Percolation of binary disk systems: Modeling and theory
Kelsey Meeks, John Tencer, and Michelle L. Pantoya
Phys. Rev. E 95, 012118 — Published 12 January 2017
DOI: 10.1103/PhysRevE.95.012118
Percolation of Binary Disk Systems: Modeling and Theory

Kelsey Meeksa,b,*, John Tencera, Michelle L. Pantoyab

aSandia National Laboratories, Albuquerque, NM 87123
bMechanical Engineering Department, Texas Tech University, Lubbock, TX 79409-1021

\textbf{ABSTRACT}

The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction, and has been the subject of much study in the literature. This work utilizes Monte Carlo models to predict percolation thresholds for a two dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A new correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and compared to previously published correlations. A set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.

\textbf{INTRODUCTION}

For problems dealing with transport properties and particle connectivity, \textit{percolation theory} is an important resource in predicting composite behavior. \textit{Percolation theory} is the branch of statistical mechanics dealing with particle connectivity and dispersion in random media, and provides a tool for linking microstructure and macroscopic material properties [1]. It is often described in

*Corresponding author. Phone: 1-505-844-1497
\textit{Email address:} kmeeks@sandia.gov (Kelsey Meeks)
terms of the critical parameter at which bulk connectivity is established, called the percolation threshold. Below the percolation threshold, large connected components do not exist.

Percolation is a well-studied physical phenomena because of its broad applicability, including physical percolation of fluids through rock [2, 3, 4], as well as resistor networks [5], disease spread [6], and many problems in material science [7, 8]. Studies of these phenomena often focus on either lattice or continuum systems. Lattice percolation is described by regular or irregular networks, where sites or bonds are occupied with some probability \(f \), and occupied sites form connected pathways. In the continuum, any point is available for occupancy, and the overlap and intersection of objects results in connected clusters. For either system, the problem of percolation can be summed up by the question: for a system of characteristic length \(L \), and a set of objects randomly located, what is the number, \(N \), of objects necessary to create a connected cluster large enough to span the system? For the oft studied infinite system, in which the intensive number of objects at percolation is also infinite, object occupancy is often described in terms of density, \(n = \frac{N}{L^2} \) in two dimensions, or \(n = \frac{N}{L^3} \) in three dimensions. In spite of the conceptual simplicity of this question, no exact solutions for any continuum percolation problems are yet known, although increasingly precise estimates have been obtained through extensive numerical simulation.

In 1970, Scher and Zallen demonstrated that for regular lattices there exists a universal critical area fraction for disks given by \(\eta_{c,2} = 0.45 \) and a critical volume fraction for spheres of \(\eta_{c,3} = 0.16 \) [9, 10, 11]. These quantities are invariant for all lattices that can be occupied by monodisperse disks or spheres, independent of specific lattice geometry, and dependent only on the dimension of the system. Later work found percolation thresholds for systems of non-regular lattices [12, 13, 14, 15]. Although lattice percolation has been the subject of much analytical and numerical study, continuum percolation is often more representative of the behavior of real systems [16, 17, 18, 19].

For continuum percolation of monodisperse disks in two dimensions, it
was discovered that the percolation threshold could be described by a universal total area fraction of 1.12808737 [20, 21, 22]. Further work showed that concept of a constant critical total area could be generalized to that of a universal total excluded area, and it was found that the excluded area of monodisperse objects is approximately constant at percolation, theorized to lie between 3.2 and 4.5 for any system of monodisperse objects in two dimensions [23]. Note that the total excluded area at percolation for monodisperse disks (~4.5) is consistent with the upper bound of the universal total excluded area range.

Several Monte Carlo methods have been used to predict percolation thresholds. Gradient percolation is a technique that simulates disks as centered on points of an underlying, inhomogeneous Poisson field [24]. The average location of the edge naturally formed by the percolating measure is used to compute the percolation threshold. Two techniques have been used to predict percolation thresholds in this manner: the gap-traversal method and the frontier-walk method. The frontier walk method has been rigorously shown to converge to the percolation threshold for homogenous systems [25]. Other types of Monte Carlo methods include the rescaled-particle algorithm, in which a static particle configuration is rescaled to determine upper and lower percolation bounds [26] and several variations of the union-find algorithm [4, 27, 28], including one implementation adapted for use in the continuum by Mertens and Moore [20] based on the work Newman and Ziff [4].

These Monte Carlo simulations have been used to refine predictions of the percolation threshold of monodisperse disks [22, 20, 21], aligned squares [29, 28] and sticks [20, 27] to several decimal places of accuracy. Such simulations are costly and time consuming [24], but ever evolving computing capabilities enable increasingly accurate and convenient simulations. However, the assumption of object monodispersion is often not accurate for physical systems [30, 31, 32, 33, 34]. This has driven several studies attempting to account for varying degrees of polydispersity in order to better transition theory to application.

Polydisperse systems have been demonstrated to have different percolation
thresholds from monodisperse systems [31, 35]. The problem of overlapping disks of two sizes in the continuum has been studied by several researchers. Quintanilla utilized extensive gradient Monte Carlo simulations to examine the percolation thresholds of such systems [24, 36], including a proposed correlation for the percolation threshold as a function of disk radii ratio, λ, and relative concentration of the disk of smaller size, f. Based on those results, Balram et al. developed a phenomenological equation for the increase in the effective size of the larger discs in the presence of smaller discs [37]. Monte Carlo results have also predicted percolation thresholds for disks with distributions of radii [38]. The related problem for spheres of more than one size in three dimensions has also been examined [39, 40]. The range of simulation results available over λ and f is limited, and few studies report results for values of λ less than 0.1, or values of f greater than 0.999. Although many of these works present potential extrapolation for some parameters, these extrapolations are often caveated outside of the simulation bounds.

