
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Finite-time and finite-size scalings in the evaluation of
large-deviation functions: Analytical study using a birth-

death process
Takahiro Nemoto, Esteban Guevara Hidalgo, and Vivien Lecomte

Phys. Rev. E 95, 012102 — Published  3 January 2017
DOI: 10.1103/PhysRevE.95.012102

http://dx.doi.org/10.1103/PhysRevE.95.012102


Finite-Time and -Size Scalings in the Evaluation of Large Deviation Functions
Part I: Analytical Study using a Birth-Death Process

Takahiro Nemoto,1, ∗ Esteban Guevara Hidalgo,1, 2 and Vivien Lecomte1

1Laboratoire de Probabilités et Modèles Aléatoires, Sorbonne Paris Cité,
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The Giardinà-Kurchan-Peliti algorithm is a numerical procedure that uses population dynamics
in order to calculate large deviation functions associated to the distribution of time-averaged observ-
ables. To study the numerical errors of this algorithm, we explicitly devise a stochastic birth-death
process that describes the time-evolution of the population-probability. From this formulation, we
derive that systematic errors of the algorithm decrease proportionally to the inverse of the popu-
lation size. Based on this observation, we propose a simple interpolation technique for the better
estimation of large deviation functions. The approach we present is detailed explicitly in a two-state
model.

PACS numbers: 05.40.-a, 05.10.-a, 05.70.Ln

I. INTRODUCTION

Cloning algorithms are numerical procedures aimed at
simulating rare events efficiently, using a population dy-
namics scheme. In such algorithms, copies of the system
are evolved in parallel and the ones showing the rare be-
havior of interest are multiplied iteratively [1–18] (See
Fig. 1). One of these algorithms proposed by Giardinà et
al. [12–18] is used to evaluate numerically the cumulant
generating function (a large deviation function, LDF) of
additive (or “time-extensive”) observables in Markov pro-
cesses [19, 20]. It has been applied to many physical
systems, including chaotic systems, glassy dynamics and
non-equilibrium lattice gas models, and it has allowed
the study of novel properties, such as the behavior of
breathers in the Fermi-Pasta-Ulam-Tsingou chain [14],
dynamical phase transitions in kinetically constrained
models [21], and an additivity principle for simple ex-
clusion processes [22, 23].

While the method has been used widely, there have
been less studies focusing on the analytical justification
of the algorithm. Even though it is heuristically believed
that the LDF estimator converges to the correct result
as the number of copies Nc increases, there is no proof
of this convergence. Related to this lack of the proof, al-
though we use the algorithm by assuming its validity, we
do not have any clue how fast the estimator converges
as Nc → ∞. In order to discuss this convergence, we
define two types of numerical errors. First, for a fixed
finite Nc, averaging over a large number of realizations,
the LDF estimator converges to an incorrect value, which
is different from the desired large deviation result. We
call this deviation from the correct value, systematic er-
rors. Compared with these errors, we also consider the
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fluctuations of the estimated value. More precisely, for a
fixed value of Nc, the results obtained in different realiza-
tions are distributed around this incorrect value. We call
the errors associated to these fluctuations the stochastic
errors. Although both errors are important in numeri-
cal simulations, the former one can lead this algorithm
to produce wrong results. For example as seen in [24],
the systematic error grows exponentially as a tempera-
ture decreases (or generically in the weak noise limit of
diffusive dynamics).
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FIG. 1. Schematic picture illustrating the principle of the
population dynamics algorithm. ‘Clones’ (or copies) of the
system are prepared and they evolve following a mutation-
and-selection process, maintaining the total population con-
stant.

In order to study these errors, we employ a birth-death
process [25, 26] description of the population dynam-
ics algorithm as explained below: We focus on physi-
cal systems described by a Markov dynamics [12, 13, 16]
with a finite number of states M , and we denote by i
(i = 0, 1, · · ·M−1) the states of the system. This Markov
process has its own stochastic dynamics, described by the
transition rates w(i → j). In population dynamics algo-
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rithms, in order to study its rare trajectories, one pre-
pares Nc copies of the system, and simulate these copies
according to (i) the dynamics of w(i→ j) (followed inde-
pendently by all copies) and (ii) ‘cloning’ step in which
the ensemble of copies is directly manipulated, i.e., some
copies are eliminated while some are multiplied (See Ta-
ble I). Formally, the population dynamics represents, for
a single copy of the system, a process that does not pre-
serve probability. This fact has motivated the studies
of auxiliary processes [27], effective processes [28] and
driven processes [29] to construct modified dynamics (and
their approximations [30]) that preserve probability. Dif-
ferent from these methods, in this article, we formulate
explicitly the meta-dynamics of the copies themselves by
using a stochastic birth-death process. The process pre-
serves probability, and it allows us to study the numerical
errors of the algorithm when evaluating LDF.

In this article, we consider the dynamics of the copies
as a stochastic birth-death process whose state is denoted
n = (n0, n1, n2, ·, nM−1), where 0 ≤ ni ≤ Nc represents
the number of copies which are in state i in the ensemble
of copies. We explicitly introduce the transition rates de-
scribing the dynamics of n, which we denote by σ(n→ ñ).
We show that the dynamics described by these transition
rates lead in general to the correct LDF estimation of the
original system w(i → j) in the Nc → ∞ limit. We also
show that the systematic errors are of the order O(1/Nc),
whereas the numerical errors are of the order O(1/(τNc))
(where τ is an averaging duration). This result is in clear
contrast with standard Monte-Carlo methods, where the
systematic errors are always 0. Based on this convergence
speed, we then propose a simple interpolation technique
to make the cloning algorithm more reliable. Further-
more, the formulation developed in this paper provides
us the possibility to compute exactly the expressions of
the convergence coefficients, as we do in Sec. IV on a
simple example.

The analytical analysis presented in this paper (to
which we refer as ‘Part I’) is supplemented with a
thorough numerical study in a companion paper [31]
(‘Part II’). In Part II, we employ an intrinsically different
cloning algorithm, which is the continuous-time popula-
tion dynamics algorithm, that cannot be studied by the
methods presented in Part I (see Sec. II D 2). We show
in Part II that the validity of the scaling that we de-
rive analytically here is very general. In particular, we
demonstrate in practice the efficiency of the interpola-
tion technique in the evaluation of the LDF, irrespective
of the details of the population dynamics algorithm.

