAUSIUS INEQUALITY

In the following part, we derive Clausius inequality, i.e.
we prove that the right hand side of Eq. (22) gives the
upper bound of the excess growth. To derive the inequal-
ity, we need three kinds of path probabilities. Therefore,
before proceeding with the main derivation, we introduce
them briefly.

A. Time-backward process

We define a time-backward path probability [18] as

PB [X |Y ] = e−Ψ[Y ] 〈xτ |e
Ĥyτ ∆t|xτ−∆t〉 × · · ·

× 〈x∆t|e
Ĥy∆t

∆t|x0〉 vy0
(x0) . (24)

where Ĥy denotes the time-evolution operator of the pop-
ulation dynamics and Ψ [Y ] represents total population
growth for time interval [0, τ ]. Here, we assumed that ini-
tial condition is the stationary occupation probability in
an environmental condition y0, vy0

(·). The meaning of
this path probability is as follows. The number of individ-
uals at time t = τ who have undergone a type-switching
history X = {x0, x∆t, ..., xτ−∆t, xτ} is represented as

N tot
τ [X |Y ]= 〈xτ |e

Ĥyτ ∆t|xτ−∆t〉 × · · ·

× 〈x∆t|e
Ĥy∆t

∆t|x0〉 vy0
(x0)N

tot
0 , (25)

where we assume that the initial state is a stationary
growing state. By dividing both sides of Eq. (25)
by the total population size N tot

τ [Y ] = ΣXN tot
τ [X |Y ]

and using the definition of population growth Ψ [Y ] ≡
log {N tot

τ [Y ] /N tot
0 }, we get

PB [X |Y ] = N tot
τ [X |Y ] /N tot

τ [Y ] . (26)

Accordingly, we find that the time-backward path prob-
ability Eq. (24) implies the fraction of individuals at
time t = τ who have undergone the type-switching his-
tory X in the environmental change Y . In other words,
the time-backward path probability represents the prob-
ability to observe a type switching history X when we
randomly sample an individual from the final popula-
tion at time t = τ and track it back retrospectively.
In addition, we note that, in fixed-environment cases
Y = {y, y, ..., y, y}, the stationary occupation probabil-
ity vy is evaluated as vy (xτ ) = Σxτ−∆t,...,x∆t,x0

PB [X |Y ].
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We also note that vy (x0) 6= Σxτ ,xτ−∆t,...,x∆t
PB [X |Y ],

since 〈xt|e
Ĥyt

∆t|xt−∆t〉 in PB [X |Y ] is not stochastic ma-
trix.

B. Retrospective process

In fixed-environment cases, Y = {y, y, ..., y, y}, the
time-backward path probability with sufficiently long his-
tory X (i.e. τ → ∞) is well approximated by a Markov
process in terms of large deviation theory [17, 32], and
this Markov process is called a retrospective process [13–
18], that is,

PB [X |Y ] ≈ 〈xτ |e
R̂y∆t|xτ−∆t〉 × · · ·

× 〈x∆t|e
R̂y∆t|x0〉P

st
Ry

(x0) , (27)

where R̂y denotes time-evolution operator of the retro-
spective process in an environmental condition y, which
is given by

Ry (x|x
′) = uy (x) {Hy (x|x

′)− λ0 (y) δx,x′} /uy (x
′) ,
(28)

where Ry (x|x
′) = 〈x|R̂y|x

′〉 [17]. uy (x) denotes the lin-
eage fitness of a type x in an environmental condition
y. λ0 (y) is the stationary growth rate, which is cal-
culated by the largest eigenvalue of Hy (·|·

′). P st
Ry

in

Eq. (27) represents the stationary probability of the
retrospective process Ry. In this study, we use the
time-inhomogeneous retrospective process PR [X |Y ] in
the derivation of Clausius inequality;

