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ABSTRACT

The dispersion and connectivity of particles with a high degree of polydis-

persity is relevant to problems involving composite material properties and

reaction decomposition prediction, and has been the subject of much study in

the literature. This work utilizes Monte Carlo models to predict percolation

thresholds for a two dimensional systems containing disks of two different

radii. Monte Carlo simulations and spanning probability are used to extend

prior models into regions of higher polydispersity than those previously con-

sidered. A new correlation to predict the percolation threshold for binary disk

systems is proposed based on the extended dataset presented in this work and

compared to previously published correlations. A set of boundary conditions

necessary for a good fit is presented, and a condition for maximizing percola-

tion threshold for binary disk systems is suggested.

INTRODUCTION

For problems dealing with transport properties and particle connectivity,

percolation theory is an important resource in predicting composite behavior.

Percolation theory is the branch of statistical mechanics dealing with particle

connectivity and dispersion in random media, and provides a tool for linking

microstructure and macroscopic material properties [1]. It is often described in
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terms of the critical parameter at which bulk connectivity is established, called

the percolation threshold. Below the percolation threshold, large connected

components do not exist.

Percolation is a well-studied physical phenomena because of its broad ap-

plicability, including physical percolation of fluids through rock [2, 3, 4], as

well as resistor networks [5], disease spread [6], and many problems in ma-

terial science [7, 8]. Studies of these phenomena often focus on either lattice

or continuum systems. Lattice percolation is described by regular or irregu-

lar networks, where sites or bonds are occupied with some probability f , and

occupied sites form connected pathways. In the continuum, any point is avail-

able for occupancy, and the overlap and intersection of objects results in con-

nected clusters. For either system, the problem of percolation can be summed

up by the question: for a system of characteristic length L, and a set of ob-

jects randomly located, what is the number, N , of objects necessary to create

a connected cluster large enough to span the system? For the oft studied in-

finite system, in which the intensive number of objects at percolation is also

infinite, object occupancy is often described to in terms of density, n = N/L2 in

two dimensions, or n = N/L3 in three dimensions. In spite of the conceptual

simplicity of this question, no exact solutions for any continuum percolation

problems are yet known, although increasingly precise estimates have been

obtained through extensive numerical simulation.

In 1970, Scher and Zallen demonstrated that for regular lattices there exists

a universal critical area fraction for disks given by ηc,2 = 0.45 and a critical

volume fraction for spheres of ηc,3 = 0.16 [9, 10, 11]. These quantities are

invariant for all lattices that can be occupied by monodisperse disks or spheres,

independent of specific lattice geometry, and dependent only on the dimension

of the system. Later work found percolation thresholds for systems of non-

regular lattices [12, 13, 14, 15]. Although lattice percolation has been the subject

of much analytical and numerical study, continuum percolation is often more

representative of the behavior of real systems [16, 17, 18, 19].

For continuum percolation of monodisperse disks in two dimensions, it
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was discovered that the percolation threshold could be described by a uni-

versal total area fraction of 1.12808737 [20, 21, 22]. Further work showed that

concept of a constant critical total area could be generalized to that of a univer-

sal total excluded area, and it was found that the excluded area of monodis-

perse objects is approximately constant at percolation, theorized to lie between

3.2 and 4.5 for any system of monodisperse objects in two dimensions [23].

Note that the total excluded area at percolation for monodisperse disks (∼4.5)

is consistent with the upper bound of the universal total excluded area range.

Several Monte Carlo methods have been used to predict percolation thresh-

olds. Gradient percolation is a technique that simulates disks as centered on

points of an underlying, inhomogeneous Poisson field [24]. The average loca-

tion of the edge naturally formed by the percolating measure is used to com-

pute the percolation threshold. Two techniques have been used to predict per-

colation thresholds in this manner: the gap-traversal method and the frontier-

walk method. The frontier walk method has been rigorously shown to con-

verge to the percolation threshold for homogenous systems [25]. Other types

of Monte Carlo methods include the rescaled-particle algorithm, in which a

static particle configuration is rescaled to determine upper and lower percola-

tion bounds [26] and several variations of the union-find algorithm [4, 27, 28],

including one implementation adapted for use in the continuum by Mertens

and Moore [20] based on the work Newman and Ziff [4].

These Monte Carlo simulations have been used to refine predictions of

the percolation threshold of monodisperse disks [22, 20, 21], aligned squares

[29, 28] and sticks [20, 27] to several decimal places of accuracy. Such simu-

lations are costly and time consuming [24], but ever evolving computing ca-

pabilities enable increasingly accurate and convenient simulations. However,

the assumption of object monodispersion is often not accurate for physical sys-

tems [30, 31, 32, 33, 34]. This has driven several studies attempting to account

for varying degrees of polydispersity in order to better transition theory to ap-

plication.

Polydisperse systems have been demonstrated to have different percolation
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thresholds from monodisprse systems [31, 35]. The problem of overlapping

disks of two sizes in the continuum has been studied by several researchers.

Quintanilla utilized extensive gradient Monte Carlo simulations to examine

the percolation thresholds of such systems [24, 36], including a proposed cor-

relation for the percolation threshold as a function of disk radii ratio, λ, and

relative concentration of the disk of smaller size, f . Based on those results, Bal-

ram et al. developed a phenomenological equation for the increase in the effec-

tive size of the larger discs in the presence of smaller discs [37]. Monte Carlo

results have also predicted percolation thresholds for disks with distributions

of radii [38]. The related problem for spheres of more than one size in three

dimensions has also been examined [39, 40]. The range of simulation results

available over λ and f is limited, and few studies report results for values of λ

less than 0.1, or values of f greater than 0.999. Although many of these works

present potential extrapolation for some parameters, these extrapolations are

often caveated outside of the simulation bounds.

Studies have also attempted to find the minimum or maximum percolation

threshold for a set of conditions, as this is often physically relevant for prob-

lems such as determining how much additive is appropriate, as in the addition

of carbon nanoparticles to a polymer composite [8], a maximum infection time

for modeling of disease spread [6], or predicting the maximum set time before

concrete becomes load bearing [41]. It has been proposed that for systems of

discs, a monodispersion minimizes the percolation threshold [42, 43]. It re-

mains to be proven which conditions maximize the percolation threshold.