The construction of this paper is as follows. We first
define the LDF problem in the beginning of Sec. II, and
then formulate the birth-death process used to describe
the algorithm in Sec. II A. By using this birth-death
process, we demonstrate that the estimator of the al-
gorithm converges to the correct large deviation function
in Sec. II B. At the end of this section, in Sec. II C, we
discuss the convergence speed of this estimator (the sys-
tematic errors) and derive its scaling ∼ 1/Nc. In Sec. III,

we turn to stochastic errors. For discussing this, we in-
troduce the large deviation function of the estimator,
from which we derive that the convergence speed of the
stochastic errors is proportional to 1/(τNc). In the next
section, Sec. IV, we introduce a simple two-state model,
to which we apply the formulations developed in the pre-
vious sections. We derive the exact expressions of the sys-
tematic errors in Sec. IV A and of the stochastic errors in
Sec. IV B. At the end of this section, in Sec. IV C, based
on these exact expressions, we propose another large de-
viation estimator defined in the population dynamics al-
gorithm. In the final section, Sec. V, we first summarize
the result obtained throughout this paper, and then in
Sec. V A, we propose a simple interpolation technique
based on the convergence speed of the systematic errors
which allows us to devise a better practical evaluation
of the LDF. Finally in Sec. V B, we discuss two open
questions.

II. BIRTH-DEATH PROCESS DESCRIBING
THE POPULATION DYNAMICS ALGORITHM

As explained in the introduction (also see Table I), the
state of the population is n = (n0, n1, · · · , nM−1), where
ni represents the number of clones in the state i. The
total population is preserved:

∑
i ni = Nc. Below, we

introduce the transition rates of the dynamics between
the occupations n, σ(n→ ñ) that describe corresponding
large deviations of the original system, where the dynam-
ics of the original system is given by the rates w(i → j)
as detailed below.

As the original system, we consider the continuous-
time Markov process in a discrete-time representation.
By denoting by dt the time step, the transition matrix
Rj,i for time evolution of the state i is described as

Rj,i = δi,j + dt
[
w(i→ j)− δi,j

∑
k

w(i→ k)
]
, (1)

where we set w(i → i) = 0. The probability distribu-
tion of the state i, pi(t), evolves in time as pi(t + dt) =∑
j Ri,jpj(t). In the dt → 0 limit, one obtains the

continuous-time Master equation describing the evolu-
tion of pi(t) [25, 26]. For simplicity, especially for the
cloning part of the algorithm, we keep here a small finite
dt. The reason why we use a discrete-time representation
is solely for simplicity of the discussion. The main results
can be derived even if we start with a continuous-time
representation (see Sec. II D 1). For the original dynam-
ics described by the transition matrix (1), we consider an
observable bi depending on the state i and we are inter-
ested in the distribution of its time-averaged value during
a time interval τ , defined as

B(τ) =
1

τ

τ/dt∑
t=0

dt bi(t). (2)
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TABLE I. Correspondence between the population dynamics and the birth-death process to describe it.

Population dynamics algorithm Birth-death process describing
the population dynamics

State of the system i n = (n0, n2, · · · , nM−1)

(i = 0, 1, · · ·M − 1) (0 ≤ ni ≤ Nc with
∑
i ni = Nc)

Transition rates w(i→ j) σ(n→ ñ)
Markov process on states i Markov process on states n

Numerical procedure Prepare Nc clones and evolve those Described by the dynamics
for rare-event sampling with a mutation-selection procedure of rates σ(n→ ñ)

Here i(t) is a trajectory of the system generated by the
Markov dynamics described by Rj,i. We note that B(τ)
is a path- (or history-, or realization-) dependent quan-
tity. Since τB(τ) is an additive observable, the fluctu-
ations of B(τ) depending on the realizations are small
when τ is large, but one can describe the large devia-
tions of B(τ). Those occur with a small probability, and
obey a large deviation principle. We denote by Prob(B)
the distribution function of B(τ). The large deviation
principle ensures that Prob(B) takes an asymptotic form
Prob(B) ∼ exp(−τI(B)) for large τ , where I(B) is a
large deviation function (or ‘rate function’) [19, 20]. If
the rate function I(B) is convex, the large deviation func-
tion is expressed as a Legendre transform of a cumulant
generating function ψ(s) defined as

ψ(s) = lim
τ→∞

1

τ
log
〈
e−sτB(τ)

〉
, (3)

namely: I(B) = − infs [sB + ψ(s)]. The large devia-
tion function I(B) and this generating function ψ(s) are
by definition difficult to evaluate numerically in Monte-
Carlo simulations of the original system of transition
rates w(i → j) (see, for example, [32]). To overcome
this difficulty, population dynamics algorithms have been
developed [12–18]. Here, we describe this population dy-
namics algorithm by using a birth-death process on the
occupation state n allowing us to study systematically
the errors in the estimation of ψ(s) within the popula-
tion dynamics algorithm. We mention that, without loss
of generality, we restrict our study to so-called ‘type-B’
observable that do not depend on the transitions of the
state [33], i.e. which are time integrals of the state of the
system, as in (2). Indeed, as explained for example in
Refs. [16] and [24], one can always reformulate the deter-
mination of the CGF of mixed-type observables into that
of a type-B variable, by modifying the transition rates of
the given system.

A. Transition Matrices Representing the
Population Dynamics Algorithm

We denote the probability distribution of the occupa-
tion n at time t by Pn(t). The time-evolution of this prob-

ability is decomposed into three parts. The first one is the
original Monte-Carlo dynamics based on the transition
rates w(i→ j). The second one is the cloning procedure
of the population dynamics algorithm, which favors or
disfavors configurations according to a well-defined rule.
The third one is a supplementary (but important) part
which maintains the total number of clones to a con-
stant Nc. We denote the transition matrices correspond-
ing to these steps by T , C and K, respectively. By using
these matrices, then, the time evolution of the distribu-
tion function is given as

Pn(t+ dt) =
∑
ñ

(KCT )n,ñ Pñ(t). (4)

We derive explicit expressions of these matrices in the
following sub-sections. We also summarize the obtained
results in Table II.

1. Derivation of the Original Dynamics Part, T

We first consider the transition matrix T , which de-
scribes the evolution of the occupation state n solely due
to the dynamics based on the rates w(i → j). Dur-
ing an infinitesimally small time step dt, the occupation
n = (n0, n1, · · · , nM−1) changes to ñ = (n0, n1, · · · , ni −
1, · · · , nj + 1, · · · , nM−1) where 0 ≤ i < M and 0 ≤ j <
M (for all i 6= j). Since there are ni clones in the state
i before the transition, the transition probability of this
change is given as niw(i→ j)dt. Thus, we obtain

Tñ,n ≡ δñ,n+dt

M−1∑
i=0

ni

M−1∑
j=0,(j 6=i)

w(i→ j)

×
[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n − δñ,n

]
,

(5)

where δi,jñ,n is a Kronecker-delta for the indices except

for i, j: δi,jñ,n ≡
∏
k 6=i,j δñk,nk

. One can easily check that
this matrix satisfies the conservation of the probability:∑
ñ Tñ,n = 1. It corresponds to the evolution of Nc inde-

pendent copies of the original system with rates w(i→ j).
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TABLE II. Transition matrices (see Eq. (4)) describing the birth-death process.

