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We analyze the stochastic dynamics of a large population of non-interacting particles driven
by a global environmental input in the form of a dichotomous Markov noise process (DMNP). The
population density of particle states evolves according to a stochastic Liouville equation with respect
to different realizations of the DMNP. We then exploit the connection with previous work on diffusion
in randomly switching environments, in order to derive moment equations for the distribution of
solutions to the stochastic Liouville equation. We illustrate the theory by considering two simple
examples of dichotomous flows, a velocity jump process and a two-state gene regulatory network.
In both cases we show how the global environmental input induces statistical correlations between
different realizations of the population density.

I. INTRODUCTION

Recently we analyzed a stochastic Fokker-Planck equa-
tion (FPE) describing the evolution of a large population
of non-interacting Brownian particles subject to a com-
mon environmental input in the form of an Ornstein-
Uhlenbeck process [1]. For a given realization of the OU
process, the density of particle positions P (x, t) satisfies
a deterministic, non-autonomous FPE parameterized by
the OU process. However, since the OU process is itself
stochastic, this means that different realizations of the
OU process generate a distribution of probability densi-
ties. We derived moment equations for the distribution
of solutions to the stochastic FPE and highlighted the
fact that although the particles are non-interacting, the
presence of a common environmental input induces sta-
tistical correlations. In particular

E[P (x, t)P (y, t)] 6= E[P (x, t)]E[P (y, t)],

where expectation is taken with respect to different real-
izations of the environmental noise. We illustrated this
result using perturbation theory to calculate the above
two-point correlation function close to the white-noise
limit of the environmental OU process. We also gave
another example of environmentally-induced correlations
by reformulating the theory of noise-induced synchro-
nization [2–4] within the stochastic FPE framework.

In this paper we further explore the issue of statistical
correlations induced in a population of non-interacting
particles driven by a common environmental noise source.
Here, however, each particle undergoes piecewise deter-
ministic dynamics rather than Brownian motion, and is
driven by a global environmental input consisting of a
dichotomous Markov noise process (DMNP) rather than
an OU process. The resulting population density evolves
according to a stochastic Liouville equation rather than a
stochastic FPE. Dichotomous noise has played an impor-
tant role in the study of non-equilibrium systems over the
years, as summarized in the review by Bena [5]. In par-
ticular, it provides a more analytically tractable model
of colored noise and the effects of finite correlation times
than the OU process. Moreover, there are a wide range of
physical and biological systems where a DMNP is a good

representation of non-equilibrium processes. For exam-
ple, within the context of cell biology there are a num-
ber of simple examples where some continuous variable
x(t) randomly jumps between two forms of deterministic
dynamics, depending on the state of some discrete vari-
able n(t) ∈ {0, 1} that evolves according to a two-state
Markov process [6]: (i) A gene regulatory network where
n(t) specifies whether the gene is active or inactive, and
x(t) represents the concentration of protein synthesized
by the gene. (ii) A stochastic ion channel for which n(t)
specifies whether the channel is open or closed and x(t)
is membrane voltage. (iii) x(t) represents the position of
a molecular motor on a filament track and n(t) specifies
whether it is moving to the right with speed v+ or moving
to the left with speed v− (velocity jump process).

We begin by briefly reviewing the standard theory of a
single particle driven by a DMNP in section II. We high-
light that the joint probability density of particle and en-
vironmental states is given by a Chapman-Kolmogorov
equation. In section III, we introduce our population
perspective by considering a large population of non-
interacting particles driven by the same global DMNP.
The resulting density of particle states satisfies a stochas-
tic Liouville equation, from which we construct moment
equations for the distribution of probability densities. In
sections IV and V we illustrate the theory using simple
examples of dichotomous flows, namely, a velocity jump
process (section IV) and a two-state gene regulatory net-
work (section V).

II. SINGLE PARTICLE DRIVEN BY
DICHOTOMOUS MARKOV NOISE.

Consider a single particle with continuous variable
x(t) ∈ Σ ⊂ R whose “velocity” switches between two
forms

v±(x) = f(x)± g(x)Γ± (2.1)

according to a two-state Markov process with x-
independent transition rates k±. That is, x(t) evolves
according to the following stochastic differential equation
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(SDE):

dx

dt
= f(x) + g(x)ξ(t), (2.2)

where ξ(t) is a realization of the two-state Markov pro-
cess. In the physics literature ξ(t) is called a dichoto-
mous Markov noise process (DMNP) and is said to act
additively if g(x) is independent of x and to act mul-
tiplicatively otherwise, see the review by Bena [5] and
references therein. It is convenient to rewrite the SDE
(2.2) in the form

dx

dt
= F (x, n(t)), n(t) = 0, 1 (2.3)

with functions

F (x, 1) = f(x) + g(x)Γ+, F (x, 0) = f(x)− g(x)Γ−.
(2.4)

Comparing Eqs. (2.2) and (2.3) shows that

ξ(t) = (Γ+ + Γ−)n(t)− Γ−, n(t) ∈ {0, 1}.

The discrete state n(t) evolves according to a two-state
Markov chain with matrix generator

A =

(
−k+ k−
k+ −k−

)
. (2.5)

If Pnn0
(t) = P[N(t) = n|N(0) = n0] then the master

equation for the DMNP takes the form

dPnn0

dt
=
∑
m=0,1

AnmPmn0

Using the fact that P0n0
(t) + P1n0

(t) = 1 we can solve
this pair of equations to give

P0n0
(t) = δ0,n0

e−t/τc +
k−
τc

(1− e−t/τc), τc =
1

k− + k+
.