PR [X |Y ] = 〈xτ |e
R̂yτ ∆t|xτ−∆t〉 × · · ·

× 〈x∆t|e
R̂y0

∆t|x0〉P
st
Ry0

(x0) , (29)

where Y is a fluctuated environmental history Y =
{y0, y∆t, ..., yτ−∆t, yτ}. Here, we note that the time-
inhomogeneous retrospective process does not perfectly
mimic the time-backward process PB [X |Y ]; only in time-
homogeneous cases (i.e., fixed environment cases), the
retrospective process describes the time-backward pro-
cess.
Finally, we comment on the properties of the sta-

tionary probability of the retrospective process with
a fixed environmental condition y, P st

Ry
. This is

called ancestral distribution [13–18] and is related with
uy (x) and vy (x) as P st

Ry
(x) = uy (x) vy (x), since

Σx′Ry (x|x
′)uy (x

′) vy (x
′) = 0. Owing to the law of large

numbers, P st
Ry

is also evaluated by an empirical probabil-
ity on the retrospective process with a sufficiently large
time interval, i.e., P st

Ry
(x) = limτ→∞ (1/τ)

∫ τ

0 δx,xt
dt,

where the history X = {x0, x∆t, ..., xτ−∆t, xτ} is gen-
erated by R̂y. As in Eq. (27), in the fixed environment
cases, the retrospective process with a sufficiently long
history can be approximated by the time-backward path
probability PB [X |Y ]. Therefore, we can obtain P st

Ry
by

time-backwardly tracing the lineage of the population as
mentioned in Sec. II. To be more precise, we can con-
sider the following experimental protocol: (i) we culture
population in a fixed-environmental condition y for a suf-
ficiently long time; (ii) we choose an arbitrary individual
in the population at final time and trace its ancestors;
(iii) we time-backwardly trace the lineage sufficiently long
time and obtain a very long single history X of the an-
cestors, which is generated by R̂y; (iv) from the history
X , we calculate the empirical probability P st

Ry
.

C. Dual process

In addition, we need the dual process of the retrospec-
tive process to derive Clausius inequality. We define the
dual process of PR [X |Y ] as a Markov process generated
by R̃y (x

′|x) ≡ Ry (x|x
′)P st

Ry
(x′) /P st

Ry
(x) with the time-

reversal type switching and environmental history; here,
the Markov generator R̃y is also written as

R̃y (x|x
′) =

1

vy (x′)
{Hy (x

′|x) − λ0 (y) δx,x′} vy (x) .

(30)
Therefore, the path probability of the dual process is
represented as

PR̃

[

X̃|Ỹ
]

= 〈x0|e
ˆ̃Ry∆t

∆t|x∆t〉 × · · ·

× 〈xτ−∆t|e
ˆ̃Ryτ ∆t|xτ 〉P

st
Ryτ

(xτ ) , (31)

where 〈x| ˆ̃Ry |x
′〉 = R̃y (x|x

′); X̃ and Ỹ represent time

reversal of X and Y , respectively, that is, X̃ =
{xτ , xτ−∆t, ..., x∆t, x0} and Ỹ = {yτ , yτ−∆t, ..., y∆t, y0}.

D. Fluctuation relations

By using the above three path probabilities, we con-
struct two kinds of relations, FR-I and FR-II, which are
mathematically similar to the detailed fluctuation rela-
tion developed in nonequilibrium physics. By expanding

the exponential function in 〈xt|e
R̂yt

∆t|xt−∆t〉 in Eq. (29),
we obtain

〈xt|e
R̂yt

∆t|xt−∆t〉 = 〈xt|
(

1 + R̂yt
∆t+O (∆t)

)

|xt−∆t〉

= e−λ0(yt)∆t uyt
(xt)

uyt
(xt−∆t)

〈xt|e
Ĥyt

∆t|xt−∆t〉 , (32)

where we use the definition of Ry, Eq. (28). From Eq.
(30), with the same calculation as Eq. (32), we also have

〈xt−∆t|e
ˆ̃Ryt

∆t|xt〉

= e−λ0(yt)∆t vyt
(xt−∆t)

vyt
(xt)