Studies have also attempted to find the minimum or maximum percolation threshold for a set of conditions, as this is often physically relevant for problems such as determining how much additive is appropriate, as in the addition of carbon nanoparticles to a polymer composite [8], a maximum infection time for modeling of disease spread [6], or predicting the maximum set time before concrete becomes load bearing [41]. It has been proposed that for systems of discs, a monodispersion minimizes the percolation threshold [42, 43]. It remains to be proven which conditions maximize the percolation threshold.

The objective of the present work is to extend the study of interpenetrating binary disk dispersions to higher polydispersities than considered previously, and suggest a prediction of behavior. From these results, we propose criteria that will maximize the percolation threshold of such systems. This is a natural extension of the monodispersion studies previously reported and provides relevant simulations for applications that inherently include an additive with a size distribution.
METHODS

In this study, we use the union find algorithm with open boundary conditions to determine the percolation threshold for binary disk dispersions for regions of high polydispersity – extending the results predicted by Monte Carlo simulation in the literature. This expanded data set is reported in full in the Appendix. A discussion of the limiting behavior made evident by these expanded results, and a proposal for a new phenomenological equation for the prediction of percolation threshold for binary disk systems, is then put forth. We begin this discussion first with a definition of terms.

DEFINITION OF TERMS

The connectivity of objects can be described in terms of the filling factor, η, which is the total area of all objects in a system normalized by system size. For a square domain with sides of length L, the filling factor for a system of N discs of radius R is given by

$$\eta = N \frac{\pi R^2}{L^2}$$

(1)

The filling factor is often related to the area fraction, ϕ, which is the fraction of the domain covered by objects. The area fraction can also be thought of as the probability that any point in a domain is covered by an object. For lattice percolation, where objects do not overlap, the area fraction and filling factor are equivalent. However, for continuum percolation, in the case where interpenetration occurs, the area fraction will be less than the filling factor due to object overlap. The concepts of filling factor and area fraction can be directly extended to problems of three dimensions, where the filling factor is the total volume of all objects in the system normalized by system size and the volume fraction is the fraction of the domain covered by objects (equivalent to area fraction in two dimensions). In either case, as the domain size approaches infinity the area fraction is related to the total area by the differential equation
\[
\frac{d\phi}{d\eta} = 1 - \phi \text{ which allows the solution.}
\]

\[
\phi = 1 - e^{-\eta}
\] \hspace{1cm} (2)

For the special case in which a system of objects has just achieved percolation, the area fraction is called the critical area fraction, or percolation threshold, \(\phi_c\). The corresponding filling fraction is called the critical filling fraction, \(\eta_c\). For an infinite system, the probability that a cluster of connected objects results in connectivity across the domain goes from zero to one at the percolation threshold. In a finite system, like those we are able to simulate, the probability that such a cluster exists goes from zero, at the placement of the first object, to one as object placement causes the entire domain to be filled. This transition is continuous, and becomes increasingly abrupt as the system grows in size, approaching an instantaneous transition for the infinite case.

For an infinitely large, two dimensional system containing monodisperse disks, (or equivalently for a system of finite size containing infinitesimally small monodisperse discs) the percolation threshold is an invariant, approximated by \(\eta_c = 1.12808\). This estimate was obtained independently via Monte Carlo methods using both gradient percolation [21] and wrapping probabilities [20].

Monte Carlo Algorithm

In this work, Monte Carlo simulations are performed consistent with the spanning probability method used by Li and Zhang in [27]. In this approach, each simulation consists of a series of trials in which disks of a finite size are added to a much larger, finite 2D square. As each disk is placed, the Monte Carlo algorithm checks for overlap with other disks, merges connecting disks into clusters, and checks for a cluster that intersects two opposite sides of the domain. Such a cluster is called a spanning cluster, and its inception is congruous with the onset of percolation.

In each trial, the placement of disks continues until a spanning cluster has
been found both horizontally and vertically. When a spanning cluster of each type first appears, the number of disks in the system is reported. For all system sizes, it is observed that the number of discs at which a horizontal spanning cluster appears and the number of discs at which a vertical spanning cluster appears are only weakly correlated. This is justified through examination of results in this study and is consistent with assumptions made in the literature [20]. In this work, estimation of the monodisperse result consisted of \(O(10^5)\) trials. Estimates for binary disk systems consisted of \(O(10^3)\)-\(O(10^5)\) trials for each combination of \(f\) and \(\lambda\), depending on the desired accuracy. The accuracy achieved for each data point is reflected in the number of significant figures reported in the Appendix.

Once both horizontal and vertical percolation has been achieved, the trial is ended and no more disks are placed. After performing a simulation consisting of \(m\) trials, the spanning probability \(R_{N,L}\) for \(N\) discs in a system of size \(L\) is easily found by counting the total number of horizontal and vertical spanning events that occurred with fewer than \(N\) discs, and dividing by \(2m\). There is an obvious restriction in the resolution attainable for \(R_{N,L}\) calculated in this manner for a given sample size, \(m\). However, this difficulty may be overcome by convolving the measured spanning probabilities with the Poisson distribution with mean \(\lambda = \eta \left(L^2 / \pi R^2 \right) [20, 27]\), as shown in Eq. (3).

\[
R_L(\eta) = \sum_{n=0}^{\infty} \frac{e^{\lambda \eta}}{n!} R_{n,L}
\]

Following the work by Mertens and Moore [20], the Poisson weights \(w_n \propto \frac{e^{-\lambda \eta}}{n!}\) are calculated inductively to avoid numerical difficulties when \(n\) is large, as it is for any significant set of trials.