A number of results follow from this. First τc is the
relaxation time of the DMNP with Pmn0

(t)→ ρm in the
limit t→∞ and

ρ0 =
k−

k+ + k−
, ρ1 =

k+

k+ + k−
. (2.6)

In the stationary state,

〈ξ(t)〉 = (Γ+ + Γ−)〈n(t)〉 − Γ− = ρ1Γ+ − ρ0Γ−. (2.7)

Suppose, in particular, that the DMNP is unbiased so
that 〈ξ(t)〉 = 0. The stationary autocorrelation function
is then given by

〈ξ(t)ξ(t′)〉 = Γ2
− − 2Γ−(Γ+ + Γ−)ρ1

+ (Γ+ + Γ−)2〈n(t)n(t′)〉

=
D

τc
e−|t−t

′|/τc , (2.8)

with noise amplitude D = k+k−τ
3
c (Γ+ + Γ−)2. This

shows that the DMNP provides an alternative form of
colored noise to an Ornstein-Uhlenbeck process.

Given the initial conditions x(0) = x0, n(0) = n0, in-
troduce the probability density pn(x, t|x0, n0, 0) with

P{x(t) ∈ (x, x+ dx), n(t) = n|x0, n0)

= pn(x, t|x0, n0, 0)dx. (2.9)

It follows that pn, n = 0, 1 evolves according to the for-
ward differential Chapman-Kolmogorov (CK) equation
[6, 7]

∂p0

∂t
= − ∂

∂x
(F (x, 0)p0(x, t)) + k−p1 − k+p0,

(2.10a)

∂p1

∂t
= − ∂

∂x
(F (x, 1)p1(x, t)) + k+p0 − k−p1.

(2.10b)

(after dropping the explicit dependence on initial condi-
tions). One major topic of interest regarding DMNPs
is determining conditions on the functions F (x, 0) and
F (x, 1) or, equivalently, f(x) and g(x) for which a sta-
tionary solution of Eqs. (2.10a) and (2.10b) exists [5].
This will be illustrated in sections IV and V. In applica-
tions one is typically interested in the marginal density
p(x, t) = p0(x, t)+p1(x, t), which can be used to calculate
moments of p such as the mean and variance,

〈x(t)〉 =

∫
xp(x, t)dx, Var[x(t)] =

∫
x2p(x, t)dx−〈x(t)〉2.

Then either the moments or the full density profile can
be compared with experimentally observed quantities or
direct numerical simulations of the SDE (2.3). It is im-
portant to note that in making these comparisons one is
simultaneously averaging over realizations of the piece-
wise dynamics and the DMNP. In the next section we
will consider a different protocol where one separates out
the piecewise dynamics from different realizations of the
DMNP.

For simplicity, in this paper we assume that the transi-
tion rates k± are independent of the state x. However, in
some systems this does not hold, such as gene regulatory
networks with feedback, see Sect. V. The solution of Eq.
(2.10) now becomes more involved, and one typically has
to use some numerical scheme [8].

III. STOCHASTIC LIOUVILLE EQUATION FOR
A DICHOTOMOUS FLOW

For a given realization σ(t) = {n(τ), 0 ≤ τ < t} of
the stochastic process n(t), the SDE (2.3) reduces to a
deterministic, non-autonomous ODE. Now consider an
ensemble of identical, non-interacting particles labeled by
` = 1, . . . ,M with state variables x`(t), all being driven
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FIG. 1. [Color online] Diagram illustrating the difference between the particle and population or SPDE perspectives. (a)
Multiple realizations (xj(t), nj(t)) of a single particle driven by dichotomous noise generates the density pn(x, t). (b) Large
population (N → ∞) of particles evolving in a single realization σ of a common dichotomous noise source n(t) generates the
density P (x, t). (c) The stochastic Liouville equation describes the evolution of the population density P (x, t) with respect
to realizations σ of the common dichotomous noise n(t). A corresponding figure in Ref. [1] shows each particle undergoing
Brownian motion rather than piecewise deterministic dynamics, and driven by an OU process rather than a DMNP.

by the same external or environmental variable n(t). Eq.
(2.3) becomes

dx`
dt

= F (x`, n(t)) (3.1)

for ` = 1, . . . ,M, with the stochastic variable n(t) in-
dependent of ` and evolving according to a continuous
Markov chain with generator A. Assume that the ini-
tial positions of the particles, xi(0), are randomly gener-
ated from a density p0(x). Take the thermodynamic limit
M→ ∞, and let P (x, t) denote the density of particles
in state x at time t given a particular realization σ(t) of
the DMNP. The population density evolves according to
the stochastic Liouville equation

∂

∂t
Pσ(x, t) =

[
− ∂

∂x
F (x, n(t))

]
Pσ(x, t), (3.2)

with Pσ(x, 0) = p0(x). Note that the density Pσ(x, t) is
a random field with respect to realizations σ.

It is important to highlight the relationship between
the stochastic Liouville equation (3.2) and the determin-
istic CK equation (2.10). In particular, does the former
formulation provide any new information that is physi-
cally measurable compared to the standard formulation
in terms of the CK equation (2.10)? The essential point is
that we are dealing with a doubly stochastic process. One
source of stochasticity is that the initial condition of each
particle is independently generated from some probabil-
ity density, and the second source of noise is an external
input in the form of dichotomous noise. There are then
two distinct cases: if the dichotomous noise is indepen-
dent for each particle (uncorrelated), see Fig. 1(a), then
the resulting distribution of sample paths is given by the

solution p(x, t) = p0(x, t) + p1(x, t) of the CK equation
(2.10). We will refer to this as the particle perspective.
On the other hand, if the dichotomous noise is common
to all the particles (fully correlated), see Fig. 1(b), then
the resulting distribution of paths for a single realization
σ of the dichotomous noise process is given by the so-
lution Pσ(x, t) to the Liouville equation (3.2). We will
call this the SPDE perspective. (In our previous paper
[1], each particle evolved according to an SDE with two
sources of noise. The first was intrinsic white noise that
was uncorrelated between particles and an environmen-
tal or extrinsic colored noise source that was common to
all the particles.) From a computational perspective, one
can obtain approximations of both densities p(x, t) and
Pσ(x, t) by partitioning the domain Σ into small bins and
counting the number of particles in each bin. The result-
ing histogram should converge to the appropriate pop-
ulation density in the thermodynamic limit M → ∞.
Clearly both types of population sampling are possible
and are thus physically realizable.