Transition matrices

Dynamics (“mutations”) Tñ,n ≡ δñ,n + dt
∑M−1
i=0 ni

∑M−1
j=0,(j 6=i) w(i→ j)

[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n − δñ,n

]
Cloning (“selection”) Cñ,n = δñ,n + s dt

∑M−1
i=0 ni|αi|

[
δñi,ni+αi/|αi| δ

i
ñ,n − δñ,n

]
+O(dt2)

Maintaining Nc Kñ,n = δ∑ni,Ncδñ,n +
∑
k=−1,1 δ

∑
i ni,Nc+k

∑M−1
i=0 δñi,ni−k δ

i
ñ,n

ni
Nc+k

Full process (KCT )ñ,n = δñ,n + dt
∑M−1
i=0 ni

∑M−1
j=0,(j 6=i) [w(i→ j) + sw̃n(i→ j)]

[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n − δñ,n

]
with w̃n(i→ j) =

nj

Nc

[
αjδj∈Ω(+)

Nc
Nc+1

− αiδi∈Ω(−)
Nc
Nc−1

]

2. Derivation of the Cloning Part, C

In the population dynamics algorithm (for example the
one described in the Appendix A of [24]), at every certain
time interval ∆t, one evaluates the exponential factor for

all clones, which is equal to e−s
∫ t+∆t
t

dt′ bi(t′) if the clone is
in state (i(t′))t+∆t

t′=t during a time interval t ≤ t′ ≤ t+ ∆t.
We also call this exponential factor cloning ratio, because
this factor determines whether each clone is copied or
eliminated after this time interval. Although the details
of how to determine this selection process can depend on
the specific type of algorithms, the common idea is that
each of the clones is copied or eliminated in such a way
that a clone in state i(t) has a number of descendant(s)
proportional to the cloning factor on average after this
time interval.

In order to implement this idea in our birth-death pro-
cess, we assume this time step ∆t to be small. For the
sake of simplicity, we set this ∆t to be our smallest time
interval dt: ∆t = dt. This condition is not mandatory
whenever the ∆t → 0 limit is taken at the end (see
Sec. II D 1 for the case ∆t > dt). Then, noticing that

the time integral
∫ t+∆t

t
dt′ bi(t′) is expressed as dt bi(t)

for small dt, we introduce the following quantity for each
state i (i = 0, 1, 2, ...,M − 1):

νi ≡
nie
−s dt bi∑M−1

j=0 nje−s dt bj
Nc. (6)

Note that there is a factor ni in front of the exponential
function e−s dt bi which enumerates the number of clones
that occupy the state i. The quantity νi is aimed at being
the number of clones in state i after the cloning process,
however, since νi is not an integer but a real number,
one needs a supplementary prescription to fix the corre-
sponding integer number of descendants. In general, in
the implementation of population dynamics, this integer
is generated randomly from the factor νi, equal either to
its lower or to its upper integer part. The probability to
choose either the lower or upper integer part is fixed by
imposing that the number of descendants is equal to νi
on average. For instance, if νi is equal to 13.2, then 13 is

chosen with probability 0.8, and 14 with probability 0.2.
Generically, bνic and bνic+1 are chosen with probability
1 + bνic− νi and νi−bνic, respectively. We note that we
need to consider these two possibilities for all indices i.
We thus arrive at the following matrix:

Cñ,n ≡
1∑

x0=0

1∑
x1=0

1∑
x2=0

· · ·
1∑

xM−1=0

M−1∏
i=0

× δñi,bνic+xi
[(νi − bνic)xi + (1 + bνic − νi) (1− xi)] .

(7)

Now, we expand C at small dt and we keep only the
terms proportional to O(1) and O(dt), which do not van-
ish in the continuous-time limit. For this purpose, we
expand νi as

νi = ni

[
1 + s dt

(∑
j

njbj
Nc
− bi

)]
+O(dt2), (8)

where we have used
∑
i ni = Nc. This expression indi-

cates that bνic is determined depending on the sign of∑
j njbj/Nc − bi, where we assumed s > 0 for simplicity

without loss of generality (because when s < 0, we can
always re-define −b as b to make s to be positive). By
denoting this factor by αi, i.e.

αi(n) ≡
∑
j

njbj
Nc
− bi, (9)

we thus define the following state-space Ω(±)(n):

Ω(±)(n) =
{
i
∣∣ 0 ≤ i < M and ± αi(n) > 0

}
. (10)

From this definition, for sufficiently small dt, we obtain

bνic = ni (11)

for i ∈ Ω(+), and

bνic = ni − 1 (12)
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for i ∈ Ω(−). Substituting these results into (7) and ex-
panding in dt, we obtain (denoting here and thereafter
αi = αi(n)):

Cñ,n =δñ,n + s dt

M−1∑
i=0

ni|αi|
[
δñi,ni+αi/|αi| δ

i
ñ,n − δñ,n

]
+O(dt2),

(13)

where δiñ,n is a Kronecker delta for the indices except for

i: δiñ,n =
∏
k 6=i δñk,nk

. One can easily check that this

matrix preserves probability:
∑
ñ Cñ,n = 1.

3. Derivation of the Maintaining Part, K

As directly checked, the operator T preserves the total
population

∑
i ni. However, the operator representing

the cloning C, does not. In our birth-death implementa-
tion, this property originates from the rounding process
bνic in the definition of C: even though νi itself satisfies∑
i νi = Nc, because of the rounding process of νi, the

number of clones after multiplying by C (that is designed
to be proportional to νi on average) can change. There
are several ways to keep the number Nc of copies constant
without biasing the distribution of visited configurations.
One of them is to choose randomly and uniformly δNc
clones from the ensemble, where δNc is equal to the num-
ber of excess (resp. lacking) clones with respect to Nc,
and to eliminate (resp. multiply) them.