Calculation of \(w_n\) in this manner allows for a computationally accurate
summation that does not involve summation of functionally infinite terms.

\[
w_{\lfloor \lambda \rfloor - k} = \begin{cases}
0, & k = 0 \\
\frac{\lfloor \lambda \rfloor - (k-1)}{\lambda} w_{\lfloor \lambda \rfloor - (k-1)}, & k = 1, 2, \ldots
\end{cases}
\] (4)

\[
w_{\lfloor \lambda \rfloor + k} = \begin{cases}
1, & k = 0 \\
\frac{\lambda}{\lfloor \lambda \rfloor + k} w_{\lfloor \lambda \rfloor + (k-1)}, & k = 1, 2, \ldots
\end{cases}
\] (5)

The convolution is then normalized by the quantity \(\sum w_n \). This technique allows for the computation of the spanning probability for any value of the filling factor. For the open boundary conditions considered here, the critical spanning probability is 0.5 [44]. The critical filling factor for a particular system size is defined as the filling factor at which the spanning probability is equal to the critical spanning probability for that size system. The critical filling factor for the finite system is expected to converge to that of the infinite system as \((R/L)^{7/4} \) [24]. Fig. 1 illustrates that our algorithm converges at the expected rate.

The extrapolated value for the critical filling fraction is computed using a weighted linear regression as in [24, 20]. The reported uncertainty in this prediction is the half-width of the 95% confidence interval for this prediction. For the monodisperse case, our prediction is \(1.1282 \pm 1.61 e - 4 \) which is in agreement with but less precise than the previously published values of 1.12808 [21], 1.128085 [36], and 1.12808737 [20]. This is to be expected as the present result was achieved with far fewer simulations as the goal of this work is not to refine the prediction for monodisperse discs but rather to explore the behavior of binary dispersions under extreme dispersiveness.

Checking Against Published Results for Monodisperse Disks

To validate our implementation of the algorithm, this method is first used to determine the percolation threshold for monodisperse disks. Disks of size \(R \) were added to a square with side-length \(L \) until both vertical and horizontal
spanning clusters were observed. The number of disks necessary for percolation was recorded for each trial, and the resulting measured spanning probabilities were convolved with the Poisson distribution. This yielded an estimate of the two dimensional percolation threshold for disks of $\eta_c \approx 1.1282 \pm 0.61e - 4$, which is sufficiently precise for this study. The critical filling factor calculated for each simulation is shown in Fig. 1. System sizes below $R/L = 0.03$ were seen to be outside the asymptotic regime and therefore too small to yield useful information about the infinite percolation threshold.

Results and Analysis

Presentation of Results from Monte Carlo Simulations

Having validated implementation of the Monte Carlo simulation method for the monodisperse case, we move to our particular case of interest: binary disk dispersions. Here, we are concerned with the effect of polydispersity on the percolation threshold for binary dispersions of fully penetrable discs of different radii. This system was studied previously by Quintanilla [24, 36]. We adopt his notation, using $0 \leq \lambda \leq 1$ to denote the ratio of the disc radii and $0 \leq f < 1$ to denote the number fraction of the smaller discs. Number fraction is the concentration of small disks normalized by total number of disks, and can also be
thought of as the probability that a randomly selected disk is of the smaller size. We first verify our approach by reproducing Quintanilla’s results.

Fig. 2 shows Quintanilla’s published results [24], as well as the results generated by the algorithm used in this paper. Very good agreement is demonstrated. All of the data points from [24] are reproduced and the maximum difference is 8.331264e-4 and the differences at each point are within the uncertainty bounds of our predictions. Although Quintanilla used a gradient percolation method, it is expected that both methods should converge to the same percolation threshold. Successfully reproducing these results provides confidence in our implementation. In this study, Quintanilla’s results [24] have been extended for both smaller λ and larger f through extensive Monte Carlo simulations. Results from this study are reported in detail in the Appendix. Each value has an estimated error of ≤ 5 in the last decimal place. The expanded dataset is used to generate Fig. 3 – here presented in terms of $1 - f$ on a log-log scale – represents nearly five times the number of data points published by Quintanilla [24]. This expanded coverage is made possible both by the massive improvements in parallel computing since the publication of the prior work and by accepting slightly less precise solutions, particularly in re-

![Figure 2: Comparison of results generated here with those published by Quintanilla. The lines correspond to the points generated in this work while the x markers denote the corresponding results published in [24]. Very good agreement is demonstrated.](image)
gions far from the peak percolation threshold. Quintanilla and Ziff later published higher precision data [36] over roughly the same ranges of f and λ. Our uncertainties are large enough that there is no value in comparing to these results separately.

Our results are consistent with the previously proposed assertion that the minimum percolation threshold in 2D will be satisfied by monodisperse disks [24, 42, 43, 36, 39]. The results in Fig. 3 suggest that the percolation threshold will be maximized for smaller values of λ and some large value of f. The value of f for which the percolation threshold is maximized is dependent on the value of λ. Towards this end, it is instructive to consider the percolation threshold as a function of the large disc fraction, $1 - f$ instead of as a function of small disk fraction, f.

![Figure 3: Percolation threshold for binary dispersions of discs, presented as a contour plot. Each line represents a constant value of percolation thresholds. The dashed line closely tracks the location of the maximum percolation threshold.](image)

There are certain physical requirements for the limiting behavior of the percolation threshold for any set of dispersions. Here we used the simulation results as a tool to demonstrate the validity of such limits. As noted by Quintanilla [24], in the case where $f = 0$ or $\lambda = 1$, we expect that the percolation threshold should be equivalent to ϕ_c, as each of these systems represents the monodisperse case.

The extended Monte Carlo results also suggest several additional conditions for limiting behavior. Quintanilla [24, 36] noted that the percolation thresh-
old appeared to be maximum for small λ in the case of $(1 - f) \approx \lambda^2$. We further that observation by noting that not only does it hold true for the extended Monte Carlo results, but that consideration of limits supports this hypothesis. For a given ratio of radii, the maximum percolation threshold is achieved with a large disc number fraction of λ^2. Note that this hypothesis is distinct from the hypothesis that the percolation threshold be symmetric, i.e. $\phi_c \left(\frac{\lambda^2}{f \lambda^2 + 1 - f} \right) = \phi_c \left(\frac{1 - f}{f \lambda^2 + 1 - f} \right)$ which was proposed in [45] and disproved in [36].