The crucial observation is that in the fully correlated
case the resulting density Pσ(x, t) depends on the par-
ticular realization σ. Hence, one could run multiple
trails for different σ resulting in a distribution of densities
Pσ(x, t), as illustrated schematically in Fig. 2 for some
fixed time t = T . Clearly the set of densities Pσ(x, t)
for different σ contains more information than the sin-
gle density p(x, t). For a large number of realizations
or trials σ1, . . . σχ and fixed x, t, the computational rela-
tionship between the two is p(x, t) ≈ χ−1

∑χ
j=1 Pσj

(x, t).
As we will establish below, a more precise mathematical
relationship between the particle and SPDE perspectives
can be obtained by deriving moment equations for the
distribution % of the resulting stochastic population den-
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sity Pσ(x, t). In particular, we will find that

p(x, t) = Eσ[Pσ(x, t)], (3.3)

where the subscript σ denotes expectation with respect
to realizations of the DMNP. However, since all particles
in the SPDE formulation are driven by a single realiza-
tion of the same DMNP, it follows that there are higher-
order statistical correlations of the density Pσ(x, t) even
when the particles are otherwise non-interacting so, for
example,

C(x, y, t) ≡ Eσ[Pσ(x, t)Pσ(y, t)]

6= Eσ[Pσ(x, t)]Eσ[Pσ(y, t)]. (3.4)

In certain simple cases, however, second-order correla-
tions may disappear in the large t limit (see the example
in section IV). (It is important to emphasize that these
correlations are at the level of the full probability den-
sity function Pσ(x, t), which is distinct from correlations
in the position of a particle evolving according to some
SDE, say, where E[x(t)x(t′)] 6= E[x(t)]E[x(t′)].) From a
computational perspective, we also have the approxima-
tion

C(x, y, t) ≈ χ−1

χ∑
j=1

Pσj (x, t)Pσj (y, t),

and similarly for higher-order moments. That is, these
moments can be experimentally measured by running
multiple realizations of the environment.

Finally, note that the full statistics in the case of fully
correlated dichotomous noise is captured by the distri-
bution % of densities Pσ. However, this is a probability
functional over an infinite-dimensional space. Therefore,
it is more practical to deal with moments of %. It turns
out that these moments also have an interpretation in
terms of the particle perspective, namely, the nth order
moments of % determine the statistics of a population
of particle clusters of size n, where each cluster is sub-
ject to independent dichotomous noise, but the n parti-
cles within a cluster are subject to the same dichotomous
noise. This corresponds to having n particles in each box
of Fig. 1(a).

A. Moment equations

An analogous distinction between the particle and
SPDE perspectives has recently arisen within the con-
text of the diffusion of particles in a randomly switch-
ing environment, specifically, a finite domain with ran-
domly switching boundary conditions [9, 10]. Applica-
tions in biological physics include diffusion-limited reac-
tions [11], neurotransmission [12], insect physiology [13],
and stochastically gated gap junctions [14]. A related
work has considered a model of lateral membrane dif-
fusion based on random walks in random environments

x

Pσ1
(x,T)

Pσ2
(x,T)

Pσ3
(x,T)

Pσ4
(x,T)

σ

x0

p(x0,T)  ∼ χ-1Σj Pσj
(x0,T)

FIG. 2. Schematic illustration of relationship between p(x, t)
and Pσ(x, t) for a given time t = T and different realizations
of the common dichotomous noise, σ = σj , j = 1, . . . , χ.

[15]. As in our previous study of the stochastic FPE aris-
ing from a population of Brownian particles driven by a
common OU process [1], we will use the moment gener-
ating method developed in Ref. [10] to analyze equation
(3.2). For ease of notation we drop the index σ from Pσ.

For the sake of illustration, consider the bounded do-
main Σ = [0, L], where we allow the boundary conditions
at x = 0, L to be n-dependent. The first step is to dis-
cretize Eq. (3.2) using a finite-difference scheme so that
the system is converted to a higher-dimensional DMNP.
Introduce the lattice spacing a such that Na = L for in-
teger N , and let Pj(t) = P (aj, t) etc., j = 0, . . . ,N . Also

set F
(n)
j = F (ja, n). Then

dPi
dt

= −
N∑
j=0

K
(n)
ij Pj , if n(t) = n (3.5)

for i = 0, . . . ,N . Away from the boundaries (i 6= 0,N ),

K
(n)
ij =

1

a
[δi,j−1 − δi,j ]F (n)

j . (3.6)

One of the major benefits of the finite-difference scheme
is that boundary conditions can be absorbed into the

discrete operator K
(n)
ij , even when they are n-dependent.

For the sake of illustration, consider the boundary con-
ditions

P (0, t)1n(t)=1 = 0, P (L, t)1n(t)=0 = 0, (3.7)

where 1n(t)=n is the indicator function, which is equal to
one if n(t) = n and is zero otherwise. These boundary
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conditions will apply to the example of a two-state gene
network considered in section V. At the boundaries we
require P0(t) = 0 when n = 1 and PN (t) = 0 when n = 0.
These conditions can be implemented by taking

K
(n)
0j =

1

a
δj,1F

(n)
j , K

(n)
N j = −1

a
δj,N−1F

(n)
j .

(Similarly, if each particle evolved according to an SDE
rather than the ODE (3.1), then Eq. (3.2) would be-
come a piecewise deterministic Fokker-Planck equation,

and K
(n)
ij would have an additional term consisting of

a discrete Laplacian. It is well known from the theory
of finite differences that Dirichlet of Neumann boundary
conditions could be implemented by modifying the dis-
crete Laplacian at the boundaries [1, 10], see Sect. VC.)