In our birth-death description, we implement this pro-
cedure as follows. We denote by K the transition matrix
maintaining the total number of clones to be the con-
stant Nc. We now use a continuous-time asymptotics
dt→ 0. In this limit, from the expression of the transition
matrix elements (13), we find that at each cloning step
the number of copies of the cloned configuration varies
by ±1 at most. Hence, the total number of clones after
multiplying by C,

∑
i ni, satisfies the following inequality

Nc − 1 ≤
∑
i

ni ≤ Nc + 1. (14)

Among the configurations n that satisfy this inequality,
there are three possibilities, which are

∑
i ni = Nc and∑

i ni = Nc ± 1. If n satisfies
∑
i ni = Nc, we do not

need to adjust n, while if n satisfies
∑
i ni = Nc + 1

(resp.
∑
i ni = Nc − 1), we eliminate (resp. multiply)

a clone chosen randomly and uniformly. Note that, in
our formulation, we do not distinguish the clones taking
the same state. This means that we can choose one of
the occupations ni of a state i according to a probability
proportional to the number of copies ni in this state. In
other words, the probability to choose the state i and to
copy or to eliminate a clone from this state is proportional

to ni/
∑M−1
j=0 nj . Therefore, we obtain the expression of

the matrix K as

Kñ,n =δ∑
ini,Nc

δñ,n

+
∑

k=−1,1

δ∑
ini,Nc+k

M−1∑
i=0

δñi,ni−k δ
i
ñ,n

ni
Nc + k

(15)

for ñ that satisfies
∑
i ñi = Nc, and Kñ,n = 0 otherwise.

4. Total Transition, KCT

We write down the matrix describing the total transi-
tion of the population dynamics (see Eq. (4)). From the
obtained expressions of K, C, T , we calculate KCT

(KCT )ñ,n = δñ,n

+ dt

M−1∑
i=0

ni

M−1∑
j=0,(j 6=i)

[w(i→ j) + s w̃n(i→ j)]

×
[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n − δñ,n

]
,

(16)

where the population-dependent transition rate w̃n(i →
j) is given as

w̃n(i→ j) =
nj
Nc

[
αjδj∈Ω(+)

Nc
Nc + 1

− αiδi∈Ω(−)

Nc
Nc − 1

]
.

(17)
The comparison of the expression (16) with the original
part T provides an insight into the obtained result. The
jump ratio w(i→ j) in the original dynamics is replaced
by w(i → j) + s w̃n(i → j) in the population dynamics
algorithm. We note that this transition rate depends on
the population n, meaning that we cannot get a closed
equation for this modified dynamics at the level of the
states i in general. We finally remark that the transition
matrix σ(n→ ñ) for the continuous-time limit is directly
derived from (16) as

σ(n→ ñ) =

M−1∑
i=0

ni

M−1∑
j=0,(j 6=i)

[w(i→ j) + sw̃n(i→ j)]

×
[
δñi,ni−1δñj ,nj+1 δ

i,j
ñ,n

]
.

(18)

B. Derivation of the Large Deviation Results
in the Nc →∞ Asymptotics

In this subsection, we study the Nc → ∞ limit for
the transition matrix of rates σ(n → ñ), and derive the
validity of the population dynamics algorithm.

1. The Estimator of the Large Deviation Function

One of the ideal implementations of the population dy-
namics algorithm is as follows: We make copies of each
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realization (clone) at the end of simulation, where the
number of copies for each realization is equal to the expo-
nential weight e−sτB(τ) in Eq. (3) (so that we can discuss
an ensemble with this exponential weight without multi-
plying the probability by it). In this implementation, the
number of clones grows (or decays) exponentially propor-
tionally as

〈
e−sτB(τ)

〉
by definition. In real implementa-

tions of the algorithm, however, since taking care of an
exponentially large or small number of clones can cause
numerical problems, one rather keeps the total number
of clones to a constant Nc at every time step, as seen in
(6). Within this implementation, we reconstruct the ex-
ponential change of the total number of clones as follows:
We compute the average of cloning ratio (see the begin-
ning of Sec. II A 2 for its definition) at each cloning step,
and we store the product of these ratios along the cloning
steps. At final time, this product gives the empirical es-
timation of total (unnormalized) population during the
whole duration of the simulation [18], i.e. an estimator
of
〈
e−sτB(τ)

〉
. One thus estimates the CGF ψ(s) given

in Eq. (3) [12–18] as the logarithm of this reconstructed
population, divided by the total time.

In our formulation, the average cloning ratio is given as∑
i nie

−sdtbi/Nc, and thus the multiplication over whole

time interval reads
∏τ/dt
t=0 {ni(t)e−sdtbi/Nc}. Because we

empirically assume that the CGF estimator converges to
ψ(s) in the Nc, τ → ∞ limit, the following equality is
expected to hold in probability 1:

ψ(s)
?
= lim
Nc→∞

lim
τ→∞

1

τ

τ/dt∑
t=0

log
∑
i

ni(t)e
−sdtbi

Nc
+O(dt).

(19)
Since the dynamics of the population n is described by a
Markov process, ergodicity is satisfied, i.e., time averages
can be replaced by the expected value with respect to the
stationary distribution function. Applying this result to
the right-hand side of (19), we obtain

lim
τ→∞

1

τ

τ/dt∑
t=0

log
∑
i

ni(t)e
−sdtbi

Nc

=
1

dt

∑
n

P st
n log

∑
i

nie
−sdtbi

Nc
+O(dt),

(20)

where P st
n is the stationary distribution function of the

population n in the dt→ 0 limit, (namely, P st
n is the sta-

tionary distribution of the dynamics of transition rates
σ(n → ñ)). By expanding this right-hand side with re-
spect to dt, we rewrite the expected equality (19) as

ψ(s)
?
= −s lim

Nc→∞

∑
n

P st
n

∑
i

nibi
Nc

+O(dt). (21)

where we used that
∑
i ni = Nc is a conserved quantity.

Below we demonstrate that this latter equality (21) is
satisfied by analyzing the stationary distribution function
P st
n .

2. The Connection between the Distribution Functions
of the Population and of the Original System

From the definition of the stationary distribution func-
tion P st

n , we have∑
ñ

P st
ñ σ(ñ→ n)−

∑
ñ

P st
n σ(n→ ñ) = 0, (22)

(which is a stationary Master equation.) In this equation,
we use the explicit expression of σ shown in (18). By
denoting by nj→i the configuration where one clone in
the state j moves to the state i: nj→i ≡ (n0, n1, · · · , ni+
1, · · · , nj−1, · · · , nM−1), the stationary Master equation
(22) is rewritten as∑

i,j(i 6=j)

[
fi→j(n

j→i)− fi→j(n)
]

= 0, (23)

where we defined fi→j(n) as

fi→j(n) = P st
n ni [w(i→ j) + sw̃n(i→ j)] . (24)

Now we multiply expression (23) by nk (k is arbitrary
from k = 0, 1, 2, · · · ,M − 1), and sum it over all config-
urations n:∑

n

∑
i,j(i 6=j)

nk
[
fi→j(n

j→i)− fi→j(n)
]

= 0. (25)

We can change the dummy summation variable
n in the first term to ni→j , which leads to∑
n

∑
i,j(i6=j)(n

i→j)kfi→j(n). Since the second term has

almost the same expression as the first one except for the
factor nk, the sum in (25) over the indices (i, j), where
none of i nor j is equal to k, becomes 0. The remaining
term in (25) is thus

0 =
∑
n

∑
j(j 6=k)

(
(nk→j)k − nk

)
fk→j(n)

+
∑
n

∑
i(i6=k)

(
(ni→k)k − nk

)
fi→k(n).