The objective of the present work is to extend the study of interpenetrating

binary disk dispersions to higher polydispersities than considered previously,

and suggest a prediction of behavior. From these results, we propose criteria

that will maximize the percolation threshold of such systems. This is a natu-

ral extension of the monodispersion studies previously reported and provides

relevant simulations for applications that inherently include an additive with

a size distribution.
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METHODS

In this study, we use the union find algorithm with open boundary condi-

tions to determine the percolation threshold for binary disk dispersions for re-

gions of high polydispersity – extending the results predicted by Monte Carlo

simulation in the literature. This expanded data set is reported in full in the

Appendix. A discussion of the limiting behavior made evident by these ex-

panded results, and a proposal for a new phenomenological equation for the

prediction of percolation threshold for binary disk systems, is then put forth.

We begin this discussion first with a definition of terms.

DEFINITION OF TERMS

The connectivity of objects can be described in terms of the filling factor, η

which is the total area of all objects in a system normalized by system size. For

a square domain with sides of length L, the filling factor for a system ofN discs

of radius R is given by

η = N
πR2

L2
(1)

The filling factor is often related to the area fraction, φ, which is the fraction

of the domain covered by objects. The area fraction can also be thought of as

the probability that any point in a domain is covered by an object. For lattice

percolation, where objects do not overlap, the area fraction and filling factor

are equivalent. However, for continuum percolation, in the case where inter-

penetration occurs, the area fraction will be less than the filling factor due to

object overlap. The concepts of filling factor and area fraction can be directly

extended to problems of three dimensions, where the filling factor is the total

volume of all objects in the system normalized by system size and the volume

fraction is the fraction of the domain covered by objects (equivalent to area

fraction in two dimensions). In either case, as the domain size approaches in-

finity the area fraction is related to the total area by the differential equation
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dφ
dη = 1− φ which allows the solution.

φ = 1− e−η (2)

For the special case in which a system of objects has just achieved percolation,

the area fraction is called the critical area fraction, or percolation threshold, φc.

The corresponding filling fraction is called the critical filling fraction, ηc. For an

infinite system, the probability that a cluster of connected objects results in con-

nectivity across the domain goes from zero to one at the percolation threshold.

In a finite system, like those we are able to simulate, the probability that such a

cluster exists goes from zero, at the placement of the first object, to one as object

placement causes the entire domain to be filled. This transition is continuous,

and becomes increasingly abrupt as the system grows in size, approaching an

instantaneous transition for the infinite case.

For an infinitely large, two dimensional system containing monodisperse

disks, (or equivalently for a system of finite size containing infinitesimally

small monodisperse discs) the percolation threshold is an invariant, approx-

imated by ηc = 1.12808. This estimate was obtained independently via Monte

Carlo methods using both gradient percolation [21] and wrapping probabilities

[20].

MONTE CARLO ALGORITHM

In this work, Monte Carlo simulations are performed consistent with the

spanning probability method used by Li and Zhang in [27]. In this approach,

each simulation consists of a series of trials in which disks of a finite size are

added to a much larger, finite 2D square. As each disk is placed, the Monte

Carlo algorithm checks for overlap with other disks, merges connecting disks

into clusters, and checks for a cluster that intersects two opposite sides of the

domain. Such a cluster is called a spanning cluster, and its inception is congru-

ous with the onset of percolation.

In each trial, the placement of disks continues until a spanning cluster has
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been found both horizontally and vertically. When a spanning cluster of each

type first appears, the number of disks in the system is reported. For all system

sizes, it is observed that the number of discs at which a horizontal spanning

cluster appears and the number of discs at which a vertical spanning cluster

appears are only weakly correlated. This is justified through examination of

results in this study and is consistent with assumptions made in the literature

[20]. In this work, estimation of the monodisperse result consisted of O(105)

trials. Estimates for binary disk systems consisted of O(103)-O(105) trials for

each combination of f and λ, depending on the desired accuracy. The accuracy

achieved for each data point is reflected in the number of significant figures

reported in the Appendix.

Once both horizontal and vertical percolation has been achieved, the trial is

ended and no more disks are placed. After performing a simulation consisting

of m trials, the spanning probability RN,L for N discs in a system of size L is

easily found by counting the total number of horizontal and vertical spanning

events that occurred with fewer than N discs, and dividing by 2m. There is an

obvious restriction in the resolution attainable for RN,L calculated in this man-

ner for a given sample size, m. However, this difficulty may be overcome by

convolving the measured spanning probabilities with the Poisson distribution

with mean λ = η
(
L2/πR2

)
[20, 27], as shown in Eq. (3).

RL (η) =

∞∑
n=0

eλλn

n!
Rn,L (3)

Following the work by Mertens and Moore [20], the Poisson weights wn ∝
e−λλn

n! are calculated inductively to avoid numerical difficulties when n is large,

as it is for any significant set of trials.

Calculation of wn in this manner allows for a computationally accurate

7



summation that does not involve summation of functionally infinite terms.

wbλc−k =

0, k = 0

bλc−(k−1)
λ wbλc−(k−1), k = 1, 2, ...

(4)

wbλc+k =

1, k = 0

λ
bλc+kwbλc+(k−1), k = 1, 2, ...

(5)

The convolution is then normalized by the quantity
∑
wn. This technique al-

lows for the computation of the spanning probability for any value of the filling

factor. For the open boundary conditions considered here, the critical span-

ning probability is 0.5 [44]. The critical filling factor for a particular system

size is defined as the filling factor at which the spanning probability is equal to

the critical spanning probability for that size system. The critical filling factor

for the finite system is expected to converge to that of the infinite system as

(R/L)
7/4 [24]. Fig. 1 illustrates that our algorithm converges at the expected

rate.

The extrapolated value for the critical filling fraction is computed using a

weighted linear regression as in [24, 20]. The reported uncertainty in this pre-

diction is the half-width of the 95% confidence interval for this prediction. For

the monodisperse case, our prediction is 1.1282 ± 1.61e − 4 which is in agree-

ment with but less precise than the previously published values of 1.12808 [21],

1.128085 [36], and 1.12808737 [20]. This is to be expected as the present result

was achieved with far fewer simulations as the goal of this work is not to re-

fine the prediction for monodisperse discs but rather to explore the behavior of

binary dispersions under extreme dispersiveness.