〈xt|e
Ĥyt

∆t|xt−∆t〉 . (33)
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By substituting Eqs. (32) and (33) into Eqs. (29) and
(31), respectively, we can rewrite the retrospective pro-
cesses as

PR [X |Y ] = e−{λ0(yτ )+λ0(yτ−∆t)+···+λ0(y∆t)}∆t

×
uyτ

(xτ )uyτ−∆t
(xτ−∆t)× · · · × uy∆t

(x∆t)

uyτ
(xτ−∆t)uyτ−∆t

(xτ−2∆t)× · · · × uy∆t
(x0)

P st
Ry0

(x0)

×〈xτ |e
Ĥyτ ∆t|xτ−∆t〉 × · · · × 〈x∆t|e

Ĥy∆t
∆t|x0〉 , (34)

and

PR̃

[

X̃|Ỹ
]

= e−{λ0(yτ )+λ0(yτ−∆t)+···+λ0(y∆t)}∆t

×
vy∆t

(x0)× · · · × vyτ−∆t
(xτ−2∆t) vyτ

(xτ−∆t)

vy∆t
(x∆t)× · · · × vyτ−∆t

(xτ−∆t) vyτ
(xτ )

P st
Ryτ

(xτ )

×〈xτ |e
Ĥyτ ∆t|xτ−∆t〉 × · · · × 〈x∆t|e

Ĥy∆t
∆t|x0〉 . (35)

By inserting equalities uy0
(x0) /uy0

(x0) = 1 and
vy0

(x0) /vy0
(x0) = 1 into Eqs. (34) and (35), respec-

tively, and by using the integral symbol, we obtain

PR [X |Y ] = exp

[

−

∫ τ

0

λ0 (yt) dt−

∫ τ

0

dtẏ · ∇y log uy (x)

]

× exp

[

log
uyτ

(xτ )

uy0
(x0)

+ log
P st
Ry0

(x0)

vy0
(x0)

]

eΨ[Y ]PB [X |Y ] , (36)

and

PR̃

[

X̃|Ỹ
]

= exp

[

−

∫ τ

0

λ0 (yt) dt+

∫ τ

0

dtẏ · ∇y log vy (x)

]

× exp

[

log
vy0

(x0)

vyτ
(xτ )

+ log
P st
Ry0

(x0)

vy0
(x0)

]

eΨ[Y ]PB [X |Y ] , (37)

where we use Eq. (24). Equations (36) and (37) lead to
FR-I and FR-II as

log
PB [X |Y ]

PR [X |Y ]
= −Ψex [Y ] +

∫ τ

0

dtẏ · ∇y log uy (x)

− log
uyτ

(xτ )

uy0
(x0)

+ log
vy0

(x0)

P st
Ry0

(x0)
, (38)

and

log
PB [X |Y ]

PR̃

[

X̃ |Ỹ
] = −Ψex [Y ]−

∫ τ

0

dtẏ · ∇y log vy (x)

− log
vy0

(x0)

vyτ
(xτ )

+ log
vy0

(x0)

P st
Ryτ

(xτ )
. (39)

Here, we divided both sides of Eqs. (36) and (37) by
PB [X |Y ] and took the logarithm.
Next, by taking the arithmetic mean of Eq. (38) and

Eq. (39), we obtain

log
PB [X |Y ]

P
1/2
R [X |Y ]P

1/2

R̃

[

X̃ |Ỹ
]

= −Ψex [Y ] +
1

2

∫ τ

0

dtẏ · ∇y log
uy (x)

vy (x)
− log uyτ

(xτ ) ,

(40)

where we use P st
Ry

(x) = uy (x) vy (x). By substituting

Eq. (18), which describes the relation between uy and
vy, into Eq. (40), we have

log
PB [X |Y ]

P
1/2
R [X |Y ]P

1/2

R̃

[

X̃|Ỹ
]

= −Ψex [Y ] +
1

2

∫ τ

0

dtẏ · ∇y log
C (y)