Let P(t) = (P0(t), . . . , PN (t)) and introduce the prob-
ability density

Prob{P(t) ∈ (P,P + dP), n(t) = n} = %n(P, t)dP,
(3.8)

where we have dropped the explicit dependence on initial
conditions. The resulting CK equation for the discretized
piecewise deterministic PDE is [6, 7]

∂%n
∂t

=

N∑
i=0

∂

∂Pi

 N∑
j=0

K
(n)
ij Pj

 %n(P, t)


+
∑
m=0,1

Anm%m(P, t) (3.9)

with A00 = −k+ = −A10 and A01 = k− = −A11. Since
the Liouville term in the CK equation is linear in P, we
can derive a closed set of equations for the moments of
%. For the sake of illustration, we will calculate the first
and second moments. Let

Vn,j(t) = Eσ[Pj(t)1n(t)=n] =

∫
%n(P, t)Pj(t)dP, (3.10)

where ∫
f(P)dP =

 N∏
j=0

∫ ∞
0

dPj

 f(P).

Multiplying both sides of the CK equation (3.9) by Pk(t)
and integrating with respect to P gives (after integrating
by parts and using %n(P, t)→ 0 as P→∞)

dVn,k
dt

= −
N∑
j=0

K
(n)
kj Vn,j +

∑
m=0,1

AnmVm,k.

We have assumed that the initial discrete state is dis-
tributed according to the stationary distribution of the
matrix A. If we now retake the continuum limit a → 0,
we obtain the CK equation

∂Vn
∂t

=

[
− ∂

∂x
F (x, n)

]
Vn +

∑
m=0,1

AnmVm, (3.11)

with Vn(x, t) = Eσ[P (x, t)1n(t)=n]. The boundary condi-
tions are V1(0, t) = 0 = V0(L, t).

Next we consider the second-order moments

Cn,kl(t) = Eσ[Pk(t)Pl(t)1n(t)=n]

=

∫
%n(P, t)Pk(t)Pl(t)dP.

Multiplying both sides of the CK equation (3.9) by
Pk(t)Pl(t) and integrating with respect to P gives (af-
ter integration by parts)

dCn,kl
dt

= −
N∑
j=0

K
(n)
kj Cn,jl −

N∑
j=0

K
(n)
lj Cn,jk

+
∑
m=0,1

AnmCm,kl.

If we now retake the continuum limit a→ 0, we obtain a
system of equations for the equal-time two-point correla-
tions

Cn(x, y, t) = Eσ[P (x, t)P (y, t)1n(t)=n], (3.12)

given by

∂Cn
∂t

= − ∂

∂x
(F (x, n)Cn)− ∂

∂y
(F (y, n)Cn)

+
∑
m=0,1

AnmCm.

(3.13)

The boundary conditions are

C1(0, y, t) = C1(x, 0, t) = 0, C0(L, y, t) = C0(x, L, t) = 0.

Formally speaking, Eq. (3.11) for the first-order mo-
ments Vn(x, t) is identical in form to the deterministic
CK Eq. (2.10) for the single-particle probability density
pn(x, t). Similarly, Eq. (3.13) for the second moment
Cn(x, y, t) is identical in form to the CK equation that
would be written down for the joint probability density of
two particles with positions x and y at time t. More gen-
erally, C(r) is related to the joint probability density of r
particles. (The latter would correspond to having r par-
ticles in each of the boxes in Fig. 1(a).) However, these
two representations are not equivalent, particularly in the
case of bounded domains [10]. From a physical perspec-
tive, there is a much wider class of boundary conditions
that one can impose on the SPDE (3.2) compared to the
SDE (2.3) or its finite particle extension (3.1). This re-
flects the fact that particle conservation needn’t hold at
the SPDE level. For example, if x ∈ [0, L] then one could
impose an inhomogeneous boundary condition at x = L,
say, of the form

∑
n F (L, n)Pn(L, t) = η. One final ob-

servation is that solutions to Eq. (3.13) are generally
not separable, that is, Cn(x, y, t) 6= Vn(x, t)Vn(y, t). In
other words, Eq. (3.4) holds. This reflects the fact that,
although the particles are non-interacting, they are all
moving under the same single realization of the DMNP
(common environmental noise) and this induces statisti-
cal correlations in the “distribution” of densities P (x, t)
with respect to different realizations of the DMNP.
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IV. EXAMPLE: VELOCITY JUMP PROCESS

A. Single particle perspective

As a first illustration of the above analysis, consider
the velocity jump process

dx

dt
= [v+ + v−]n(t)− v−, k± = k.

The corresponding CK equation (2.10) reduces to

∂p0

∂t
= v−

∂p0

∂x
+ k[p1 − p0] (4.1a)

∂p1

∂t
= −v+

∂p1

∂x
+ k[p0 − p1]. (4.1b)

First suppose that x ∈ R and v+ = v− = v. The marginal
probability density p(x, t) = p0(x, t) + p1(x, t) then sat-

isfies the telegrapher’s equation [16, 17]

[
∂2

∂t2
+ 2k

∂

∂t
− v2 ∂

2

∂x2

]
p(x, t) = 0. (4.2)

(The individual densities p0,1 satisfy the same equations.)
The telegrapher’s equation can be solved explicitly for a
variety of initial conditions. More generally, the short-
time behavior (for t � τc = 1/2k) is characterized by
wave-like propagation with 〈x(t)〉2 ∼ (V t)2, whereas the
long-time behavior (t � τc) is diffusive with 〈x2(t)〉 ∼
2Dt, D = v2/2k. As an explicit example, the solution
for the initial conditions p(x, 0) = δ(x) and ∂tp(x, 0) = 0
is given by

p(x, t) =
e−kt

2
[δ(x− vt) + δ(x+ vt)] +

ke−kt

2v

[
I0(k

√
t2 − x2/v2) +

t√
t2 − x2/v2

I0(k
√
t2 − x2/v2)

]
× [Θ(x+ vt)−Θ(x− vt)],

where In is the modified Bessel function of n-th order
and Θ is the Heaviside function. The first two terms
clearly represent the ballistic propagation of the initial
data along characteristics x = ±vt, whereas the Bessel
function terms asymptotically approach Gaussians in the
large time limit. The steady-state equation for p(x) is
simply p′′(x) = 0, which from integrability means that
p(x) = 0 point-wise. This is consistent with the observa-
tion that the above explicit solution satisfies p(x, t)→ 0
as t→∞.