CHECKING AGAINST PUBLISHED RESULTS FOR MONODISPERSE DISKS

To validate our implementation of the algorithm, this method is first used to

determine the percolation threshold for monodisperse disks. Disks of size R

were added to a square with side-length L until both vertical and horizontal
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Figure 1: Convergence of the estimated critical filling factor for monodisperse discs. Each data
point represents a different relative system size (R/L). The fitted line to the data gives an intercept
– or predicted percolation threshold for an infinite system – of 1.128, which demonstrates reason-
ably good agreement with the published percolation threshold value for monodisperse disks.

spanning clusters were observed. The number of disks necessary for percola-

tion was recorded for each trial, and the resulting measured spanning probabil-

ities were convolved with the Poisson distribution. This yielded an estimate of

the two dimensional percolation threshold for disks of ηc ≈ 1.1282± 1.61e− 4,

which is sufficiently precise for this study. The critical filling factor calculated

for each simulation is shown in Fig. 1. System sizes below R/L = 0.03 were

seen to be outside the asymptotic regime and therefore too small to yield useful

information about the infinite percolation threshold.

RESULTS AND ANALYSIS

PRESENTATION OF RESULTS FROM MONTE CARLO SIMULATIONS

Having validated implementation of the Monte Carlo simulation method for

the monodisperse case, we move to our particular case of interest: binary disk

dispersions. Here, we are concerned with the effect of polydispersity on the

percolation threshold for binary dispersions of fully penetrable discs of differ-

ent radii. This system was studied previously by Quintanilla [24, 36]. We adopt

his notation, using 0 ≤ λ ≤ 1 to denote the ratio of the disc radii and 0 ≤ f < 1

to denote the number fraction of the smaller discs. Number fraction is the con-

centration of small disks normalized by total number of disks, and can also be
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thought of as the probability that a randomly selected disk is of the smaller

size. We first verify our approach by reproducing Quintanillas results.

Figure 2: Comparison of results generated here with those published by Quintanilla. The lines
correspond to the points generated in this work while the x markers denote the corresponding
results published in [24]. Very good agreement is demonstrated.

Fig. 2 shows Quintanilla’s published results [24], as well as the results gen-

erated by the algorithm used in this paper. Very good agreement is demon-

strated. All of the data points from [24] are reproduced and the maximum

difference is 8.331264e-4 and the differences at each point are within the un-

certainty bounds of our predictions. Although Quintanilla used a gradient

percolation method, it is expected that both methods should converge to the

same percolation threshold. Successfully reproducing these results provides

confidence in our implementation. In this study, Quintanilla’s results [24] have

been extended for both smaller λ and larger f through extensive Monte Carlo

simulations. Results from this study are reported in detail in the Appendix.

Each value has an estimated error of ≤ 5 in the last decimal place. The ex-

panded dataset is used to generate Fig. 3 – here presented in terms of 1− f on

a log-log scale – represents nearly five times the number of data points pub-

lished by Quintanilla [24]. This expanded coverage is made possible both by

the massive improvements in parallel computing since the publication of the

prior work and by accepting slightly less precise solutions, particularly in re-
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gions far from the peak percolation threshold. Quintanilla and Ziff later pub-

lished higher precision data [36] over roughly the same ranges of f and λ. Our

uncertainties are large enough that there is no value in comparing to these re-

sults separately.

Our results are consistent with the previously proposed assertion that the

minimum percolation threshold in 2D will be satisfied by monodisperse disks

[24, 42, 43, 36, 39]. The results in Fig. 3 suggest that the percolation threshold

will be maximized for smaller values of λ and some large value of f . The

value of f for which the percolation threshold is maximized is dependent on

the value of λ. Towards this end, it is instructive to consider the percolation

threshold as a function of the large disc fraction, 1− f instead of as a function

of small disk fraction, f .

Figure 3: Percolation threshold for binary dispersions of discs, presented as a contour plot. Each
line represents a constant value of percolation thresholds. The dashed line closely tracks the loca-
tion of the maximum percolation threshold.

There are certain physical requirements for the limiting behavior of the per-

colation threshold for any set of dispersions. Here we used the simulation

results as a tool to demonstrate the validity of such limits. As noted by Quin-

tanilla [24], in the case where f = 0 or λ = 1, we expect that the percolation

threshold should be equivalent to φc, as each of these systems represents the

monodisperse case.

The extended Monte Carlo results also suggest several additional condi-

tions for limiting behavior. Quintanilla [24, 36] noted that the percolation thresh-
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old appeared to be maximum for small λ in the case of (1− f) ≈ λ2. We

further that observation by noting that not only does it hold true for the ex-

tended Monte Carlo results, but that consideration of limits supports this hy-

pothesis. For a given ratio of radii, the maximum percolation threshold is

achieved with a large disc number fraction of λ2. Note that this hypothesis

is distinct from the hypothesis that the percolation threshold be symmetric, i.e.

φc

(
fλ2

fλ2+1−f

)
= φc

(
1−f

fλ2+1−f

)
which was proposed in [45] and disproved in

[36].

This is supported empirically by the Monte Carlo results but may be un-

derstood analytically by considering percolation of the binary disc mixture as

two collocated percolating systems: a system of larger discs and a system of

smaller discs. This ratio may be thought of as the total area of the large disks

at percolation, normalized by the total area of all disks if all disks were of the

smaller size. The total number of discs rather than the number of small discs is

used in the denominator because there is effectively a small disc at the center

of every large disc. Thus the ratio is a measure of how close both systems are to

percolation. The percolation threshold will be maximized when both systems

contribute equally to percolation, and the ratio is unity, as in Eq. (6).

1− f
λ2

=
(1− f)R2nc
λ2R2fnc

= 1 (6)

This result is also supported through the consideration of a pair of limiting

cases. For the case in which both (1− f) and λ approach zero, consider total

area fraction for monodisperse disks shown in Eq. (7).