(26)

Using the definition of ni→j in this equation, we arrive
at

0 =
∑
n

[ ∑
i(i 6=k)

fi→k(n)− fk→i(n)

]
. (27)

This equation (27) connects the stationary property of
the population dynamics (described by the occupation
states n) and the one in the original system (described
by the states i).

The easiest case where we can see this connection
is when s = 0. By defining the empirical occupation
probability of the original system as pi ≡

∑
n P

st
n ni/Nc,

Eq. (27) leads to the following (stationary) master equa-
tion for w(i→ j):

0 =
∑
j

pjw(j → i)−
∑
j

piw(i→ j) (for s = 0) (28)
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This is valid for anyNc, meaning that, for original Monte-
Carlo simulations in s = 0, the empirical probability pi
is exactly equal to the steady-state probability, as being
the unique solution of (28). It means that there are no
systematic errors in the evaluation of pi (see the intro-
duction of this paper for the definition of the term “sys-
tematic errors”). However, in the generic case s 6= 0, this
property is not satisfied. One thus needs to understand
the Nc → ∞ limit to connect the population dynamics
result with the large deviation property of the original
system.

3. Justification of the Convergence of the Large Deviation
Estimator as Population Size becomes Large

In order to take the Nc →∞ limit, we define a scaled
variable xi as ni/Nc. With keeping this occupation frac-
tions xi to be O(1), we take the Nc → ∞ limit in (27),
which leads to

0 =
∑
n

P st
n

[∑
j

xjw(j → i)−
∑
j

xiw(i→ j)

− s xi

(
bi −

∑
k

xkbk

)]
+O(1/Nc).

(29)

Inspired by this expression, we define a matrix Lsi,j as

Lsi,j = w(j → i)− δi,j

(∑
k

w(i→ k) + s bi

)
, (30)

and a correlation function between xi and xj as

ci,j =
∑
n

xixjP
st
n − pipj , (31)

(where we recall pi ≡
∑
n xiP

st
n ). From these definitions,

(29) is rewritten as∑
j

pjL
s
i,j = −spi

∑
k

pkbk − s
∑
k

ci,kbk +O
(

1

Nc

)
.

(32)
Since xi is an averaged quantity (an arithmetic mean)
with respect to the total number of clones (xi ≡ ni/Nc),
we can safely assume that the correlation ci,j becomes 0
in Nc →∞ limit:

lim
Nc→∞

ci,k = 0. (33)

(For more detailed discussion of why this is valid, see
the description after Eq. (36)). Thus, by defining p∞i ≡
limNc→∞ pi, we obtain∑

j

p∞j L
s
i,j = −sp∞i

∑
k

p∞k bk. (34)

From the Perron-Frobenius theory, the positive eigen-
vector of the matrix Lsi,j is unique and corresponds to

its eigenvector of largest eigenvalue (in real part). This
means that −s

∑
k p
∞
k bk is the largest eigenvalue of the

matrix Lsi,j . Finally, by recalling that the largest eigen-
value of this matrix Lsi,j is equal to the generating func-
tion ψ(s) (see [33] for example), we have finally justified
that the CGF estimator (21) is valid in the large-Nc limit.

C. Systematic Errors due to Finite Nc;
Convergence Speed of the Large Deviation

Estimator as Nc →∞

In the introduction of this paper, we defined the sys-
tematic errors as the deviations of the large deviation
estimator from the correct value due to a finite number
of clones Nc. From (21), we quantitatively define this
systematic error εsys as

εsys ≡

∣∣∣∣∣ψ(s) + s
∑
i

pibi

∣∣∣∣∣ . (35)

From a simple argument based on a system size expan-
sion, we below show that this εsys is of order O(1/Nc).

We first show that one can perform a system size ex-
pansion (as e.g. in van Kampen [25]) for the population
dynamics. In (23), by recalling the definition of the vec-

tor x as x = n/Nc, and by denoting P̃ st(x) = P st
xNc

, we
obtain

0 =
∑

i,j(i 6=j)

∞∑
r=1

1

r!

1

Nr
c

(
∂

∂xi
− ∂

∂xj

)r
xiP̃

st(x)

× [w(i→ j) + sw̃n(i→ j)|n=xNc
] .

(36)

This indicates that the stochastic process governing the
evolution of x becomes deterministic in the Nc → ∞
limit. The deterministic trajectory for x is governed by
a differential equation derived from the sole term r = 1
in the expansion (36) (see e.g. Sec. 3.5.3 Deterministic
processes - Liouville’s Equation in ref. [26] for the detail
of how to derive this property). Thus if x converges to
a fixed point as Nc increases, which is normally observed
in implementations of cloning algorithms, the assumption
(33) is satisfied.

From the expression of εsys, we see that the dependence
in Nc comes solely from pi, which can be calculated from
the first order correction of P st

n (at large Nc). The equa-
tion to determine P st

n is the stationary Master equation
(22) or equivalently, the system-size expansion formula
(36). We expand the jump ratio w(i → j) + sw̃n(i → j)
in (36) with respect to 1/Nc as:

w(i→ j) + sw̃n(i→ j)

= w(i→ j) + sw̃∞x (i→ j) +
s

Nc
δwx(i→ j) +O(1/N2

c ),

(37)

where w̃∞x (i→ j) and δwx(i→ j) are defined as

w̃∞x (i→ j) = xj
[
αjδj∈Ω(+) − αiδi∈Ω(−)

]
(38)
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TABLE III. Magnitudes of the numerical errors

Magnitude of errors

Systematic errors O(1/Nc)
Numerical errors O(1/(τNc))

and

δwx(i→ j) = −xj
[
αjδj∈Ω(+) + αiδi∈Ω(−)

]
. (39)

By substituting (37) into the system-size expansion for-
mula (36) and performing a perturbation expansion, we
find that a first-order correction of p is naturally of order
O(1/Nc), i.e. εsys = O(1/Nc). For a practical scheme of
how to implement this perturbation on a specific exam-
ple, see Sec. IV A. In Part II [31], the scaling analysis of
the 1/Nc correction is shown to hold numerically with
the continuous-time cloning algorithm (see Sec. II D 2).
We also show that the 1/Nc correction behavior remains
in fact valid at finite time [31], an open question that
remains to be investigated analytically.

D. Remarks

Here, we discuss some remarks on the formulation pre-
sented in this section.