This is supported empirically by the Monte Carlo results but may be understood analytically by considering percolation of the binary disc mixture as two collocated percolating systems: a system of larger discs and a system of smaller discs. This ratio may be thought of as the total area of the large disks at percolation, normalized by the total area of all disks if all disks were of the smaller size. The total number of discs rather than the number of small discs is used in the denominator because there is effectively a small disc at the center of every large disc. Thus the ratio is a measure of how close both systems are to percolation. The percolation threshold will be maximized when both systems contribute equally to percolation, and the ratio is unity, as in Eq. (6).

$$\frac{1 - f}{\lambda^2} = \frac{(1 - f) R^2 n_c}{\lambda^2 R^2 f n_c} = 1$$ (6)

This result is also supported through the consideration of a pair of limiting cases. For the case in which both $(1 - f)$ and λ approach zero, consider total area fraction for monodisperse disks shown in Eq. (7).

$$\eta_c = n_c (1 - f) \pi R^2 + n_c f \lambda^2 \pi R^2$$ (7)

In this equation, the first term represents the contribution of the large disks to the total area, and the second term the contribution of the small disks to the total area. Supposing that λ^2 approaches zero very rapidly compared to $(1 - f)$ and the disks of the larger size drive percolation, then bulk percolation
will occur when the disks of the larger size percolate, as in Eq. (8).

\[\eta_c \approx n (1 - f) \pi R^2 \] (8)

The total area fraction for the percolating system can be written as

\[\eta_c = \eta_c \left(1 + \frac{f \lambda^2}{1 - f}\right) \] (9)

In the case that \(\lambda^2 \) does, in fact, approach zero very rapidly compared to \((1 - f)\), the second term goes to zero and \(\eta_c = \eta_c \). However, in the case that \(\lambda^2 \) approaches zero at about the same rate as \((1 - f)\), the second term will be equal to unity and \(\eta_c = 2 \eta_c \).

Similarly, if \((1 - f)\) approaches zero very rapidly compared to \(\lambda^2 \), we may use Eq. (10),

\[\eta_c \approx n f \lambda^2 \pi R^2 \] (10)

and

\[\eta_c = \eta_c \left(1 + \frac{f \lambda^2}{1 - f}\right) \] (11)

In the case that \((1 - f)\) does, in fact, approach zero very rapidly compared to \(\lambda^2 \), the first term goes to zero and \(\eta_c = \eta_c \). However, in the case that \(\lambda^2 \) approaches zero at about the same rate as \((1 - f)\), the second term will be equal to unity and \(\eta_c = 2 \eta_c \).

This result suggests a few additional restrictions on the maximum percolation threshold: the maximum achievable critical filling factor for a binary dispersion of discs is double the critical filling factor for the monodisperse case and it is achieved only in the limit as \(f \to 1 \) and \(\lambda^2 \to 0 \) at equal rates.

This limit based approach to determining the maximum percolation threshold raises some interesting questions about how percolation thresholds are maximized for very polydisperse systems. Namely: how would the percolation threshold be limited for systems with three or more sizes of disks? The approach presented here indicates that for such systems, percolation threshold
Table 1: Limiting Criteria for Percolation Threshold Estimates of Bidisperse Disks in 2D Continuums

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Percolation Threshold</th>
<th>λ</th>
<th>f</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\eta_c = \eta_c$</td>
<td>$= 1$</td>
<td>all</td>
<td>This represents the case where both types of disks have equivalent radii and the system is monodisperse.</td>
</tr>
<tr>
<td>2</td>
<td>$\eta_c = \eta_c$</td>
<td>all</td>
<td>$= 0$</td>
<td>This represents the case where all disks are of the larger size and the system is monodisperse.</td>
</tr>
<tr>
<td>3</td>
<td>$\eta_c = \eta_c$</td>
<td>$\neq 0$</td>
<td>$= 1$</td>
<td>This represents the case where all disks are of the smaller size and the system is monodisperse.</td>
</tr>
<tr>
<td>4</td>
<td>$\eta_c = \eta_c$</td>
<td>$= 0$</td>
<td>$\neq 1$</td>
<td>This represents the case where the small discs have no area and contribute neither to percolation nor to the filling fraction. In this case the system is monodisperse.</td>
</tr>
</tbody>
</table>

Maxima Criteria:

<table>
<thead>
<tr>
<th>λ^2</th>
<th>$(1 - f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_c \leq \eta_c \leq 2\eta_c$</td>
<td>all</td>
</tr>
<tr>
<td>maximized</td>
<td>small</td>
</tr>
<tr>
<td>$\rightarrow 2\eta_c$</td>
<td>$\rightarrow 0$</td>
</tr>
</tbody>
</table>

will be maximized when all disks contribute equally to percolation, and the ratio of their contributions is unity. Whether or not increasingly polydisperse systems are limited in this manner is the subject of future study.

Evaluation of Previously Proposed Fits

Several works in the literature have proposed fits to Monte Carlo data which predict the percolation threshold for binary disk dispersions. Based on the limiting behaviors discussed above, a list of criteria for the behavior of any equation predicting the percolation threshold of binary disk dispersions is compiled and presented in Table 1.

The criteria listed as 1 and 2 were noted by Quintanilla [24] along with
the observational remark that the maximum value of ϕ_c for small values of λ appeared to track well with $(1 - f) \approx \lambda^2$. The maximum limiting criteria put forth by conditions 5 and 7 are, to the best knowledge of these authors, unique to this work.

Several correlations have been proposed to fit the percolation threshold surface as a function of λ and f, which can be evaluated based on the criteria enumerated in Table 1.

Dhar [40] used a correlation length argument to derive the estimate in Eq. (12).

$$\eta_c(f, \lambda) \propto \frac{f\lambda^2 + (1 - f)^2}{f\lambda^2 + (1 - f)\lambda^{3/4}}$$

When plotted over the range of λ and f considered here, the Dhar estimate demonstrated poor correlation to Monte Carlo results. We note that the Dhar correlation yields the monodisperse result when $\lambda = 1$, which satisfies condition 1, but fails to satisfy the additional six criteria.