ηc = nc (1− f)πR2 + ncfλ
2πR2 (7)

In this equation, the first term represents the contribution of the large disks

to the total area, and the second term the contribution of the small disks to

the total area. Supposing that λ2 approaches zero very rapidly compared to

(1− f) and the disks of the larger size drive percolation, then bulk percolation
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will occur when the disks of the larger size percolate, as in Eq. (8).

ηc ≈ n (1− f)πR2 (8)

The total area fraction for the percolating system can be written as

ηc = ηc

(
1 +

fλ2

1− f

)
(9)

In the case that λ2 does, in fact, approach zero very rapidly compared to

(1− f), the second term goes to zero and ηc = ηc. However, in the case that

λ2 approaches zero at about the same rate as (1− f), the second term will be

equal to unity and ηc = 2ηc.

Similarly, if (1 − f) approaches zero very rapidly compared to λ2, we may

use Eq. (10),

ηc ≈ nfλ2πR2 (10)

and

ηc = ηc

(
1 +

fλ2

1− f

)
(11)

In the case that (1 − f) does, in fact, approach zero very rapidly compared

to λ2, the first term goes to zero and ηc = ηc. However, in the case that λ2

approaches zero at about the same rate as (1 − f), the second term will be

equal to unity and ηc = 2ηc.

This result suggests a few additional restrictions on the maximum perco-

lation threshold: the maximum achievable critical filling factor for a binary

dispersion of discs is double the critical filling factor for the monodisperse case

and it is achieved only in the limit as f → 1 and λ2 → 0 at equal rates.

This limit based approach to determining the maximum percolation thresh-

old raises some interesting questions about how percolation thresholds are

maximized for very polydisperse systems. Namely: how would the perco-

lation threshold be limited for systems with three or more sizes of disks? The

approach presented here indicates that for such systems, percolation threshold
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Table 1: Limiting Criteria for Percolation Threshold Estimates of Bidisperse Disks in 2D Continu-
ums

Criteria Percolation
Threshold

λ f Notes

1 ηc = ηc = 1 all This represents the case where both types of
disks have equivalent radii and the system is
monodisperse.

2 ηc = ηc all = 0 This represents the case where all disks are
of the larger size and the system is monodis-
perse.

3 ηc = ηc 6= 0 = 1 This represents the case where all disks are of
the smaller size and the system is monodis-
perse.

4 ηc = ηc = 0 6= 1 This represents the case where the small discs
have no area and contribute neither to perco-
lation nor to the filling fraction. In this case
the system is monodisperse.

Maxima Criteria: λ2 (1− f)
5 ηc ≤ ηc ≤

2ηc

all all The minimum possible percolation threshold
for all possible values of f and λ is ηc; the
maximum possible percolation threshold is
2ηc

6 maximized small λ2 The maximum value of ηc (:, λ) will occur
when (1− f) = λ2

7 → 2ηc → 0 → 0 ηc → ηc when (1− f) and λ2 approach 0 at
equal rates.

will be maximized when all disks contribute equally to percolation, and the

ratio of their contributions is unity. Whether or not increasingly polydisperse

systems are limited in this manner is the subject of future study.

EVALUATION OF PREVIOUSLY PROPOSED FITS

Several works in the literature have proposed fits to Monte Carlo data which

predict the percolation threshold for binary disk dispersions. Based on the lim-

iting behaviors discussed above, a list of criteria for the behavior of any equa-

tion predicting the percolation threshold of binary disk dispersions is compiled

and presented in Table 1.

The criteria listed as 1 and 2 were noted by Quintanilla [24] along with
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the observational remark that the maximum value of φc for small values of λ

appeared to track well with (1− f) ≈ λ2. The maximum limiting criteria put

forth by conditions 5 and 7 are, to the best knowledge of these authors, unique

to this work.

Several correlations have been proposed to fit the percolation threshold sur-

face as a function of λ and f , which can be evaluated based on the criteria

enumerated in Table 1.

Dhar [40] used a correlation length argument to derive the estimate in Eq.

(12).

ηc (f, λ) ∝
fλ2 + (1− f)2

fλ2 + (1− f)λ3/4
(12)

When plotted over the range of λ and f considered here, the Dhar estimate

demonstrated poor correlation to Monte Carlo results. We note that the Dhar

correlation yields the monodisperse result when λ = 1, which satisfies condi-

tion 1, but fails to satisfy the additional six criteria.

Quintanilla [24] proposed an alternate empirical fit to the Dhar correlation

[40] for the range of λ and f considered in his results. That empirical fit is

shown in Eq. (13),

ηc (f, λ) ≈ ηc
a
(
fλ2 + 1− f

)
a− f

(13)

where the critical filling factor for monodisperse disks is given by ηc = ηc (1, λ) =

ηc (f, 1) ≈ 1.12808737, and the parameter a by Eq. (14).

a = 1 +
e6.8λ

115
(14)

It should be noted that Quintanilla [24] advises against using this correlation

outside of the range 0.1 ≤ λ ≤ 0.9 due to its empirical nature and certain

limiting requirements. Quintanilla generated this empirical fit by optimizing

estimates of the number density of the large discs at the percolation threshold.

ρ′ =
nlarge
L2

=
η

πR2

1− f
fλ2 + 1− f

(15)
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When evaluated in regards to the proposed criteria, we see this fit does quite

well in meeting criteria 2 and 5, but fails to satisfy conditions 1, 3, 4, 6 and 7.

Although fairly good at predicting the percolation threshold within the bounds

of the simulated work, the Quintanilla fit requires increasingly large numbers

of small disks to meet the maximum requirements. The performance of this fit

– and several others – with regards to criteria 6 is shown in Fig. 4. Interest-

ingly, many of these fits scale well with varying powers of λ. In the case of the

Quintanilla fit, the required number fraction of small disks for the maximum

percolation threshold at high values of λ is greater than one, as shown in Fig. 4,

a clear violation of physical constraints. Additionally, because this fit does not

satisfy criteria 5, the maximum discrepancy between its predictions and our

numerical data is 0.8126. This is an unacceptably large error.