1. Relaxing the Condition dt = ∆t

In Sec. II A 2, we set the discretization time of the pro-
cess dt to be equal to the time interval for cloning ∆t,
and we took the dt = ∆t → 0 limit at the end. We
note that the condition ∆t = dt is not necessary if both
limits ∆t → 0 and dt → 0 (with dt < ∆t) are taken
at the end. This is practically important, because we
can use the continuous-time process to perform the algo-
rithm presented here by setting dt = 0 first, and ∆t→ 0
limit afterwards. More precisely, replacing dt by ∆t in
the matrix C and K, we build a new matrix KC(T ∆t/dt).
Taking the dt → 0 limit in this matrix while keeping
∆t non-infinitesimal (but small), this matrix represents
the population dynamics algorithm of a continuous-time
process with a finite cloning time interval ∆t. The ar-
guments presented in this section can then be applied in
the same way, replacing dt by ∆t. We note that the de-
viation due to a non-infinitesimal ∆t should thus appear
as O(∆t) (see Eq. (19) for example).

2. A Continuous-time Algorithm Used in Part II

The ∆t → 0 limit is the key point in the formulation
developed in this section (and in this Part I). Thanks
to this limit, upon each cloning step, the total num-

ber of clones
∑M−1
j=0 nj always varies only by ±1, which

makes the expression of the matrices C and K simple
enough to develop the arguments presented in Secs. II B
and II C. Furthermore, during the time interval ∆t sep-
arating two cloning steps, the configuration is changing
at most once. The process between cloning steps is thus
simple, which allows us to represent the corresponding
time-evolution matrix as T (by replacing dt by ∆t as ex-
plained in Sec. II D 1 above). Generalizing our analytical
study to a cloning dynamics in which the limit ∆t → 0
is not taken is therefore a very challenging task, which is
out of the scope of this paper.

However, interestingly, in the Part II [31] (compan-
ion to this paper) we observe numerically that our pre-
dictions for the finite-time and finite-population scalings
are still valid in a different version of algorithm for which∑M−1
j=0 nj can vary by an arbitrary amount – support-

ing the hypothesis that the analytical arguments that
we present here could be extended to more general algo-
rithms. More precisely, in Part II, we use a continuous-
time version of the algorithm [13] to study numerically an
observable of ‘type A’ [33]. This version of the algorithm
differs from that considered in Part I, in the sense that the
cloning steps are separated by non-fixed non-infinitesimal
time intervals. These time intervals are distributed expo-
nentially, in contrast to the fixed ones taken in this Part I
(where ∆t is a constant). This results in an important
difference: the effective interaction between copies due
to the cloning/pruning procedure is unbounded (it can
a priori affect any proportion of the population), while
in the algorithm of the present Part I, this effective inter-
action is restricted to a maximum of one cloning/pruning
event in the ∆t → 0 limit. We stress that the dt → 0
limit of the cloning algorithm studied in Part I with a
fixed ∆t does not yield the continuous-time cloning algo-
rithm, stressing that these two versions of the population
dynamics present essential differences.

III. STOCHASTIC ERRORS: LARGE
DEVIATIONS OF THE POPULATION

DYNAMICS

In the previous section, we formulated the population
dynamics algorithm as a birth-death process and evalu-
ated the systematic errors (which are the deviation of the
large deviation estimator from the correct value) due to
a finite number of clones (Table III). In this section, we
focus on stochastic errors corresponding to the run-to-
run fluctuations of the large deviation estimator within
the algorithm, at fixed Nc (see the introduction of this
paper for the definition of the terms stochastic errors and
systematic errors).

In order to study stochastic errors, we formulate the
large deviation principle of the large deviation estimator.
In the population dynamics algorithm, the CGF estima-
tor to measure is the time-average of the average cloning
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ratio of the population (see Sec. II B 1):

ψNc,τ (s) ≡ −s1

τ

∫ τ

0

dt

M−1∑
i=0

ni(t)bi
Nc

. (40)

As τ increases, this quantity converges to the expected
value (which depends on Nc) with probability 1. However
whenever we consider a finite τ , dynamical fluctuations
are present, and there is a probability that this estimator
deviates from its expected value. Since the population
dynamics in the occupation states n is described by a
Markov process, the probability of these deviations are
themselves described by a large deviation principle [19,
20]: By denoting by Prob(ψ) the probability of ψNc,τ (s),
one has:

Prob(ψ) ∼ exp (−τINc,s(ψ)) , (41)

where INc,s(ψ) is a large deviation “rate function” (of the
large deviation estimator). To study these large devia-
tions, we can apply a standard technique using a biased
evolution operator for our population dynamics: For a
given Markov system, to calculate large deviations of
additive quantities such as (40), one biases the time-
evolution matrix with an exponential factor [19]. Specif-
ically, by defining the following matrix

Lhñ,n = σ(n→ ñ)− δñ,n
∑
n′

σ(n→ n′)− hs
M−1∑
i=0

nibi
Nc

.

(42)
and by denoting the largest eigenvalue of this matrix
G(h, s) (corresponding, as a function of h, to a scaled
cumulant generating function for the observable (40)),
the large deviation function INc,s(ψ) is obtained as the
Legendre transform suph [hψ −G(h, s)]. In Part II [31],
we show that a quadratic approximation of the rate func-
tion INc,s(ψ) (i.e. a Gaussian approximation) can be es-
timated directly from the cloning algorithm.

We consider the scaling properties of INc,s in the large-

Nc limit. For this, we define a scaled variable h̃ ≡ h/Nc
and a scaled function G̃(h̃, s) ≡ G(h̃Nc, s)/Nc. If this

scaled function G̃(h̃, s) ≡ G(h̃Nc, s)/Nc is well-defined in
the Nc → ∞ limit (which is natural as checked in the
next paragraph), then we can derive that INc,s has the
following scaling:

INc,s(ψ) = NcIs(ψ) + o(Nc) (43)

or equivalently,

Prob(ψ) ∼ e−τNcIs(ψ), (44)

where Is(ψ) = maxh̃

[
h̃ψ − G̃(h̃, s)

]
. The scaling

form (43) is validated numerically in Part II [31]. From
this large deviation principle, we can see that the
stochastic errors of the large deviation estimator is of
O(1/(Ncτ)) as shown in Table III.

In the largest eigenvalue problem for the transition
matrix (42), by performing a system size expansion (see
Sec. II C), we obtain

G̃(h̃, s) =
∑

i,j(i 6=j)

(
∂

∂xi
− ∂

∂xj

)
xiq(x)

× [w(i→ j) + sw̃∞x (i→ j)]

− h̃

s
s
∑
i

xibiq(x) +O(1/Nc),

(45)

where q(x) is the right-eigenvector associated to the
largest eigenvalue of Lhñ,n (represented as a function of

x ≡ n/Nc). The first order of the right-hand side is of

order O(N0
c ), so that G̃(h̃, s) is also of order O(N0

c ) in
Nc → ∞. (For an analytical example of the function

G̃(h̃, s), see Sec. IV B).