A non-trivial steady-state solution can be obtained on
the semi-infinite line, x > 0, for v+ 6= v−. One exam-
ple of such a system is the Dogterom-Leibler model of
microtubule catastrophes [18, 19], in which microtubules
switch between growth and shrinkage phases at a rate k,
with v± the corresponding elongation and shrinkage ve-
locities. We can determine a condition for the existence
of a steady-state solution by adding equations (4.1a) and
(4.1b) and setting ∂tp0,1 = 0. This gives v+p

′
1(x) −

v−p
′
0(x) = 0, and thus v+p1(x) − v−p0(x) = constant.

Normalizability of p0,1(x) implies that the constant must
be zero and, hence, p1(x) = P (x)/v+, p0(x) = P (x)/v−
with P satisfying the equation

dP (x)

dx
=

[
k

v−
− k

v+

]
P (x) = −V

D
P (x),

where V = (v− − v+)/2 and D = (v+v−)/2k is an effec-
tive diffusivity. It immediately follows that there exists a
steady-state solution, P (x) = P (0)e−V x/D, 0 < x < ∞,

if and only if V > 0. In the regime V < 0, catastrophe
events are relatively rare and the microtubule continu-
ously grows with mean speed |V |, whereas, for V > 0
the catastrophe events occur much more frequently so
that there is a balance between growth and shrinkage
that results in a steady-state distribution of microtubule
lengths.

B. SPDE perspective

Turning to the corresponding stochastic Liouville equa-
tion (3.2), we can identify the first moments Vn with the
solutions pn of Eq. (4.1), whereas the second order mo-
ments Cn(x, y, t) satisfy

∂C0

∂t
= v−

∂C0

∂x
+ v−

∂C0

∂y
+ k[C1 − C0] (4.3a)

∂C1

∂t
= −v+

∂C1

∂x
− v+

∂C1

∂y
+ k[C0 − C1]. (4.3b)

Again let us first consider the case (x, y) ∈ R2 and v+ =
v− = v. Adding and subtracting Eqs. (4.3a) and Eqs.

(4.3b), and setting C = C1 + C0, Ĉ = C1 − C0 yields

∂C

∂t
= −v ∂Ĉ

∂x
− v Ĉ

∂y
(4.4a)

∂Ĉ

∂t
= −v ∂C

∂x
− v ∂C

∂y
− 2kĈ. (4.4b)
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Differentiating Eq. (4.4a) with respect to t and using Eq.
(4.4b) establishes that C satisfies the 2D PDE[

∂2

∂t2
+ 2k

∂

∂t
− v2

(
∂

∂x
+

∂

∂y

)2
]
C(x, y, t) = 0. (4.5)

This PDE is clearly not separable, which implies that
C(x, y, t) 6= p(x, t)p(y, t). If the cross-differentiation term
2v2∂x∂y were absent from Eq. (4.5), then would be
identical to the 2D version of the telegrapher’s equa-
tion. Even for this simpler PDE, it is necessary to resort
to numerical methods in order to solve the initial value
problem. Note, however, that C(x, y, t)→ 0 in the limit
t→ 0.

Now suppose x > 0, y > 0 and v+ < v−. Adding Eqs.
(4.3a) and (4.3b) then yields

∂φ(x, y)

∂x
+
∂φ(x, y)

∂y
= 0, x, y > 0

with φ(x, y) = v+C1(x, y) − v−C0(x, y). It follows that
φ(x, y) = Φ(x− y) for some function Φ and, hence,

C0(x, y) =
P (x+ y)

v−
+ Ψ0(x− y),

C1(x, y) =
P (x+ y)

v+
+ Ψ1(x− y)

with v+Ψ1 − v−Ψ0 = Φ. Substituting into the steady-
state version of Eq. (4.3a) shows that Ψ0 = Ψ1 = Ψ, say,
and

∂P

∂x
+
∂P

∂y
= −V

D
P. (4.6)

The latter has the solution P (z) = P (0)e−V z/D with
z = x+ y. Finally, integrability of the solutions and the
integral identities∫ ∞

0

Cn(x, y)dx = Vn(y),

∫ ∞
0

Cn(x, y)dy = Vn(x)

(4.7)
require Ψ = 0 so that

Cn(x, y) = Cn(0)e−V (x+y)/D = Vn(x)Vn(y). (4.8)

This establishes that in steady-state the two-point corre-
lations disappear for the given velocity jump process.

V. EXAMPLE: TWO-STATE GENE NETWORK

A. Single-particle perspective

In order to further illustrate the occurrence of statis-
tical correlations in a population of particles driven by a
common DMNP, consider the simple two-state model of
gene regulation shown in Fig. 3. The gene randomly

switches between an inactive state I (no protein pro-
duction) and an active state A where proteins are pro-
duced at a rate r. Proteins subsequently degrade at a
rate γ. (The stages of transcription and translation are
lumped together so we do not keep track of the amount
of mRNA.) The corresponding reaction scheme is

I
k+


k−
A

r−→ p
γ−→ ∅,

where k± are the switching rates between the inactive
and active states. Suppose that the number of proteins is
sufficiently large so that we can represent the dynamics in
terms of a continuous-valued protein concentration x(t).
Let n(t) denote the current state of the gene with n(t) =
0 if it is inactive and n(t) = 1 if it is active. The protein
evolves according to the piecewise-deterministic equation

dx

dt
= rn− γx, (5.1)

for n(t) = n ∈ {0, 1}. Eq. (5.1) has the form of Eq. (2.3)
with

F (x, 0) = −γx, F (x, 1) = r − γx.