Quintanilla later suggested in [36] a fit for binary disk dispersions of the

form

ηc = ηc + a(λ)νb(λ)(1− ν)c(λ) (16)

Note that Eq. (16) includes a correction to a typo found in [36] where the ’+’

sign is missing. Eq. (16) is proportional to the probability density function of

the beta distribution with parameters b(λ) and c(λ). Eq. (16) trivially satisfies

criteria 2 and 3. Provided a(0) = a(1) = 0, criteria 1 and 4 are satisfied as well.

The location of the maximum value of ηc(:, λ) is given by

ν ∗ (λ) = b(λ)

b(λ) + c(λ)
(17)

Because the parameters were fit independently for each value of λ, the location

of the maximum percolation threshold for this fit matches the experimental

data very well. Unfortunately, the parameters a(λ), b(λ), and c(λ) given in [36]

are tabular and cannot be expanded outside of the range of λ considered in that

work. This makes it impossible to verify criteria 5 or 7 or to look at criteria 6

rigorously although the minimum prescribed in criteria 5 is satisfied. Because

this fit cannot be used to extrapolate outside the range of λ used to generate it,
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we will not discuss it further.

In Meeks et al. [46] , the concept of excluded area was generalized to poly-

disperse systems to predict percolation thresholds, and a new correlation of

binary disk percolation was proposed, given by Eq. (18).

ηc =
2ηc
[
fλ2 + (1− f)

]
[(λ2 − 2λ+ 1) f2 + (λ2 + 2λ− 3) f + 2]

(18)

It was noted that this fit – hereafter referred to as the ”unmodified Meeks fit” –

had moderately good agreement with the simulation results, satisfying criteria

1, 2, and 3. However, the unmodified Meeks fit does not recover condition 4, as

in the case that λ = 0, the quantity ηc is undefined. It performs reasonably well

at predicting maximum percolation thresholds, satisfying conditions 5 and 7,

although it consistently over-predicted the location of the maximum percola-

tion threshold for binary disk systems failing to satisfy criteria 6. Here we add

that for a fixed ratio of radii, λ the number fraction of large discs corresponding

to the maximum percolation threshold is observed to scale with λ rather than

λ2, as shown in Fig. 4. Because the unmodified Meeks fit satisfies criteria 5 but

fails to satisfy criteria 6 the maximum discrepancy between its predictions and

our numerical data approaches the range of values permitted by criteria 5 of

0.2189. The largest observed discrepancy was 0.2057. It is expected that this

value should grow with the degree of polydispersity considered.

Meeks et al. [46] suggested a density factor to improve correlation, which

here we refer to as γ, to be inserted in place of f . It was suggested that a

correction factor for the density of the smaller disks would proportionally bias

their contribution to the percolation threshold in a way that more accurately

predicted the percolation threshold. For the corrected fit presented there, γ

was equal to the small disk area fraction v, a quantity given by Eq. (19).

γ = v =
fλ2

fλ2 + (1− f)
(19)

This substitution was enacted such that a corrected correlation was proposed
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as Eq. (20).

ηc =
2ηc
[
vλ2 + (1− v)

]
[(λ2 − 2λ+ 1) v2 + (λ2 + 2λ− 3) v + 2]

(20)

This ”modified Meeks fit” performs similarly to the unmodified Meeks fit, as

it satisfies 1, 2, 3, 5 and 7, and fails to satisfy condition 4. This modified fit was

noted to predict percolation threshold far from the peak much more accurately

than the unmodified Meeks fit. Although, the modified Meeks fit predicts the

location of the maximum percolation threshold much more accurately than the

unmodified Meeks fit, it consistently over-predicts this value, as shown in Fig.

4 – scaling with λ3 rather than the previous λ or the desired λ2 – and thus does

not fully satisfy condition 6. The maximum observed discrepancy for this fit

was 0.1645 over the range of f and λ considered but it is expected to approach

0.2189 for larger values of f and smaller values of λ in the same way as the

unmodified Meeks fit.

PROPOSAL OF A NEW CORRELATION FOR PREDICTION OF PERCOLATION

THRESHOLD

Given the ability of the Meeks correlation to satisfy nearly all of the limiting

criteria, we naturally ask if additional adjustments can be made to the struc-

ture of that fit which will allow us to satisfy conditions 4 and 6. Based on the

approach in [46], we propose a correlation with a density correction factor, γ,

as well as a size correction factor given by β, which can be inserted into Eq.

(18) in place of f and λ respectively, leading to a correlation which takes the

form

ηc =
2ηc
[
γβ2 + (1− γ)

]
[(β2 − 2β + 1) γ2 + (β2 + 2β − 3) γ + 2]

(21)

Note that the modified Meeks fit in Eq. (20) takes exactly this form, with β = λ

and γ = v. Here we propose another fit of this form, with a size correction

factor shown in Eq. (22),

β = λ2/3 (22)
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and a density correction factor shown in Eq. (23).

γ =
fλ2

fλ2 + (1− f)3/2
(23)

This correlation, since γ and β collapse to f and λ in the degenerate cases of

f = 0 and λ = 1, maintains the same limiting conditions in those scenarios

as Eq. (18). As such, this correlation satisfies conditions 1 , 2, 3, 5 and 7 in

exactly the same way as the modified Meeks fit given by Equation (20). The

degenerate case of λ = 0 now reduces to the monodisperse result, satisfying

condition 4. We now check the location of the maxima, shown in Fig. 6, and

observe very good agreement with the simulation results, satisfying condition

6. The maximum observed discrepancy for this fit was 0.0723 over the range

of f and λ considered and unlike the other fits, this value is not expected to

increase for larger values of f and smaller values of λ since this fit satisfies all

of the limiting criteria.

For a given ratio of disc radii, λ, the value of f for which the percolation

threshold is maximized may be determined from any of these fits quite easily.

For the Quintanilla fit [24], this maximum lies outside of the acceptable range

of f . Specifically, ηc (f ;λ)f = max ηc ⇒ f < 0. Fig. 4 shows the differences

between the locations of the maximums predicted by the various fits and sim-

ulation data. The proposed relation that 1−f = λ2 ⇒ ηc (f, λ) = max
f,λ

ηc agrees

very well with the simulation data.