Quintanilla [24] proposed an alternate empirical fit to the Dhar correlation [40] for the range of λ and f considered in his results. That empirical fit is shown in Eq. (13),

$$\eta_c(f, \lambda) \approx \eta_c(1, \lambda) \approx 1.12808737$$

where the critical filling factor for monodisperse disks is given by $\eta_c = \eta_c(1, \lambda) = \eta_c(1, 1) \approx 1.12808737$, and the parameter a by Eq. (14).

$$a = 1 + e^{\frac{6.8\lambda}{115}}$$

It should be noted that Quintanilla [24] advises against using this correlation outside of the range $0.1 \leq \lambda \leq 0.9$ due to its empirical nature and certain limiting requirements. Quintanilla generated this empirical fit by optimizing estimates of the number density of the large discs at the percolation threshold.

$$\rho' = \frac{n_{\text{large}}}{L^2} = \frac{\eta}{\pi R^2} \frac{1 - f}{f\lambda^2 + 1 - f}$$
When evaluated in regards to the proposed criteria, we see this fit does quite well in meeting criteria 2 and 5, but fails to satisfy conditions 1, 3, 4, 6 and 7. Although fairly good at predicting the percolation threshold within the bounds of the simulated work, the Quintanilla fit requires increasingly large numbers of small disks to meet the maximum requirements. The performance of this fit – and several others – with regards to criteria 6 is shown in Fig. 4. Interestingly, many of these fits scale well with varying powers of λ. In the case of the Quintanilla fit, the required number fraction of small disks for the maximum percolation threshold at high values of λ is greater than one, as shown in Fig. 4, a clear violation of physical constraints. Additionally, because this fit does not satisfy criteria 5, the maximum discrepancy between its predictions and our numerical data is 0.8126. This is an unacceptably large error.

Quintanilla later suggested in [36] a fit for binary disk dispersions of the form

$$\eta_c = \eta_{c0} + a(\lambda)\nu b(\lambda)(1 - \nu)c(\lambda)$$ (16)

Note that Eq. (16) includes a correction to a typo found in [36] where the ‘+’ sign is missing. Eq. (16) is proportional to the probability density function of the beta distribution with parameters $b(\lambda)$ and $c(\lambda)$. Eq. (16) trivially satisfies criteria 2 and 3. Provided $a(0) = a(1) = 0$, criteria 1 and 4 are satisfied as well. The location of the maximum value of $\eta_c(\nu, \lambda)$ is given by

$$\nu^*(\lambda) = \frac{b(\lambda)}{b(\lambda) + c(\lambda)}$$ (17)

Because the parameters were fit independently for each value of λ, the location of the maximum percolation threshold for this fit matches the experimental data very well. Unfortunately, the parameters $a(\lambda)$, $b(\lambda)$, and $c(\lambda)$ given in [36] are tabular and cannot be expanded outside of the range of λ considered in that work. This makes it impossible to verify criteria 5 or 7 or to look at criteria 6 rigorously although the minimum prescribed in criteria 5 is satisfied. Because this fit cannot be used to extrapolate outside the range of λ used to generate it,
In Meeks et al. [46], the concept of excluded area was generalized to polydisperse systems to predict percolation thresholds, and a new correlation of binary disk percolation was proposed, given by Eq. (18).

\[
\eta_c = \frac{2\pi \left[f \lambda^2 + (1 - f)\right]}{\left[(\lambda^2 - 2\lambda + 1) f^2 + (\lambda^2 + 2\lambda - 3) f + 2\right]}
\]

(18)

It was noted that this fit – hereafter referred to as the “unmodified Meeks fit” – had moderately good agreement with the simulation results, satisfying criteria 1, 2, and 3. However, the unmodified Meeks fit does not recover condition 4, as in the case that \(\lambda = 0 \), the quantity \(\eta_c \) is undefined. It performs reasonably well at predicting maximum percolation thresholds, satisfying conditions 5 and 7, although it consistently over-predicted the location of the maximum percolation threshold for binary disk systems failing to satisfy criteria 6. Here we add that for a fixed ratio of radii, \(\lambda \) the number fraction of large discs corresponding to the maximum percolation threshold is observed to scale with \(\lambda \) rather than \(\lambda^2 \), as shown in Fig. 4. Because the unmodified Meeks fit satisfies criteria 5 but fails to satisfy criteria 6 the maximum discrepancy between its predictions and our numerical data approaches the range of values permitted by criteria 5 of 0.2189. The largest observed discrepancy was 0.2057. It is expected that this value should grow with the degree of polydispersity considered.

Meeks et al. [46] suggested a density factor to improve correlation, which here we refer to as \(\gamma \), to be inserted in place of \(f \). It was suggested that a correction factor for the density of the smaller disks would proportionally bias their contribution to the percolation threshold in a way that more accurately predicted the percolation threshold. For the corrected fit presented there, \(\gamma \) was equal to the small disk area fraction \(v \), a quantity given by Eq. (19).

\[
\gamma = v = \frac{f \lambda^2}{f \lambda^2 + (1 - f)}
\]

(19)

This substitution was enacted such that a corrected correlation was proposed
as Eq. (20).

\[
\eta_c = \frac{2\pi c [v\lambda^2 + (1 - v)]}{[(\lambda^2 - 2\lambda + 1) v^2 + (\lambda^2 + 2\lambda - 3) v + 2]}
\]

(20)

This "modified Meeks fit" performs similarly to the unmodified Meeks fit, as it satisfies 1, 2, 3, 5 and 7, and fails to satisfy condition 4. This modified fit was noted to predict percolation threshold far from the peak much more accurately than the unmodified Meeks fit. Although, the modified Meeks fit predicts the location of the maximum percolation threshold much more accurately than the unmodified Meeks fit, it consistently over-predicts this value, as shown in Fig. 4 – scaling with \(\lambda^3\) rather than the previous \(\lambda\) or the desired \(\lambda^2\) – and thus does not fully satisfy condition 6. The maximum observed discrepancy for this fit was 0.1645 over the range of \(f\) and \(\lambda\) considered but it is expected to approach 0.2189 for larger values of \(f\) and smaller values of \(\lambda\) in the same way as the unmodified Meeks fit.