IV. EXAMPLE:
A SIMPLE TWO-STATE MODEL

In this section, to illustrate the formulation that we
developed in the previous sections, we consider a simple
two state model. In this system, the dimension of the
state i is two (M = 2) and the transition rates w(i→ j)
are

w(0→ 1) = c, (46)

w(1→ 0) = d (47)

with positive parameters c, d and w(i → i) = 0. In this
model, the quantity αi defined in (9) becomes

αi = δi,0
n1

Nc
(b1 − b0) + δi,1

n0

Nc
(b0 − b1). (48)

Hereafter, we assume that b1 > b0 without loss of gen-
erality. From this, the space Ω(±) is determined as
Ω(+) = {0} and Ω(−) = {1}, which leads to the jump
ratio w̃n(i→ j) as

w̃n(i→ j) = δi,1δj,0
n0

Nc
(b1 − b0)

[
n1

Nc + 1
+

n0

Nc − 1

]
.

(49)
Finally, from the conservation of the total population:
n0 + n1 = Nc, we find that the state of the population n
can be uniquely determined by specifying only the vari-
able n0. Thus the transition rate for the population dy-
namics is a function of n0 (and ñ0), σ(n0 → ñ0), which
is derived as

σ(n0 → ñ0) = δñ0,n0+1

[
(Nc − n0)d

+ k(n0, Nc − n0)
( n0

Nc − 1
+
Nc − n0

Nc + 1

)]
+ δñ0,n0−1 n0 c,

(50)

where we have defined

k(n0, n1) =
n0n1

Nc
s [b1 − b0] . (51)
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A. Systematic Errors

We first evaluate the systematic errors (see Sec. II C).
For this, we consider the distribution function P st

n . Since
the system is described by a one dimensional variable n0

restricted to 0 ≤ n0 ≤ Nc, the transition rates σ(n0 →
ñ0) satisfy the detailed balance condition:

P st
n0
σ(n0 → n0 + 1) = P st

n0+1σ(n0 + 1→ n0). (52)

We can solve this equation exactly, but to illustrate the
large-Nc limit, it is in fact sufficient to study the solution
in an expansion 1/Nc � 1. The result is

P st
xNc

= C exp [−NcIconf(x) + δI(x) +O(1/Nc)] (53)

(with here x ≡ n0/Nc), where, explicitly

Iconf(x) =x+ log(1− x)− d log [d+ (b1 − b0)sx]

(b1 − b0)s

− x log

[
1

cx
(1− x) (d+ (b1 − b0)sx)

] (54)

and

δI(x) = −x− 2dx

(b1 − b0)s
+ x2 − log x

+
2d2 log [d+ (b1 − b0)sx]

(b1 − b0)2s2
+
d log [d+ (b1 − b0)sx]

(b1 − b0)s
.

(55)

We now determine the value of x that minimizes
−NcIs(x) + δI(x), which leads to a finite-size correction
(i.e. the systematic errors) of the population dynamics
estimator. Indeed, denoting this optimal value of x by
x∗Nc

, the large deviation estimator is obtained as

ψNc(s) = −s
[
x∗Nc

b0 + (1− x∗Nc
)b1
]

(56)

(see Sec. II B 1). From a straightforward calculation
based on the expressions Iconf(x) and δI(x), we obtain
the expression of x∗Nc

as

x∗Nc
= x∗ +

1

Nc
δx∗ +O((1/Nc)

2), (57)

with

x∗ =
−c− d+ (b1 − b0)s

2(b1 − b0)s

+

√
4d(b1 − b0)s+ [−c− d+ (b1 − b0)s]

2

2(b1 − b0)s

(58)

and

δx∗ = (2d+ 2(b1 − b0)sx∗)
−1

×
2c
[
−d− (b1 − b0)sx∗

(
1 + x∗ − 2(x∗)2

)]√
4d(b1 − b0)s+ [c+ d− (b1 − b0)s]2)

.

(59)

We thus arrive at

ψ(s) =
−c− d− (b1 + b0)s

2

+

√
4d(b1 − b0)s+ [−c− d+ (b1 − b0)s]

2

2

(60)

and

εsys =
1

Nc

1

|d+ (b1 − b0)sx∗|

×

∣∣∣∣∣sc(b0 − b1) (d+ (b0 − b1)s(x∗ − 1)x∗(1 + 2x∗))√
4(b1 − b0)ds+ [c+ d+ (b0 − b1)s]2

∣∣∣∣∣
(61)

(see Eq. (35) for the definition of the systematic error
εsys.) We check easily that the expression of ψ(s) is the
same as the one obtained from a standard method by
solving the largest eigenvalue problem of a biased time-
evolution operator (See for example, ref. [18]).

B. Stochastic Errors

We now turn our attention to the stochastic errors.
The scaled cumulant generating function NcG̃(h̃, s) is the
largest eigenvalue of a matrix Lhñ,n (see Eq. (42) and the
explanations around). We then recall a formula to cal-
culate this largest eigenvalue problem from the following
variational principle:

G̃(h̃, s)

= sup
φ>0

∑
n

pst(n0)φ(n0)2

[
σ(n→ n+ 1)

Nc

(
φ(n0 + 1)

φ(n0)
− 1

)

+
σ(n→ n− 1)

Nc

(
φ(n0 − 1)

φ(n0)
− 1

)
− sh̃

∑
i nibi
N2
c

]
.

(62)

(See, e.g., the appendix G of [34] or [33] for the derivation
of this variational principle). By following the usual route
to solve such equations (see, e.g., the Sec. 2.5 of Ref. [35]),
we obtain

G̃(h̃, s) = sup
x

[
−
(√

(1− x)(d+ (b1 − b0)sx)−
√
cx
)2

− sh̃ [xb0 + (1− x)b1]

]
.

(63)

Thus, G̃(h̃, s) is well-defined, justifying that the large de-
viation principle (44) is satisfied. Furthermore, by ex-

panding this variational principle with respect to h̃, we
obtain

G̃(h̃, s) = ψ(s)h̃+
κs
2
h̃2 +O(h̃3), (64)
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where ψ(s) is given in (60), and the variance κs is given
as

κs =c+
cs(b1 − b0)√

4(b1 − b0)sd+ (c+ d+ (b0 − b1)s)2

− c(c+ d)2 + c(b0 − b1)(c− 3d)s

c2 + 2c [d+ (b0 − b1)s] + (d+ (b1 − b0)s)2
.

(65)

We note that the expansion (64) is equivalent to the fol-
lowing expansion of the large deviation function Is(ψ)
(see (44)) around the expected value ψ(s):

Is(ψ) =
(ψ − ψ(s))2

2κs
+O((ψ − ψs)3). (66)

The variance of the obtained large deviation estimator is
thus κs/(Ncτ).