From Fig. 4 we make a few interesting observations. Condition 6 proposes

that the maximum percolation threshold for bidisperse disks will occur when

1 − f = λ2, and that the best predictors of percolation threshold will conform

to this condition. The simulation data and correlation proposed by Eqs. (21),

(22), and (23) adhere to this condition very well. Although the modified and

unmodified Meeks fits do not closely scale with λ2, interestingly, they scale

very well with λ3 and λ respectively. The reason for this behavior is not yet

known, however, it indicates that the constant excluded volume approach to

prediction of percolation thresholds detailed by [46] has excellent potential to
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Figure 4: Number density of large disks (1− f) at the maximum percolation threshold, as a func-
tion of λ. Location of maximum percolation threshold as predicted by Monte Carlo simulation,
the Meeks modified and unmodified fits, the empirical fit proposed by Quintanilla [24], and the
correlation proposed in this work.

capture a wide range of behaviors for polydisperse systems.

The performance of the proposed fit can be further compared to the simula-

tion results. Fig. 5 shows a contour plot of the percolation threshold predicted

by Eqs. (21), (22), and (23). While not a perfect fit, the proposed correlation

matches the simulation data (Fig. 3) quite well over the entire range of λ and

f considered. Taken with its satisfaction of all of the limiting cases, it is ex-

pected that the proposed fit may be used to predict percolation thresholds for

bidisperse systems somewhat beyond the range of values simulated. The close

Figure 5: Percolation threshold predicted by proposed correlation given by Eqs. (21), (22), and (23).
Contour plot for all considered number fractions and radii ratios. This plot demonstrates a high
degree of similarity to the simulation data presented in Fig. 3

resemblance between Fig. 5 and Fig. 3 indicates that the correlation proposed

by Eqs. (21), (22), and (23) predicts the behavior of the percolation threshold
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very well, even in regions far from the end conditions. By quantitatively com-

paring the results from the simulation data detailed in the Appendix to the

percolation thresholds predicted by the correlation, we note that the values

predicted by the proposed correlation are within 13% of the value found by

the simulation in all regions, and are within 3% when λ is greater than 0.1 and

f is less than 0.97. This is consistent with good agreement in all regions, and

excellent agreement in regions of lower polydispersity.

There is a plethora of ways in which the performance of the correlation pro-

posed by Eqs. (21), (22), and (23) can be compared to the simulation data enu-

merated in the Appendix. Although an exhaustive quantification of the simi-

larity would perhaps be somewhat tedious, and certainly beyond the scope of

this work, one such comparison is shown in Fig. 6. Fig. 6 depicts the behav-

ior maximum predicted percolation threshold as a function of λ for both the

proposed correlation and the simulation data. Fig. 6 shows a quantity of inter-

Figure 6: The maximum percolation threshold predicted for binary disk dispersions for both the
simulation data, and the proposed correlation given by Eqs. (21), (22), and (23). Very good agree-
ment is demonstrated, and the values predicted by the proposed correlation match the simulation
data to within 2%.

est for this work – namely the maximum possible percolation threshold for a

given value of λ – for both the proposed correlation and the simulation data.

The predicted values correspond to within 2%, demonstrating excellent agree-

ment. Such comparisons show quantitatively that the correlation given Eqs.

(21), (22), and (23) performs quite well in predicting quantities of particular

interest, even in the presence of very high polydispersity.
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CONCLUSIONS

In this work we examined the effect of very high polydispersity on the perco-

lation threshold for binary disk systems. This work confirmed Quintanilla’s

binary disk results [24, 36], and expanded the simulation regime to include

nearly 5X as many data points over a much larger range of disk radii ratio, λ,

and small disk concentration, f . This work proposes that the maximum perco-

lation threshold for a binary disk system will be achieved when (1− f) ≈ λ2,

and that the percolation threshold for any binary disk dispersion cannot exceed

2ηc. A set of criteria for fits predicting the percolation threshold for binary disk

dispersions is proposed, and a new fit satisfying all proposed conditions is put

forth.
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APPENDIX

This appendix contains the values of the percolation threshold predicted by the

Monte Carlo simulations. Results from this study are reported in detail in the

Appendix. Each value has an estimated error of ≤ 5 in the last decimal place.

Table 2 contains the simulation results for low values of f and high values of

λ, and covers much of the same range examined by Quintanilla [24]. Table 3

shows the simulation results for low values of f and high values of λ. Table 4

shows the simulation results for the region of highest polydispersity with high
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values of f and low values of λ. Table 5 shows the simulation results for high

values of f and high values of λ.

Table 2: Simulation results for low values of f and low values of λ

Sm
al

lD
is

c
N

um
.D

en
si

ty
(f

) Radius Ratio (λ)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.10 0.6765 0.6765 0.6766 0.6766 0.6766 0.6766 0.6767 0.6767 0.6767 0.6768
0.20 0.6766 0.6766 0.6766 0.6767 0.6768 0.6768 0.6769 0.6770 0.6771 0.6771
0.30 0.6765 0.6766 0.6766 0.6767 0.6768 0.6769 0.6770 0.6771 0.6773 0.6775
0.40 0.6765 0.6766 0.6766 0.6768 0.6769 0.6771 0.6773 0.6775 0.6778 0.6780
0.50 0.6765 0.6767 0.67681 0.6770 0.6772 0.6775 0.6777 0.6781 0.6784 0.6788
0.60 0.6766 0.6767 0.6769 0.6771 0.6775 0.6779 0.6784 0.6789 0.6793 0.6799
0.70 0.6768 0.6769 0.6773 0.6778 0.6783 0.6788 0.6795 0.6803 0.6811 0.6819
0.80 0.6767 0.6771 0.6777 0.6785 0.6793 0.6803 0.6815 0.6828 0.6841 0.6854
0.85 0.6768 0.6774 0.6782 0.6793 0.6805 0.6818 0.6836 0.6854 0.6871 0.6891

Table 3: Simulation results for low values of f and high values of λ
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al
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is

c
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(f

)