Proposal of a New Correlation for Prediction of Percolation Threshold

Given the ability of the Meeks correlation to satisfy nearly all of the limiting criteria, we naturally ask if additional adjustments can be made to the structure of that fit which will allow us to satisfy conditions 4 and 6. Based on the approach in [46], we propose a correlation with a density correction factor, \(\gamma\), as well as a size correction factor given by \(\beta\), which can be inserted into Eq. (18) in place of \(f\) and \(\lambda\) respectively, leading to a correlation which takes the form

\[
\eta_c = \frac{2\pi c [\gamma \beta^2 + (1 - \gamma)]}{[(\beta^2 - 2\beta + 1) \gamma^2 + (\beta^2 + 2\beta - 3) \gamma + 2]}
\]

(21)

Note that the modified Meeks fit in Eq. (20) takes exactly this form, with \(\beta = \lambda\) and \(\gamma = v\). Here we propose another fit of this form, with a size correction factor shown in Eq. (22),

\[
\beta = \lambda^{2/3}
\]

(22)
and a density correction factor shown in Eq. (23).

\[\gamma = \frac{f \lambda^2}{f \lambda^2 + (1 - f)^{3/2}} \]

(23)

This correlation, since \(\gamma \) and \(\beta \) collapse to \(f \) and \(\lambda \) in the degenerate cases of \(f = 0 \) and \(\lambda = 1 \), maintains the same limiting conditions in those scenarios as Eq. (18). As such, this correlation satisfies conditions 1, 2, 3, 5 and 7 in exactly the same way as the modified Meeks fit given by Equation (20). The degenerate case of \(\lambda = 0 \) now reduces to the monodisperse result, satisfying condition 4. We now check the location of the maxima, shown in Fig. 6, and observe very good agreement with the simulation results, satisfying condition 6. The maximum observed discrepancy for this fit was 0.0723 over the range of \(f \) and \(\lambda \) considered and unlike the other fits, this value is not expected to increase for larger values of \(f \) and smaller values of \(\lambda \) since this fit satisfies all of the limiting criteria.

For a given ratio of disc radii, \(\lambda \), the value of \(f \) for which the percolation threshold is maximized may be determined from any of these fits quite easily. For the Quintanilla fit [24], this maximum lies outside of the acceptable range of \(f \). Specifically, \(\eta_c (f, \lambda) = \max \eta_c \Rightarrow f < 0 \). Fig. 4 shows the differences between the locations of the maxima predicted by the various fits and simulation data. The proposed relation that \(1 - f = \lambda^2 \Rightarrow \eta_c (f, \lambda) = \max_{f, \lambda} \eta_c \) agrees very well with the simulation data.

From Fig. 4 we make a few interesting observations. Condition 6 proposes that the maximum percolation threshold for bidisperse disks will occur when \(1 - f = \lambda^2 \), and that the best predictors of percolation threshold will conform to this condition. The simulation data and correlation proposed by Eqs. (21), (22), and (23) adhere to this condition very well. Although the modified and unmodified Meeks fits do not closely scale with \(\lambda^2 \), interestingly, they scale very well with \(\lambda^3 \) and \(\lambda \) respectively. The reason for this behavior is not yet known, however, it indicates that the constant excluded volume approach to prediction of percolation thresholds detailed by [46] has excellent potential to
Figure 4: Number density of large disks \((1 - f)\) at the maximum percolation threshold, as a function of \(\lambda\). Location of maximum percolation threshold as predicted by Monte Carlo simulation, the Meeks modified and unmodified fits, the empirical fit proposed by Quintanilla [24], and the correlation proposed in this work.

capture a wide range of behaviors for polydisperse systems.

The performance of the proposed fit can be further compared to the simulation results. Fig. 5 shows a contour plot of the percolation threshold predicted by Eqs. (21), (22), and (23). While not a perfect fit, the proposed correlation matches the simulation data (Fig. 3) quite well over the entire range of \(\lambda\) and \(f\) considered. Taken with its satisfaction of all of the limiting cases, it is expected that the proposed fit may be used to predict percolation thresholds for bidisperse systems somewhat beyond the range of values simulated. The close

Figure 5: Percolation threshold predicted by proposed correlation given by Eqs. (21), (22), and (23). Contour plot for all considered number fractions and radii ratios. This plot demonstrates a high degree of similarity to the simulation data presented in Fig. 3.

resemblance between Fig. 5 and Fig. 3 indicates that the correlation proposed by Eqs. (21), (22), and (23) predicts the behavior of the percolation threshold
very well, even in regions far from the end conditions. By quantitatively comparing the results from the simulation data detailed in the Appendix to the percolation thresholds predicted by the correlation, we note that the values predicted by the proposed correlation are within 13% of the value found by the simulation in all regions, and are within 3% when \(\lambda \) is greater than 0.1 and \(f \) is less than 0.97. This is consistent with good agreement in all regions, and excellent agreement in regions of lower polydispersity.

There is a plethora of ways in which the performance of the correlation proposed by Eqs. (21), (22), and (23) can be compared to the simulation data enumerated in the Appendix. Although an exhaustive quantification of the similarity would perhaps be somewhat tedious, and certainly beyond the scope of this work, one such comparison is shown in Fig. 6. Fig. 6 depicts the behavior maximum predicted percolation threshold as a function of \(\lambda \) for both the proposed correlation and the simulation data. Fig. 6 shows a quantity of interest for this work – namely the maximum possible percolation threshold for a given value of \(\lambda \) – for both the proposed correlation and the simulation data. The predicted values correspond to within 2%, demonstrating excellent agreement. Such comparisons show quantitatively that the correlation given Eqs. (21), (22), and (23) performs quite well in predicting quantities of particular interest, even in the presence of very high polydispersity.
Conclusions

In this work we examined the effect of very high polydispersity on the percolation threshold for binary disk systems. This work confirmed Quintanilla’s binary disk results [24, 36], and expanded the simulation regime to include nearly 5X as many data points over a much larger range of disk radii ratio, λ, and small disk concentration, f. This work proposes that the maximum percolation threshold for a binary disk system will be achieved when $(1 - f) \approx \lambda^2$, and that the percolation threshold for any binary disk dispersion cannot exceed $2\pi\sigma$. A set of criteria for fits predicting the percolation threshold for binary disk dispersions is proposed, and a new fit satisfying all proposed conditions is put forth.