P st
T (x)

− log uyτ
(xτ ) ,

= −Ψex [Y ] +
1

2
{logC (yτ )− logC (y0)} − log uyτ

(xτ )

(41)

By taking the average with respect to PB [X |Y ], we fi-
nally get

Dsym [Y ] ≡
∑

X

PB [X |Y ] log
PB [X |Y ]

P
1/2
R [X |Y ]P

1/2

R̃

[

X̃|Ỹ
]

= −Ψex [Y ] + {S (yτ )− S (y0)}

−
∑

X

PB [X |Y ] log uyτ
(xτ ) , (42)

where we use S (y) = (1/2) logC (y). Here, we note that
we employ the DBC assumption for the type switching
T , because Eq. (18) holds only under the DBC (see Ap-
pendix D).

E. Derivation of Clausius inequality

Now, we are in a position to prove Clausius inequal-
ity. Consider a transition between stationary growing
states in the environmental condition y0 to yτ . We also
assume that a history of environmental change Y is non-
quasistatic during this transition. From Eq. (42), we
obtain

Ψex [Y ] +Dsym [Y ] +
∑

x

vyτ
(x) log uyτ

(x)

= S (yτ )− S (y0) , (43)

where Dsym [Y ] is the symmetrized Kullback-Leibler
divergence defined in Eq. (11) and we use
ΣXPB [X |Y ] log uyτ

(xτ ) = Σxτ
vyτ

(xτ ) log uyτ
(xτ ) [33].

Therefore, if the following inequality:

Dsym [Y ] +
∑

x

vyτ
(x) log uyτ

(x) ≥ 0, (44)

is proved, we can obtain Clausius inequality (7). To prove
the inequality (44), we suppose the transition from the
environmental condition y0 to yF ; here, we assume that
the environmental condition yF corresponds to no selec-
tion situation, i.e., µyF

(x) = const. and thus uyF
(x) = 1

(see Appendix B). We note that yτ 6= yF and therefore
yF is just an arbitrary environmental condition describ-
ing no selection situation, which is introduced to math-
ematically prove the inequality (44). By taking an arbi-
trary intermediate environmental condition yM (finally,
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yM is set to be yτ ), we consider maximum excess growths
within intervals, y0 to yM , yM to yF , and y0 to yF ,
see also FIG. 2; we denote these maximum growths as
Ψex [Y ∗

0→M ] , Ψex [Y ∗
M→F ], and Ψex [Y ∗

0→F ], where Y ∗
i→j

represents the history that maximizes the excess growth
functional Ψex [·] in an interval [yi, yj ]. From Eq. (43),

FIG. 2. Three maximum excess growths.

we can evaluate the excess growth for the interval from
y0 to yM as

Ψex [Y ∗
0→M ] = {S (yM )− S (y0)}

−

{

Dsym [Y ∗
0→M ] +

∑

x

vyM
(x) log uyM

(x)

}

. (45)

By using ΣxvyF
(x) log uyF

(x) = 0 and S (yF ) = 0, we
can calculate other two excess growths as

Ψex [Y ∗
M→F ] = −Dsym [Y ∗

M→F ]− S (yM ) , (46)

Ψex [Y ∗
0→F ] = −Dsym [Y ∗

0→F ]− S (y0) . (47)

We recall the fact that, for quasistatic environmental
changes Y qs

M→F and Y qs
0→F , Ψex [Y qs

M→F ] = −S (yM ) and
Ψex [Y qs

0→F ] = −S (y0) hold, where we use Clausius equal-
ity (22). From Dsym [Y ] ≥ 0 for any Y , we obtain

Ψex [Y ∗
M→F ] = −S (yM ) , (48)

Ψex [Y ∗
0→F ] = −S (y0) ; (49)

we also get the fact that quasistatic environmental
changes Y qs

M→F and Y qs
0→F respectively maximize the ex-

cess growth Ψex [·] in intervals [yM , yF ] and [y0, yF ]. Fur-
thermore, the following inequality:

Ψex [Y ∗
0→M ] + Ψex [Y ∗

M→F ] ≤ Ψex [Y ∗
0→F ] , (50)

is satisfied, because the intermediate environmental con-
dition yM works as a constraint of maximization of Ψex [·]
in the interval [y0, yF ]. By substituting Eqs. (45), (48)
and (49) into the inequality (50), we obtain

Dsym [Y ∗
0→M ] +

∑

x

vyM
(x) log uyM

(x) ≥ 0. (51)

Since Y ∗
0→M gives the maximum of Ψex [·] in the in-

terval [y0, yM ] , Y ∗
0→M also yields the minimum of the

functional Dsym [·] + ΣxvyM
(x) log uyM

(x) in the inter-
val [y0, yM ], where we use Eq. (45). Accordingly, for

an arbitrary history Y with boundaries y0 and yM , the
following inequality is satisfied:

Dsym [Y ] +
∑

x

vyM
(x) log uyM

(x) ≥ 0. (52)

If we choose yM = yτ , we have Eq. (44). As a result,
from Eq. (43), we find Clausius inequality,

Ψex [Y ] = −σ [Y ] + {S (yτ )− S (y0)} ≤ S (yτ )− S (y0) ,
(53)

where σ [Y ] denotes the entropy production defined in
Eq. (10).

V. DISCUSSION

We have established SST structure in population dy-
namics. Owing to Clausius inequality, the upper bound
of excess growth is evaluated by the lineage fitnesses of
initial and final environmental conditions. However, we
must recall that DBC is assumed in our theory. When
we deal with non-DBC type switching (e.g. metabolic
switching and circadian rhythm), Clausius inequality is
no longer available, because the potential condition Eq.
(21) is broken down in these cases. Even for quasistatic
environmental change, we need to directly calculate the
geometric phase (17) in the similar manner as Tănase-
Nicolafs study [21], because excess growth can not be
evaluated by the potential as in Clausius equality (22).
Furthermore, in non-DBC situations, it is still uncertain
whether or not the geometric phase (17) gives an upper
bound of the excess growth. These problems also arise in
original SST. According to Ref. [10], even for quasistatic
protocols, an excess heat does not have a potential like
Eq. (22), and therefore a geometric phase (i.e., vector po-
tential) plays an essential role. In addition, in the same
way as our theory, it is uncertain whether or not this ge-
ometric phase gives an upper bound of the excess heat.
Therefore, these are open problems not only in our study
but also in the original SST.
In terms of its potential applications, it is expected

that this decomposition can be exploited for designing ef-
fective external perturbation to suppress the population
growth. Temporal (intermittent) therapies have recently
been employed to suppress the growth of cancer cells,
and their effectiveness was mathematically reported in
Ref. [34]. Our theory may contribute to designing an op-
timal drug treatment for these therapies. Furthermore,
methods to evaluate the cumulant generating function
(as well as the large deviation function) by using popu-
lation dynamics have been developed in nonequilibrium
physics [35]. Since the population growth in our study
mathematically corresponds to the cumulant generating
function [17], our knowledge may facilitate designing a
growing system to physically estimate the cumulant gen-
erating function of a given stochastic system.
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Appendix A

Here, we give a quantitative definition of “lineage fit-
ness” and show that it is evaluated by the left eigenvector
corresponding to the largest eigenvalue of Hy (·|·

′). For
convenience, we employ bra-ket notation as shown in Sec.
III and IV. First, suppose that N δ

y (τ |a) is the size of a
population at time t = τ in a fixed environmental con-
dition y whose initial population distribution is given by
δx,a. In other words, we consider a population grown
from one individual with type a at initial time t = 0 in
the environmental condition y for a time interval [0, τ ].
Then, N δ

y (τ |a) is represented as

N δ
y (τ |a) = 〈P| eĤyτ |a〉 , (54)

where 〈P| and |a〉 satisfy 〈P|x〉 = 1 and 〈x|a〉 = δx,a,
respectively. Next, we evaluate the fraction of the popu-
lation grown from the seed type a to the total population
size N tot