Radius Ratio (λ)
0.12 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.6766 0.6765 0.6767 0.6767 0.6767 0.6767 0.6768 0.6769 0.6766 0.6765 0.6768 0.6768
0.10 0.6769 0.6770 0.6772 0.6774 0.6776 0.6777 0.6778 0.6777 0.6775 0.6773 0.6769 0.6765
0.15 0.6770 0.6773 0.6777 0.6780 0.6783 0.6785 0.6786 0.6785 0.6781 0.6775 0.6770 0.6766
0.20 0.6773 0.6776 0.6781 0.6786 0.6791 0.6792 0.6794 0.6793 0.6787 0.6780 0.6772 0.6766
0.25 0.6775 0.6780 0.6787 0.6793 0.6798 0.6802 0.6803 0.6801 0.6793 0.6783 0.6774 0.6768
0.30 0.6778 0.6784 0.6792 0.6800 0.6807 0.6811 0.6812 0.6808 0.6799 0.6786 0.6775 0.6766
0.35 0.6782 0.6788 0.6800 0.6809 0.6817 0.6822 0.6823 0.6817 0.6803 0.6788 0.6777 0.6768
0.40 0.6786 0.6794 0.6808 0.6820 0.6828 0.6833 0.6835 0.6827 0.6810 0.6792 0.6777 0.6768
0.45 0.6791 0.6801 0.6817 0.6833 0.6841 0.6846 0.6847 0.6836 0.6816 0.6795 0.6778 0.6769
0.50 0.6795 0.6808 0.6828 0.6845 0.6856 0.6862 0.6861 0.6846 0.6821 0.6799 0.6779 0.6768
0.55 0.6803 0.6817 0.6841 0.6860 0.6873 0.6879 0.6876 0.6856 0.6826 0.6799 0.6781 0.6768
0.60 0.6812 0.6829 0.6857 0.6879 0.6892 0.6896 0.6893 0.6865 0.6830 0.6801 0.6779 0.6769
0.63 0.6817 0.6836 0.6868 0.6892 0.6907 0.6909 0.6903 0.6871 0.6833 0.6801 0.6780 0.6768
0.64 0.6819 0.6839 0.6873 0.6898 0.6911 0.6914 0.6906 0.68729 0.6834 0.6802 0.6780 0.6768
0.65 0.6821 0.6843 0.6876 0.6902 0.6917 0.6918 0.6910 0.6875 0.6835 0.6802 0.6779 0.6768
0.67 0.6828 0.6851 0.6886 0.6914 0.6926 0.6928 0.6917 0.6878 0.6835 0.68014 0.6780 0.6769
0.70 0.6836 0.6862 0.6902 0.6932 0.6944 0.6941 0.6928 0.6883 0.6835 0.6800 0.6779 0.6768
0.73 0.6846 0.6877 0.6921 0.6952 0.6963 0.6958 0.6938 0.6887 0.6836 0.6800 0.6780 0.6769
0.75 0.6855 0.6887 0.6936 0.6967 0.6976 0.6967 0.6946 0.6888 0.6836 0.6799 0.6778 0.6769
0.77 0.6865 0.6901 0.6952 0.6983 0.6990 0.6978 0.6952 0.6890 0.6835 0.6798 0.6778 0.6768
0.80 0.6884 0.6925 0.6981 0.7012 0.7014 0.6994 0.6961 0.6891 0.6833 0.6797 0.6777 0.6767
0.81 0.6891 0.6934 0.6993 0.7023 0.7022 0.6999 0.6964 0.6889 0.6832 0.6796 0.6777 0.6767
0.82 0.6899 0.6944 0.7005 0.7034 0.7030 0.7004 0.6967 0.6889 0.6831 0.6795 0.6775 0.6767
0.83 0.6909 0.6957 0.7018 0.7047 0.7038 0.7009 0.6968 0.6888 0.6830 0.6794 0.6775 0.6767
0.84 0.6916 0.6967 0.7031 0.7057 0.7047 0.7013 0.69696 0.6887 0.6828 0.6794 0.6775 0.6768
0.85 0.6929 0.6981 0.7048 0.7070 0.7054 0.7017 0.6970 0.6885 0.6826 0.6793 0.6775 0.6767
0.86 0.6941 0.6997 0.7064 0.7083 0.7063 0.7021 0.6971 0.6883 0.6825 0.6792 0.6774 0.6767
0.87 0.6955 0.7016 0.7082 0.7097 0.7069 0.7022 0.6969 0.6880 0.6822 0.6789 0.6773 0.6767
0.88 0.6972 0.7034 0.7101 0.7111 0.7077 0.7023 0.6968 0.68770 0.6820 0.6789 0.6772 0.6767
0.89 0.6990 0.7056 0.7124 0.7125 0.7083 0.7024 0.6965 0.6874 0.6817 0.6787 0.6772 0.6767
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Table 4: Simulation results for high values of f and low values of λ
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Radius Ratio (λ)
0.01 0.015 0.02 0.025 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.9 0.677 0.6773 0.6780 0.6783 0.6790 0.6808 0.6828 0.6851 0.6876 0.6903 0.6930 0.6958
0.91 0.678 0.678 0.679 0.679 0.680 0.681 0.684 0.686 0.689 0.692 0.695 0.6978
0.92 0.677 0.678 0.6781 0.679 0.6801 0.6820 0.6845 0.6874 0.6905 0.6940 0.697 0.7005
0.95 0.677 0.678 0.679 0.680 0.6819 0.6852 0.6893 0.6940 0.6988 0.7038 0.7087 0.7133
0.96 0.678 0.6785 0.6795 0.6811 0.6831 0.6873 0.6925 0.6983 0.7040 0.7100 0.7155 0.7209
0.97 0.678 0.679 0.6809 0.6831 0.685 0.6909 0.6980 0.7052 0.7124 0.7198 0.7260 0.7315
0.98 0.679 0.681 0.6828 0.686 0.6897 0.698 0.7077 0.7174 0.7271 0.7355 0.7421 0.7466

0.983 - - - - 0.6918 0.7015 0.713 - 0.734 0.743 0.749 0.7527
0.985 - - - - - - - - 0.7400 0.748 0.754 0.7556