Acknowledgments

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This document has been reviewed and approved for unclassified, unlimited release under 2015-475586. The authors are grateful for additional support by the Army Research Office under contract number W911NF-11-1-0439 and encouragement by our program manager, Dr. Ralph Anthenien.

Appendix

This appendix contains the values of the percolation threshold predicted by the Monte Carlo simulations. Results from this study are reported in detail in the Appendix. Each value has an estimated error of ≤ 5 in the last decimal place. Table 2 contains the simulation results for low values of f and high values of λ, and covers much of the same range examined by Quintanilla [24]. Table 3 shows the simulation results for low values of f and high values of λ. Table 4 shows the simulation results for the region of highest polydispersity with high
values of \(f \) and low values of \(\lambda \). Table 5 shows the simulation results for high values of \(f \) and high values of \(\lambda \).

<table>
<thead>
<tr>
<th>Radius Ratio ((\lambda))</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.653</td>
<td>0.665</td>
<td>0.666</td>
<td>0.666</td>
<td>0.666</td>
<td>0.666</td>
<td>0.666</td>
<td>0.666</td>
<td>0.666</td>
<td>0.666</td>
</tr>
<tr>
<td>0.20</td>
<td>0.666</td>
</tr>
<tr>
<td>0.30</td>
<td>0.666</td>
</tr>
<tr>
<td>0.40</td>
<td>0.666</td>
</tr>
<tr>
<td>0.50</td>
<td>0.666</td>
</tr>
<tr>
<td>0.60</td>
<td>0.666</td>
</tr>
<tr>
<td>0.70</td>
<td>0.666</td>
</tr>
<tr>
<td>0.80</td>
<td>0.666</td>
</tr>
<tr>
<td>0.90</td>
<td>0.666</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Small Disc Number Density ((f))</th>
<th>0.12</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
<th>0.3</th>
<th>0.35</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.666</td>
</tr>
<tr>
<td>0.10</td>
<td>0.666</td>
</tr>
<tr>
<td>0.20</td>
<td>0.666</td>
</tr>
<tr>
<td>0.30</td>
<td>0.666</td>
</tr>
<tr>
<td>0.40</td>
<td>0.666</td>
</tr>
<tr>
<td>0.50</td>
<td>0.666</td>
</tr>
<tr>
<td>0.60</td>
<td>0.666</td>
</tr>
<tr>
<td>0.70</td>
<td>0.666</td>
</tr>
<tr>
<td>0.80</td>
<td>0.666</td>
</tr>
<tr>
<td>0.90</td>
<td>0.666</td>
</tr>
</tbody>
</table>

Table 5: Simulation results for low values of \(f \) and high values of \(\lambda \).
Table 4: Simulation results for high values of f and low values of λ

<table>
<thead>
<tr>
<th>Radius Ratio (λ)</th>
<th>0.01</th>
<th>0.015</th>
<th>0.02</th>
<th>0.025</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.6773</td>
<td>0.6800</td>
<td>0.6808</td>
<td>0.6828</td>
<td>0.6851</td>
<td>0.6876</td>
<td>0.6903</td>
<td>0.6930</td>
<td>0.6958</td>
<td>0.6986</td>
<td>0.7015</td>
<td>0.7044</td>
</tr>
<tr>
<td>0.91</td>
<td>0.6785</td>
<td>0.6804</td>
<td>0.6818</td>
<td>0.6835</td>
<td>0.6852</td>
<td>0.6871</td>
<td>0.6892</td>
<td>0.6916</td>
<td>0.6940</td>
<td>0.6964</td>
<td>0.6987</td>
<td>0.7012</td>
</tr>
<tr>
<td>0.92</td>
<td>0.6804</td>
<td>0.6820</td>
<td>0.6841</td>
<td>0.6860</td>
<td>0.6879</td>
<td>0.6900</td>
<td>0.6922</td>
<td>0.6946</td>
<td>0.6969</td>
<td>0.6991</td>
<td>0.7015</td>
<td>0.7040</td>
</tr>
<tr>
<td>0.93</td>
<td>0.6822</td>
<td>0.6841</td>
<td>0.6863</td>
<td>0.6885</td>
<td>0.6906</td>
<td>0.6927</td>
<td>0.6949</td>
<td>0.6972</td>
<td>0.6994</td>
<td>0.7015</td>
<td>0.7038</td>
<td>0.7062</td>
</tr>
<tr>
<td>0.94</td>
<td>0.6842</td>
<td>0.6865</td>
<td>0.6889</td>
<td>0.6915</td>
<td>0.6939</td>
<td>0.6963</td>
<td>0.6987</td>
<td>0.7012</td>
<td>0.7035</td>
<td>0.7058</td>
<td>0.7081</td>
<td>0.7104</td>
</tr>
<tr>
<td>0.95</td>
<td>0.6864</td>
<td>0.6891</td>
<td>0.6918</td>
<td>0.6946</td>
<td>0.6974</td>
<td>0.7003</td>
<td>0.7032</td>
<td>0.7061</td>
<td>0.7091</td>
<td>0.7121</td>
<td>0.7150</td>
<td>0.7179</td>
</tr>
<tr>
<td>0.96</td>
<td>0.6888</td>
<td>0.6919</td>
<td>0.6950</td>
<td>0.6982</td>
<td>0.7015</td>
<td>0.7050</td>
<td>0.7086</td>
<td>0.7124</td>
<td>0.7162</td>
<td>0.7200</td>
<td>0.7238</td>
<td>0.7274</td>
</tr>
<tr>
<td>0.97</td>
<td>0.7014</td>
<td>0.7053</td>
<td>0.7095</td>
<td>0.7139</td>
<td>0.7185</td>
<td>0.7233</td>
<td>0.7282</td>
<td>0.7334</td>
<td>0.7389</td>
<td>0.7447</td>
<td>0.7497</td>
<td>0.7548</td>
</tr>
<tr>
<td>0.98</td>
<td>0.7053</td>
<td>0.7095</td>
<td>0.7140</td>
<td>0.7190</td>
<td>0.7244</td>
<td>0.7299</td>
<td>0.7356</td>
<td>0.7415</td>
<td>0.7476</td>
<td>0.7538</td>
<td>0.7593</td>
<td>0.7648</td>
</tr>
<tr>
<td>0.99</td>
<td>0.7144</td>
<td>0.7190</td>
<td>0.7239</td>
<td>0.7290</td>
<td>0.7344</td>
<td>0.7399</td>
<td>0.7456</td>
<td>0.7515</td>
<td>0.7576</td>
<td>0.7638</td>
<td>0.7694</td>
<td>0.7750</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7239</td>
<td>0.7290</td>
<td>0.7344</td>
<td>0.7400</td>
<td>0.7456</td>
<td>0.7515</td>
<td>0.7576</td>
<td>0.7638</td>
<td>0.7701</td>
<td>0.7764</td>
<td>0.7828</td>
<td>0.7894</td>
</tr>
</tbody>
</table>