Note that x(t) can be restricted to the closed interval
Σ = [0, r/γ] where F (x, 0) < 0 and F (x, 1) > 0 within
the interior of the domain.

Several previous studies of two-state regulatory net-
works have focused on properties of the steady-
state probability density [20–24] by solving the time-
independent version of the CK equation (2.10) with the
boundary conditions (3.7) and L = r/γ. More specifi-
cally adding Eqs. (2.10a) and (2.10b), and setting time
derivatives to zero yields

∂

∂x
(F (x, 0)p0(x)) +

∂

∂x
(F (x, 1)p1(x)) = 0,

that is, F (x, 0)p0(x)+F (x, 1)p1(x) = c for some constant
c. The reflecting boundary conditions imply that c = 0.

r γ
Y

k+ k_

X

TF

promotor

FIG. 3. [Color online] A gene randomly switches between
an on-state and an off-state at rates k± due to the bind-
ing/unbinding of a transcription factor (TF) to a promotor
site. In the on-state proteins are produced at a rate r and
degrade at a rate γ. (For simplicity, the intermediate tran-
scription step of producing mRNA is ignored.)
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Since F (x, n) is non-zero for all x ∈ Σ, we can express
p1(x) in terms of p0(x): p1(x) = −F (x, 0)p0(x)/F (x, 1).
Substituting into Eq. (2.10a) yields the solutions

pn(x) =
1

ZN |F (x, n)|
(5.2)

× exp

(
−
∫ x

0

(
k+

F (z, 1)
+

k−
F (z, 0)

)
dz

)
.

where Zn is a normalization factor (assuming it exists).
Given the no-flux boundary conditions, we can impose

the normalization condition
∫ L

0
[p0(x)+p1(x)]dx = 1. In-

tegrating the steady-state versions of Eqs. (2.10) with
respect to x then shows that∫ L

0

p0(x)dx =
k−

k− + k+
,

∫ L

0

p1(x)dx =
k+

k− + k+
.

For the particular example of the twos-tate regulatory
network one thus finds [21]

p0(x) = C (γx)−1+k+/γ(r − γx)k−/γ , (5.3a)

p1(x) = C (γx)k+/γ(r − γx)−1+k−/γ (5.3b)

for C = γ
[
r(k++k−)/γB(k+/γ, k−/γ)

]−1
, where B(α, β)

is the Beta function B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt. In

p(x)

 0        0.2       0.4       0.6      0.8         1.0
x

p(x)

1

2

3

4

5

1

2

3

4

(a)

(b)

k_ > k+ k+ > k_

k+ = k_

 0        0.2       0.4       0.6      0.8         1.0
x

FIG. 4. [Color online] Sketch of steady-state protein density
p(x) for a simple regulated network in which the promoter
transitions between an active and inactive state at rates k±.
(a) Case k±/γ > 1: there is a graded density that is biased
towards x = 0, 1 depending on the ratio k+/k−. (b) Case
k±/γ < 1: there is a binary density that is concentrated
around x = 0, 1 depending on the ratio k+/k−

Fig. 4, we sketch p(x) = p0(x) + p1(x) for various values
of K± = k±/γ. It can be seen that if the rates k± of
switching between the active and inactive gene states are
faster than the rate of degradation γ then the steady-
state density is unimodal (graded), whereas if the rate of
degradation is faster then the density tends to be concen-
trated around x = 0 or x = 1, consistent with a binary
process. (The density actually diverges at both ends but
if k+ � k− or vice versa, then the associated boundary
layer is infinitesimal.)

B. SPDE perspective

Let us now consider the above example from the SPDE
perspective, where we imagine a large population of non-
interacting gene networks driven by a common noise
source. That is, we assume there is some common envi-
ronmental stimulus that simultaneously controls the ac-
tivation and inactivation of the gene across a population
of cells [23, 24]. The discrete environmental states could
represent the presence of some extracellular metabolite
or signaling molecule, perhaps arising from changes in
the physiological or hormonal state that a cell experi-
ences in a multicellular organism. Since we can iden-
tify the steady-state solution pn(x) with the first moment
limt→∞ Eσ[P (x)], we will consider the second-order mo-
ments Cn(x, y), n = 0, 1.

The steady-state version of Eq. (3.13) becomes

− ∂

∂x
[γxC0]− ∂

∂y
[γyC0] = k−p1 − k+p0, (5.4a)

∂

∂x
[(r − γx)C1] +

∂

∂y
[(r − γy)C1] = −k−p1 + k+p0.

(5.4b)

These are supplemented by the integral identities∫
R

C0(x, y)dx dy =
k−

k− + k+
,

∫
R

C1(x, y)dx dy =
k+

k− + k+
,

where A = [0, r/γ]× [0, r/γ]. The quasilinear Eqs. (5.4)
are similar in form to the CK equations for the first mo-
ments of a two-stage model of mRNA and protein con-
centrations, see section V.C and Ref. [23]. As noted in
Ref. [23], it is difficult to find analytic solutions to these
equations so that one has to use numerical simulations.
Here we show how the method of characteristics may be
used to extract some information about the asymptotic
behavior of the variances.