0.9875 - - - - - - - - 0.748 0.7556 0.7591 0.7586
0.99 0.680 0.684 0.688 0.695 0.702 0.718 0.733 0.7475 0.758 0.7634 0.7638 0.7602

0.991 - - - - - - - - 0.762 0.7666 0.7652 0.758
0.992 0.682 - 0.692 0.701 0.708 0.726 0.7449 0.759 0.7671 0.7689 0.7652 0.7577
0.993 - - - - - - - 0.766 0.770 0.769 0.7641 0.754
0.994 - - - - - - 0.763 0.773 0.774 0.771 0.761 0.752
0.995 0.683 0.692 0.702 0.713 0.725 0.751 0.770 0.778 0.7764 0.7678 0.7567 0.7458
0.996 - - - - - - 0.780 0.783 0.7741 - - -
0.997 0.688 - 0.715 0.731 0.751 0.779 0.789 0.781 0.7657 0.7512 0.7383 0.7276

0.9975 - - - - - 0.786 0.789 0.777 - - - -
0.998 - - - - 0.775 0.795 0.786 - - - - -

0.9985 - - - - 0.793 0.798 0.776 - - - - -
0.999 0.712 0.744 0.777 0.800 0.807 0.785 0.756 0.735 0.7203 0.710 0.7028 0.6973

0.9991 - - - 0.808 0.808 0.781 - - - - - -
0.9992 - - 0.792 0.813 0.809 0.774 - - - - - -
0.9993 0.723 0.763 0.796 0.813 0.804 - - - - - - -
0.9994 - - 0.809 0.815 0.797 - - - - - - -
0.9995 0.739 0.785 0.815 0.810 0.786 - - - - - - -
0.9996 - 0.803 0.821 0.799 - - - - - - - -
0.9997 0.771 0.825 0.815 0.782 0.756 0.724 0.707 0.6978 0.692 0.688 0.6849 0.6837
0.9998 0.808 0.831 0.790 - - - - - - - - -
0.9999 0.836 0.786 0.743 0.722 0.707 0.6942 0.687 0.684 0.6817 0.680 0.6794 0.6788

Table 5: Simulation results for high values of f and low values of λ
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Radius Ratio (λ)
0.11 0.12 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9

0.9 0.6984 0.7013 0.7083 0.7147 0.7140 0.7087 0.7023 0.6961 0.6869 0.6815 0.6786 0.6772 0.6766
0.91 0.702 0.704 0.711 0.7173 0.7150 0.7090 0.7019 0.6956 0.6864 0.6811 0.6784 0.6771 0.6766
0.92 0.705 0.7068 0.7147 0.7195 0.7162 0.7091 0.7012 0.6948 0.6857 0.6808 0.6782 0.6770 0.6766
0.93 0.707 0.713 0.7185 0.7222 0.7171 0.7085 0.7004 0.6940 0.685 0.6803 0.6781 0.6770 0.6766
0.94 0.7118 0.716 0.7231 0.7248 0.7172 0.7077 0.699 0.6927 0.6841 0.6800 0.6780 0.6769 0.6765
0.95 0.719 0.7214 0.7282 0.7267 0.7167 0.7062 0.6974 0.6912 0.6832 0.6795 0.6777 0.6769 0.6766

0.955 0.724 0.726 0.732 0.7273 0.716 0.705 0.697 0.690 0.6827 0.6792 0.6775 0.6769 0.6765
0.96 0.7256 0.7289 0.7341 0.7277 0.7148 0.7036 0.6952 0.6892 0.6824 0.6790 0.6775 0.6768 0.6765

0.965 0.732 0.734 0.737 0.7272 0.714 0.702 0.694 0.688 0.6818 0.6787 0.6774 0.6767 0.6765
0.97 0.737 0.7386 0.7393 0.7263 0.7115 0.6997 0.6919 0.6868 0.6810 0.6784 0.6773 0.6767 0.6765

0.975 0.741 0.744 0.7410 0.724 0.709 0.697 0.6901 0.685 0.6804 0.6781 0.6771 0.6767 0.6766
0.977 0.747 0.747 0.7413 0.724 0.707 0.696 0.689 0.685 0.6802 0.6779 0.6771 0.6766 0.6766
0.98 0.7491 0.7489 0.7408 0.7202 0.7045 0.6943 0.6881 0.6841 0.6799 0.6778 0.67694 0.6766 0.6766

0.983 0.7521 0.7511 0.7392 0.717 0.703 0.692 0.687 0.683 0.6792 0.6776 0.67686 0.6766 0.6765
0.985 0.7544 0.7517 0.7375 0.715 0.700 0.690 0.686 0.681 0.6791 0.6775 0.6768 0.6765 0.6766
0.9875 0.7559 0.7511 0.735 0.711 0.697 0.6896 0.6856 0.681 0.6789 0.6773 0.6768 0.6765 0.6765

0.99 0.7546 0.7478 0.7282 0.7058 0.6936 0.6868 0.6828 0.6807 0.6782 0.6772 0.6767 0.6765 0.67649
0.992 0.751 0.743 0.721 0.7010 0.692 0.6849 0.683 0.6798 0.6778 0.6770 0.6767 0.6765 0.6765
0.995 0.737 0.728 0.709 0.692 0.686 0.6820 0.680 0.6786 0.6773 0.6768 0.6766 0.6765 0.6764
0.997 0.720 0.7123 0.6988 0.6878 0.682 0.6799 0.678 0.6779 0.6770 0.6766 0.6765 0.6765 0.6765
0.998 0.708 0.702 0.6917 0.6842 0.681 0.6785 0.678 0.678 0.677 0.6766 0.6765 0.6765 0.6765
0.999 0.6939 0.6902 0.6848 0.6806 0.678 0.6777 0.677 0.6769 0.6767 0.6765 0.6765 0.6764 0.6765
0.9997 0.682 0.681 0.6791 0.6784 0.677 0.6765 0.676 0.677 0.677 0.6765 0.6765 0.6764 0.6765
0.9999 0.678 0.678 0.677 0.6773 0.677 0.6766 0.6765 0.6765 0.6764 0.6764 0.6765 0.6764 0.6765
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