Table 5: Simulation results for high values of f and low values of λ

<table>
<thead>
<tr>
<th>Radius Ratio (λ)</th>
<th>0.01</th>
<th>0.015</th>
<th>0.02</th>
<th>0.025</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.6773</td>
<td>0.6800</td>
<td>0.6808</td>
<td>0.6828</td>
<td>0.6851</td>
<td>0.6876</td>
<td>0.6903</td>
<td>0.6930</td>
<td>0.6958</td>
<td>0.6986</td>
<td>0.7015</td>
<td>0.7044</td>
</tr>
<tr>
<td>0.91</td>
<td>0.6785</td>
<td>0.6804</td>
<td>0.6818</td>
<td>0.6835</td>
<td>0.6852</td>
<td>0.6871</td>
<td>0.6892</td>
<td>0.6916</td>
<td>0.6940</td>
<td>0.6964</td>
<td>0.6987</td>
<td>0.7012</td>
</tr>
<tr>
<td>0.92</td>
<td>0.6804</td>
<td>0.6820</td>
<td>0.6841</td>
<td>0.6860</td>
<td>0.6879</td>
<td>0.6900</td>
<td>0.6922</td>
<td>0.6946</td>
<td>0.6969</td>
<td>0.6991</td>
<td>0.7015</td>
<td>0.7040</td>
</tr>
<tr>
<td>0.93</td>
<td>0.6822</td>
<td>0.6841</td>
<td>0.6863</td>
<td>0.6885</td>
<td>0.6906</td>
<td>0.6927</td>
<td>0.6949</td>
<td>0.6972</td>
<td>0.6994</td>
<td>0.7015</td>
<td>0.7038</td>
<td>0.7062</td>
</tr>
<tr>
<td>0.94</td>
<td>0.6842</td>
<td>0.6865</td>
<td>0.6889</td>
<td>0.6915</td>
<td>0.6939</td>
<td>0.6963</td>
<td>0.6987</td>
<td>0.7012</td>
<td>0.7035</td>
<td>0.7058</td>
<td>0.7081</td>
<td>0.7104</td>
</tr>
<tr>
<td>0.95</td>
<td>0.6864</td>
<td>0.6891</td>
<td>0.6918</td>
<td>0.6946</td>
<td>0.6974</td>
<td>0.7003</td>
<td>0.7032</td>
<td>0.7061</td>
<td>0.7091</td>
<td>0.7121</td>
<td>0.7150</td>
<td>0.7179</td>
</tr>
<tr>
<td>0.96</td>
<td>0.6888</td>
<td>0.6919</td>
<td>0.6950</td>
<td>0.6982</td>
<td>0.7015</td>
<td>0.7050</td>
<td>0.7086</td>
<td>0.7124</td>
<td>0.7162</td>
<td>0.7200</td>
<td>0.7238</td>
<td>0.7274</td>
</tr>
<tr>
<td>0.97</td>
<td>0.7014</td>
<td>0.7053</td>
<td>0.7095</td>
<td>0.7139</td>
<td>0.7185</td>
<td>0.7233</td>
<td>0.7282</td>
<td>0.7334</td>
<td>0.7389</td>
<td>0.7447</td>
<td>0.7497</td>
<td>0.7548</td>
</tr>
<tr>
<td>0.98</td>
<td>0.7053</td>
<td>0.7095</td>
<td>0.7140</td>
<td>0.7190</td>
<td>0.7244</td>
<td>0.7299</td>
<td>0.7356</td>
<td>0.7415</td>
<td>0.7476</td>
<td>0.7538</td>
<td>0.7593</td>
<td>0.7648</td>
</tr>
<tr>
<td>0.99</td>
<td>0.7144</td>
<td>0.7190</td>
<td>0.7239</td>
<td>0.7290</td>
<td>0.7344</td>
<td>0.7399</td>
<td>0.7456</td>
<td>0.7515</td>
<td>0.7576</td>
<td>0.7638</td>
<td>0.7701</td>
<td>0.7764</td>
</tr>
<tr>
<td>1.0</td>
<td>0.7239</td>
<td>0.7290</td>
<td>0.7344</td>
<td>0.7400</td>
<td>0.7456</td>
<td>0.7515</td>
<td>0.7576</td>
<td>0.7638</td>
<td>0.7701</td>
<td>0.7764</td>
<td>0.7828</td>
<td>0.7894</td>
</tr>
</tbody>
</table>

24
7 Bibliography