First, rewrite Eqs. (5.4) tin the matrix form

M(x)
∂C(x, y)

∂x
+ M(y)

∂C(x, y)

∂y
= F , (5.5)

with C = (C0, C1)>, F = (F0,F1)> for

F0 = (2γ − k+)C0 + k−C1, F1 = k+C0 + (2γ − k−)C1,

and M(x) = diag(F (x, 0), F (x, 1)). Hence, Eq. (5.5) can
be analyzed using the method of characteristics [25]. Let
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Σ2 = [0, r/γ] × [0, r/γ] ⊂ R2. Away from the bound-
ary ∂Σ2 we have a hyperbolic system with a pair of real
characteristics for all 0 < x < r/γ, 0 < y < r/γ. The
slope dy/dx = λ of a characteristic is determined from
the equation det[M(y)− λM(x)] = 0, which yields

λ1 =
F (y, 0)

F (x, 0)
=
y

x
, λ2 =

F (y, 1)

F (x, 1)
=
r − γy
r − γx

. (5.6)

The corresponding characteristic curves are

y = y0(x) = ax, y = y1(x) = bx+
r

γ
(1− b) (5.7)

for constants a, b. The corresponding eigenvectors are
σ1 = (1, 0)>, σ2 = (0, 1)>. The curves are plotted in Fig.
5. It can be seen that each point (x, y) in the interior of
the domain Σ2 is at the intersection of a unique pair of
characteristics propagating from the boundaries.

In particular, one has the following equations for C
along the characteristics y = yj(x) [25],

σ>j M(x)

(
∂C

∂x
+ λj

∂C

∂y

)
= σ>j F , j = 1, 2. (5.8)

For the given system we have the pair of equations

−γxdC0

dx
= k−C1 + (2γ − k+)C0, y = y0(x) (5.9a)

(r − γx)
dC1

dx
= k+C0 + (2γ − k−)C1, y = y1(x). (5.9b)

Integrating Eqs. (5.9a,b) with respect to x and imposing
the boundary conditions gives

C0(x, ax) =
k−
γ
x−2+k+/γ (5.10a)

×

[
A0

x
−2+k+/γ
0

−
∫ x

x0

C1(x′, ax′)

[x′]−1+k+/γ
dx′

]
,

C1(x, y1(x)) =
k+

γ
(r/γ − x)−2+k−/γ (5.10b)

×
[

A1

[r/γ − x0]−2+k−/γ
+

∫ x

x0

C0(x′, y1(x′))

[r/γ − x′]−1+k−/γ
dx′
]

for 0 < x0 < r/γ and constants A0, A1.
The above pair of equations allow us to determine the

asymptotic behavior of the variances σ2
n(x) = Cn(x, x).

For the sake of illustration, consider the case of graded
responses for which k±/γ > 1. Setting a = 1, b = 1 and
taking the limits x → 0 in Eq. (5.10a) and x → r/γ in
Eq. (5.10b) shows that

σ2
0(x) ∼ x−2+k+/γ , x ∼ 0,

σ2
1(x) ∼ [r − γx]−2+k−/γ , x ∼ r/γ,

We have used the fact that the integral terms are clearly
finite for the graded response. It follows that in the

0 1
0

1

rx/γ

ry/γ
C0 = 0

C
0

 =
 0C

1
 =

 0

C1 = 0

FIG. 5. [Color online] Characteristic curves for λ1 = y/x
(dark) and λ2 = (r − γy)/(r − γx) (light).

graded response regime, the variances have removable
singularities at the boundaries x = 0, r/γ whenever
1 < k±/γ < 2.

It is clear from the above analysis that Cn(x, y) 6=
Vn(x)Vn(y), thus providing an explicit example of statis-
tical correlations at the population level. Moreover, such
correlations could be experimentally measurable. That
is, one could imagine labeling the protein product within
each cell using green fluorescent protein (GFP) and tak-
ing a snapshot of the GFP intensities across the popula-
tion at some time t, after being exposed to a single re-
alization of the environment. The resulting histogram of
GFP intensities would yield an approximation to P (x, t)
for the given realization. Repeating this for multiple
runs would yield different realizations of the stochastic
density P (x, t) from which statistical correlations of the
population density could be constructed. This procedure
is distinct from most studies of gene networks, which
tend to focus on moments of P (x, t) averaged with re-
spect to different realizations of the environment, that is,∫
xkEσ[P (x, t)]dx rather than Eσ[P (x1, t) · · ·P (xk, t)].

C. Extensions of gene network model

The above two-state gene network is about the sim-
plest gene regulatory network that one could write down.
A more realistic model would need to include the dy-
namics of mRNA, allow for the possibility of nonlinear
regulatory feedback, and also need to take into account
the effects of intrinsic noise. The latter arises from a
number of different sources, including fluctuations in the
binding or unbinding of the TF to or from the promo-
tor site and demographic noise associated with a finite
number of proteins [24]. All of these features can be
incorporated into our SPDE framework. In particular,
our derivation of the moment equations for the stochas-
tic Liouville equation (3.2) did not require the functions
F (x, n) to be linear, nor the number of discrete states n



10

be restricted to two. However, as we found for even the
simple two-state gene network with linear F (x, n), anal-
ysis of the resulting system of PDEs for the second mo-
ments is non-trivial. Therefore, in most cases one would
have to compare the observed statistics with a numerical
solution of the corresponding PDEs. Here we outline a
few possible extensions in a little more detail.

Intrinsic noise

The two-state environmental switching model has re-
cently been extended to include the effects of molecular
noise and nonlinearities by carrying out a system-size ex-
pansion of the master equation for protein synthesis when
the environment is in state n [24] (see also Ref. [26]).
This leads to a modification of the SDE (2.3) of the form

dX(t) = F (X,n(t))dt+

√
σ(X,n(t))

Ω
dW (t), (5.11)

for n(t) ∈ {0, 1}, where Ω is the system size (such as the
expected number of proteins), W (t) is a Wiener process
with

〈dW (t)〉 = 0, 〈dW (t)dW (t′)〉 = δ(t− t′)dt dt′,

and σ(X,n) is a noise intensity that typically depends
on both the protein concentration and the state of the
environment. Eq. (5.11) is in the form of a piecewise
SPDE, whose associated CK equation for the probability
densities pn(x, t) is

∂pn
∂t

=

[
− ∂

∂x
F (x, n)

]
pn +

1

2Ω

[
∂2σ2(x, n)

∂x2

]
pn

+
∑
m=0,1

Anmpm (5.12)

for n = 0, 1. The intrinsic multiplicative noise is treated
in the Ito sense. Hufton et al. [24] analyzed the model
from a particle perspective and showed how to approxi-
mate the steady-state solutions of Eq. (5.12) by carrying
out a linear noise approximation, which can be applied
even when F , σ and k± are nonlinear functions of x.