C. A Different Large Deviation Estimator

As an application of these exact expressions, we ex-
pand the systematic error εsys and the stochastic error
(variance) κs with respect to s. A straightforward calcu-
lation leads to

εsysNc =

∣∣∣∣∣2c(b0 − b1)

c+ d
s

∣∣∣∣∣+O(s2) (67)

and

κs =
2(b0 − b1)2cd

(c+ d)3
s2 +O(s3). (68)

We thus find that the first-order of the error εsys scales
as O(s) at small s, but that the variance κs is of order
O(s2). From this scaling, as we explain below, one can
argue that the following large deviation estimator can be
better than the standard one for small s:

Ψ̃(s) ≡ 1

τ
log

τ/dt∏
t=0

∑
i

ni(t)e−sdtbi

Nc
, (69)

where the overline represents the averaging with respect
to the realizations of the algorithm. (Normally, this
realization-average is taken after calculating the loga-
rithm, which corresponds to the estimator (19).) Mathe-
matically, this average ((69), before taking the logarithm)
corresponds to a bias of the time-evolution matrix σ as
seen in (42) for h = 1. This means that, in the limit
τ → ∞ with a sufficiently large number of realizations,
this averaged value behaves as Ψ̃(s) ∼ eτG(1,s). By com-
bining this result with the expansion (64), we thus obtain

lim
τ→∞

lim
many

realizations

Ψ̃(s) = ψ(s) +
κs
2
N−1
c +O(N−2

c ) (70)

(recalling G̃ = G/Nc and h̃ = h/Nc). When we consider
small s, by recalling εsysNc = O(s) and κs = O(s2), we

thus find that the deviations from the correct value are
smaller in the estimator Ψ̃(s) than in the normal esti-
mator given in (19), which comes as a surprise because
in (69) the average and the logarithm are inverted with
respect to a natural definition of the CGF estimator.

To use this estimator, we need to discuss the two fol-
lowing points. First, since the scaled cumulant generat-
ing function G(1, s) has small fluctuations, one needs a
very large number of realizations in order to attain the
equality (70). The difficulty of this measurement is the
same level as the one of direct observations of a large
deviation function, see for example [32]. However, we
stress that this point may not be fatal in this estimator,
because we do not need to attain completely this equal-
ity, i.e. our aim is the zero-th order coefficient, ψ(s), in
(70). Second, we have not proved yet the scaling prop-
erties with respect to s, which are εsysNc = O(s) and
κs = O(s2), in a general set-up aside from this simple
two state model. We show in practice in Part II [31] that
for small values of s, the estimator (69) is affected by
smaller systematic errors, in the numerical study of the
creation-annihilation process studied in this section. We
will focus on the generality of our observations on these
points in a future study.

V. DISCUSSION

In this paper, we formulated a birth-death process that
describes population dynamics algorithms and aims at
evaluating numerically large deviation functions. We de-
rived that this birth-death process leads generically to
the correct large deviation results in the large limit of
the number of clones Nc → ∞. From this formulation,
we also derived that the deviation of large deviation esti-
mator from the desired value (which we called systematic
errors) is small and proportional with O(N−1

c ). Below,
based on this observation, we propose a simple interpo-
lation technique to improve the numerical estimation of
large deviation functions in practical uses of the algo-
rithm.

A. An Interpolation Technique using the O(1/Nc)
Scaling of the Systematic Error

Imagine that we now apply the population dynamics
algorithm to a given system. We need to carefully con-
sider the asymptotic limit of the two large parameters τ
and Nc in the convergence of the large deviation estima-
tor (40). Indeed, what one needs to do in this simulation
is, (i) taking the large-τ limit for a fixed Nc and esti-
mating the τ → ∞ value of the estimator for this fixed
Nc, and then (ii) estimating this large-τ value for several
(and increasing) Nc, and finally estimating large-τ -Nc
limit value. This is different from standard Monte-Carlo
simulations, where one needs to consider only the large-τ
limit, thanks to ergodicity.
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Any method that can make the LDF estimation easier
thus will be appreciated. Based on our observations, we
know that the second part [(ii) above] converges with an
error proportional to 1/Nc. Also, from the large deviation
estimator (40), one can easily see that the convergence
speed with respect to τ for a fixed Nc is proportional to
1/τ (i.e. the first part [(i) above] converges proportion-
ally to 1/τ). By using these 1/τ - and 1/Nc-scalings for
(i) and (ii), one can interpolate the large-τ and large-Nc
asymptotic value of the LDF estimator from the mea-
sured values for finite τ and Nc. We introduce this nu-
merical method in practice in the companion paper by the
same authors Part II [31]. We demonstrate numerically
that the interpolation technique is very efficient in prac-
tice, by a direct comparison of the resulting estimation
of the CGF to its analytical value, which is also available
in the studied system. We also underline that it is devel-
oped in Part II for a different cloning algorithm by using a
continuous-time population dynamics [13] (see Sec. II D 2
for the description of the conceptual difference). From
the results of Part I and Part II, we conjecture that the
validity of the large-τ and large-Nc scalings is very gen-
eral and independent of the details of the algorithm.

B. Open Questions

We mention two open questions. The first question
is about the precise estimate of the error due to a non-
infinitesimal time interval ∆t between cloning steps: As
explained in Sec. II D 1 and Sec. II D 2, taking the ∆t→ 0
limit is important in our analysis, in order to make the
estimator converge to the correct LDF. The error due to
non-infinitesimal ∆t is at most of order ∆t as seen from
Eq. (19) (see also Sec. II D 1). From a practical point
of view, taking this limit can however be problematic,
since it requires infinitely many cloning procedures per
unit time (as ∆t → 0). Interestingly, most of existing

algorithms do not take such a limit (see for instance the
original version of the algorithm [12]). Empirically, one
thus expects that the error goes to zero as Nc →∞ while
keeping ∆t finite. Within the method developed in this
paper, the analytical estimation of this error is challeng-
ing (see Sec. II D 2) and remains an open problem, but
for example, one can approach to this issue numerically
at least.

The second question is about possible extensions of the
formulation developed in this paper. In our algorithm,
we perform a cloning procedure for a fixed time interval,
which means that our formulation cannot cover the case
of algorithms where ∆t itself is statistically distributed,
as in continuous-time cloning algorithms [13]. Moreover,
our formulation is limited to Markov systems, although
population dynamics algorithms are applied to chaotic
deterministic dynamics [14, 17] or to non-Markovian evo-
lutions [36]. Once one removes the Markov condition in
the dynamics, developing analytical approaches becomes
more challenging. However, as the physics of those sys-
tems are important scientifically and industrially [37], the
understanding of such dynamics cannot be avoided for
the further development of population algorithms.
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