τ . Assuming that an initial population is given by
a stationary growing state with environmental condition
y: N (x, 0) = N tot

0 vy (x), we then evaluate the fraction
as

N δ
y (τ |a)N

tot
0 vy (a)

N tot
τ

. (55)

By dividing Eq. (55) by the initial fraction vy (a) and
taking the limit τ → ∞, we obtain

gy (a) ≡ lim
τ→∞

{

N δ
y (τ |a)N

tot
0 vy (a)

N tot
τ

/vy (a)

}

= lim
τ→∞

{

N δ
y (τ |a)N

tot
0

N tot
τ

}

. (56)

This quantity is called “lineage fitness” of the type a
in the environmental condition y. Obviously from the
definition, the lineage fitness represents the prosperity of
offsprings whose ancestors (i.e. seeds) had type a at time

t = 0. By using N tot
τ = Σx 〈P| eĤyτ |x〉N tot

0 〈x|λ0 (y)〉
and Eq. (54), we can rewrite the lineage fitness as

gy (a) = lim
τ→∞

〈P| eĤyτ |a〉
∑

x 〈P| eĤyτ |x〉 〈x|λ0 (y)〉
, (57)

where, as shown in Sec. III, |λ0 (y)〉 represents the right
eigenvector corresponding to the largest eigenvalue λ0 (y)
and 〈x|λ0 (y)〉=vy (x).
Finally, we show that the lineage fitness gy (a) is

evaluated by the left eigenvector corresponding to the
largest eigenvalue. By inserting the completeness relation
Σi |λi (y)〉 〈λi (y)| = 1 into the numerator of Eq. (57) and
using another completeness relation Σx |x〉 〈x| = 1 for the
denominator, we have

gy (a) = lim
τ→∞

∑

i

e(λi(y)−λ0(y))τ 〈P|λi (y)〉 〈λi (y) |a〉 ,

(58)

where we use 〈P| eĤyτ |λ0 (y)〉 = eλ0(y)τ . From λ0 (y) >
λi (y) for all i 6= 0, the index i = 0 dominates the sum-
mation in Eq. (58) in τ → ∞: that is,

gy (a) = 〈P|λ0 (y)〉 〈λ0 (y) |a〉 . (59)

By using the normalization condition 〈P|λ0 (y)〉 = 1 and
the notation 〈λ0 (y) |a〉 = uy (a), we find that the lineage
fitness can be represented by the left eigenvector corre-
sponding to the largest eigenvalue: gy (a) = uy (a)

Appendix B

We prove that S (y) ≤ 0 for arbitrary y and that
S (y) = 0 if y corresponds to no selection situation, i.e.
µy (x) = const. for arbitrary x. From Eqs. (18) and (23)
in Sec. III, the entropy can be written as

S (y) =
1

2
logC (y) = −

1

2
log

vy (x)

P st
T (x)

+
1

2
log uy (x) .

(60)
By taking the average with respect to vy (x), we have

S (y) = −
1

2
DKL

[

vy||P
st
T

]

+
1

2

∑

x

vy (x) log uy (x) , (61)

where DKL [vy||P
st
T ] represents the Kullback-Leibler di-

vergence between vy and P st
T , and thus the first term is

not positive. Next, we show that Σxvy (x) log uy (x) ≤ 0.
From the normalization condition Σxuy (x) vy (x) = 1,
we obtain

〈

elog uy(x)
〉

vy
= 1. (62)