Here we briefly indicate how the model can be formu-
lated from the SPDE perspective. Consider a large pop-
ulation of non-interacting cells labeled by ` = 1, . . . ,M
with protein concentrations X`(t), all being driven by the
same external or environmental variable n(t). Eq. (3.1)
becomes

dX` = F (X`, n(t))dt+

√
σ(X`, n(t))

Ω
dW`(t) (5.13)

for ` = 1, . . . ,M, with the stochastic variable n(t) in-
dependent of ` and evolving according to the continuous
Markov chain with generator A given by Eq. (2.5). The
important point to note is that the intrinsic noise within
each cell is described by an independent Wiener process

〈dW`(t)〉 = 0, 〈dW`(t)dW`′(t
′)〉 = δ`,`′δ(t− t′)dt dt′.

As in section III, take the thermodynamic limitM→∞,
and let P (x, t) denote the density of particles in state x
at time t given a particular realization of the DMNP.
The stochastic Liouville equation (3.2) is replaced by the
stochastic FPE

∂

∂t
P (x, t) =

[
− ∂

∂x
F (x, n(t))

]
P (x, t)

+
1

2Ω

[
∂2σ2(x, n(t))

∂x2

]
P (x, t). (5.14)

One can now derive moment equations along analogous
lines to section III and Ref. [1].

Two-stage model of mRNA and protein concentrations

As highlighted in Ref. [23], it is straightforward to
write down a two-stage version of the two-state gene net-
work model (5.1) that incorporates the production and
decay of mRNA. Let x(t) denote the concentration of
protein and u(t) the concentration of mRNA. The corre-
sponding system of kinetic Eqs. at the single gene level
are given by

dx

dt
= rpu− γpx,

du

dt
= rn(t)− γuu(t) (5.15)

for n(t) = n ∈ {0, 1}. Here γp, γu are the degrada-
tion rates of protein and mRNA, rp is the environment-
independent rate at which protein is translated from ac-
tive mRNA and r is the rate of mRNA synthesis when
the gene is active. Let pn(x, y, t) be the probability den-
sity for the joint process. The associated CK equations
are [23]

∂p0

∂t
= − ∂

∂x
[(rpu− γpx)p0]− ∂

∂u
[−γuu)p0]

+k−p1 − k+p0, (5.16a)

∂p1

∂t
= − ∂

∂x
[(rpu− γpx)p1]− ∂

∂u
[(r − γuu)p1]

−k−p1 + k+p0.

(5.16b)

The steady-state version of these equations is similar
in form to Eqs. (5.4). However, the latter determine
the second-order moments of the one-stage model in the
SPDE perspective, whereas the former represent the par-
ticle perspective of the two-state model, or equivalently
the first-order moments equations of the SPDE perspec-
tive; the second-order moment equations would involve
four independent variables.

VI. DISCUSSION

In this paper we extended our recent work on SDEs
in random environments [1] by considering a large pop-
ulation of non-interacting particles evolving according
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to piecewise deterministic dynamics in the presence of
global dichotomous noise. Such a system could repre-
sent the switching on and off of genes in a population
of cells driven by a common environmental stimulus. We
highlighted the difference between the standard approach
to analyzing dichotomous noise, which we call the parti-
cle perspective, and the SPDE perspective. The former
simultaneously considers realizations of the piecewise de-
terministic dynamics and the DMNP, which results in a
deterministic CK equation, whereas the latter considers
multiple realizations of the piecewise dynamics for a sin-
gle realization of the environmental noise, which leads
to a stochastic Liouville equation. A relationship be-
tween the particle and SPDE perspectives was obtained
by deriving moment equations for the distribution of the
resulting stochastic population density by averaging over
multiple realizations of the environment. We illustrated
the theory by considering two simple examples of di-
chotomous flows, a velocity jump process and a two-state
gene regulatory network. In both cases we showed how
the global environmental input induces statistical corre-
lations between different realizations of the population
density.

In the probability literature, a particle driven by a
DMNP is an example of a much more general type of
stochastic process known as a piecewise deterministic
Markov process (PDMP). That is, x(t) could belong to a
higher-dimensional space, n(t) could take on more than
two discrete values, and most significantly, the transition
rates of the discrete Markov process could themselves
depend on the continuous variable. For example, the
switching on or off of a gene could depend on the con-
centration of its protein product (regulatory feedback)
or the opening and closing of an ion channel could be

voltage-gated. A rigorous introduction to PDMPs can
be found in Refs. [27–30]. Note that a major assumption
of the SPDE formulation is that the switching rates k±
of the environment are independent of the states of the
individual particles. This is necessary otherwise we could
not separate the realizations of the different particle tra-
jectories and the realizations of the dichotomous noise. It
also allows us to interpret the discretized piecewise deter-
ministic equation (3.9) as a CK equation, and to derive
the closed set of moment equations. One way to extend
the model would be to take the switching rates to de-
pend on some collective population variable such as the

population mean X =M−1
∑M
`=1 x`. (In applications to

collective cell signaling, for example, it is possible that
the protein produced by the cells could be secreted into
the environment and thus influence the state of the envi-
ronment. A classical example is bacterial quorum sens-
ing [31].) In the thermodynamic limit, we would have
X(t) =

∫
Σ
xP (x, t)dx and thus the switching rates would

be functionals of P (x, t). Now carrying out the discretiza-
tion scheme in Sect. IIIA would lead to a CK equation of
the form (3.9), except that the matrix A would now de-
pend on the vector P. Although we could still construct
moment equations, the resulting nonlinearities would re-
sult in a moment closure problem.
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