By using Jensen’s inequality, we have e
〈log uy(x)〉vy ≤ 1,

and thus Σxvy (x) log uy (x) ≤ 0. Accordingly, we obtain
S (y) ≤ 0. In addition, we can show that S (y) = 0
if µy (x) = const., as follows. Owing to the prop-
erty of the Kullback-Leibler divergence, we obtain that
DKL [vy||P

st
T ] = 0 if and only if vy = P st

T , which is
achieved when µy (x) = const.. Furthermore, the lineage
fitness uy satisfies uy (x) = 1 for any x, if µy (x) = const.
(we here set this constant α). The reason is as follows.
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All elements of the left eigenvector corresponding to the
largest eigenvalue of the stochastic matrix T (·|·′) are 1.
Since we have assumed µy (x) = const. = α, we get a
time-evolution matrix as Hy (·|·

′) = αδ·,·′ + T (·|·′). This
time-evolution matrix shares the same eigenvectors with
the stochastic matrix T (·|·′), and therefore we obtain
uy (x) = 1. Accordingly, we have log uy (x) = 0, and
we finally find that S (y) = 0 if µy (x) = const..

Appendix C

We define the time-forward path probability of X =
{x0, x∆t, ..., xτ−∆t, xτ} as

PT [X ] = 〈xτ |e
T̂∆t|xτ−∆t〉×· · ·×〈x∆t|e

T̂∆t|x0〉P
st
T (x0) ,

(63)
which is a Markov process generated by the type-
switching operator T̂ . Here, P st

T denotes the station-
ary probability of this process, and it is given by the
right eigenvector corresponding to the largest eigenvalue
of T (·|·′) = 〈·|T̂ |·′〉. Owing to the law of large numbers,
P st
T also represents empirical probability on a sufficiently

long type-switching history X that is generated by T ,
i.e. P st

T (x) = limτ→∞ (1/τ)
∫ τ

0 δx,xt
dt. Therefore, we

can obtain P st
T by time-forwardly tracing the lineage of

the population. To be more precise, we consider the fol-
lowing experimental protocol: (i) we choose an arbitrary
individual in the population and trace its offsprings; (ii)
when an individual duplicates two daughters, we focus
on one daughter by ignoring the other daughter; (iii) we
observe offspring for a sufficiently long time interval and
obtain a very long single history X ; (iv) from the history
X , we calculate the empirical probability P st

T .

Appendix D

We derive the relation between the stationary occupa-
tion probability vy and the lineage fitness uy introduced
as Eq. (18) in the main text. The stationary occupa-
tion probability vy is given by the right eigenvector cor-
responding to the largest eigenvalue of the time-evolution
matrix Hy (·|·

′), i.e. Σx′Hy (x|x
′) vy (x

′) = λ0 (y) vy (x).
Thus, by using Hy (·|·

′) ≡ µy (·) δ·,·′ + T (·|·′), we have

µy (x) vy (x) +
∑

x′

T (x|x′) vy (x
′) = λ0 (y) vy (x) . (64)

By substituting the DBC, T (x|x′)P st
T (x′) =

T (x′|x)P st
T (x), into Eq. (64), we obtain

µy (x)
vy (x)

P st
T (x)

+
∑

x′

T (x′|x)
vy (x

′)

P st
T (x′)

= λ0 (y)
vy (x)

P st
T (x)

.

(65)

This equation indicates that the vector vy (·) /P
st
T (·) is

the left eigenvector corresponding to the largest eigen-
value of Hy, because Σx′ {vy (x

′) /P st
T (x′)}Hy (x|x

′) =
{vy (x) /P

st
T (x)}λ0 (y). Since the time-switching process

is ergodic, i.e. Hy is irreducible, the left eigenvector cor-
responding to the largest eigenvalue is unique up to a
constant, owing to the Perron-Frobenius theorem. There-
fore, we obtain

uy (x) = C (y)
vy (x)

P st
T (x)

, (66)

where we use the fact that the lineage fitness uy is
the left eigenvector corresponding to the largest eigen-
value and C (y) denotes the constant depending on
y. Since vy is normalized as Σxvy (x) = 1, we ob-
tain C (y) = ΣxP

st
T (x)uy (x). From the normalization

condition Σxuy (x) vy (x) = 1, we also have C (y) =
ΣxP

st
T (x)u2

y (x) .
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