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Abstract

Fluid-based locomotion at low Reynolds number is subject to the constraints of Purcell’s scal-

lop theorem: reciprocal shape kinematics identical under a time-reversal symmetry cannot cause

locomotion. In particular, a single degree-of-freedom scallop undergoing opening and closing mo-

tions cannot swim. Most strategies for symmetry-breaking and locomotion rely on direct control

of the swimmer’s shape kinematics. Less is known about indirect control via actuation of the fluid

medium. To address how such indirect actuation strategies can lead to locomotion, we analyze

a Λ-shaped model system analogous to Purcell’s scallop but able to deform passively in oscilla-

tory flows. Neutrally-buoyant scallops undergo no net locomotion. We show that dense, elastic

scallops can exhibit passive locomotion in zero-mean oscillatory flows. We examine the efficiency

of swimming parallel to the background flow and analyze the stability of these motions. We ob-

serve transitions from stable to unstable swimming, including ordered transitions from fluttering

to chaotic-like motions and tumbling. Our results demonstrate that flow oscillations can be used to

passively actuate and control the motion of microswimmers, which may be relevant to applications

such as surgical robots and cell sorting and manipulation in microfluidic devices.
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I. INTRODUCTION

Biological and bioinspired swimmers move by shape actuation. The hydrodynamic forces

acting on the swimmer are functions of the Reynolds number (Re). The Reynolds number

measures the ratio of inertial to viscous effects. At low Re, viscous effects are dominant and

fluid inertia is negligible. Locomotion in this regime is dominated by viscous drag forces and

subject to the constraints of the scallop theorem [1]: reciprocal shape changes, that is to

say, periodic shape changes identical under time reversibility, cannot display locomotion on

average. Specifically, a scallop-like body with a single degree of freedom undergoing periodic

opening and closing motions cannot move. To achieve a net displacement, microorganisms

employ diverse propulsive strategies that break the time-reversal symmetry of viscous flows

and circumvent the constraints of the scallop theorem. Examples include the helical move-

ments of flagella [2–4] and the asymmetric beating patterns of cilia [5–7]. Minimal model

systems that focus on the smallest level of complexity needed to generate a system capable

of locomotion, such as Purcell’s three-link swimmer [1, 8] and two- and three-sphere swim-

mers [9, 10], provide valuable insights into these symmetry-breaking mechanisms. These

mechanisms rely mostly on direct shape actuation.

Less is known about locomotion by indirect actuation. Indirect actuation refers to lever-

aging the interactions between the fluid and body properties to achieve locomotion using

partial or no direct control over the swimmer. To break the scallop theorem by indirect ac-

tuation, investigations focused on adding passive degrees of freedom to the swimmer [11, 12],

considering the swimming problem in a viscoelastic fluid [13], adding inertia to the swim-

mer only while keeping the inertia of the fluid negligible [14], or adding a static separation

between the centers of mass and buoyancy of the swimmer [15]. All these systems require

partial control and actuation of the swimmer. The coupling between directly-actuated shape

variables and passive body and fluid variables breaks the time reversal symmetry and leads

to locomotion.

The important implications of breaking time reversibility, which enables the propulsion

of microorganisms and microrobots in viscous flows, naturally compel one to ask whether

there exist completely passive mechanisms for symmetry breaking and locomotion. More

specifically, we ask whether by leveraging fluid-body interactions, we can achieve passive

actuation of the swimmer via actuation of the fluid medium itself, such as via background
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flow oscillations, with no direct control over the swimmer [16, 17]. Such actuation methods

can be a key technology in various industrial and medical applications, including minimally-

invasive surgery [18] and cell sorting and manipulation [19, 20]. Current microrobots utilize

magnetic [21–24], electric [25, 26], chemical [27, 28], or optical [29] forces for actuation. Each

of these actuation methods presents its own challenges, especially to medical applications, as

they require external, often biologically incompatible, sources of power. Shape actuation in

oscillatory flows via hydrodynamic forces only offers an attractive alternative for autonomous

locomotion. In this study, we consider a minimal one degree-of-freedom system placed in

oscillatory background flow with zero mean and show that locomotion is possible. This

system is chosen for its obvious analogy to Purcell’s scallop theorem and to provide physical

insight into the symmetry-breaking mechanisms in oscillatory flows.

At low Re, the flow is governed by the linear Stokes equations, where drag forces depend

linearly on the fluid velocity and cannot have non-zero mean in zero-mean oscillatory flows.

In these oscillatory flows, a rigid body of the same density as the fluid and any shape

moves back and forth with the flow and experiences zero net force over one oscillation

period. A non-rigid body with one degree of freedom in oscillatory flows also experiences

zero net displacement. Basically, rigid bodies and one degree-of-freedom deformable bodies,

when placed in oscillatory flows of zero-mean velocity, undergo reciprocal motion and no

net locomotion. We show that a one degree-of-freedom deformable body that is denser

than the surrounding fluid is able to break the time reversible symmetry and propel itself

forward in symmetric oscillatory flows. This symmetry-breaking mechanism is reminiscent

but not identical to the one discussed in [14]. In the latter, examples of dense bodies

subject to direct shape actuation and undergoing reciprocal motion are shown to swim in an

otherwise quiescent fluid; here we demonstrate that dense bodies are able to swim passively

in symmetric oscillatory flows. This motion is distinct from locomotion in oscillatory flows

at finite Re, where propulsion is related to streaming flows and a fluid jet in the wake of the

swimmer [30]. This motion in uniform oscillatory flows is also distinct from the migration

of elastic bodies across streamlines in non-linear shear flows at zero Re [31–33].

We then examine the stability of passive swimming in oscillatory flows when the body is

subject to rotational perturbations such that its axis of symmetry is no longer aligned with

the direction of the background oscillatory flow. We find that for a range of parameter values,

symmetric swimming is stable to perturbations. We closely examine the nonlinear behavior
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in regions of the parameter space where symmetric swimming is unstable. We identify three

types of behavior: fluttering, chaotic, and tumbling depending on the parameters of the

swimmer and background flow. These results suggest that one can control the behavior

of the swimmer by properly manipulating the parameters of the swimmer and background

flow.

The organization of this paper is as follows: in section II, we derive the equations of motion

for a two-link swimmer in oscillatory background flows. The behavior of the swimmer and

its stability are illustrated in section III. The importance of these findings are discussed in

section IV.

II. PROBLEM FORMULATION

a. Swimmer model. Our model swimmer consists of two slender bars, which we will

refer to as arms, of equal length l̃ and density ρ̃s, joined at the apex at an angle 2α via

a massless torsional spring of stiffness κ̃; see Fig. 1. The mass of the arms is given by

m̃ = πã2ρ̃s l̃, where ã is the thickness of the arm and ã/l̃ ≪ 1. The spring has a rest

angle αr. Deviations from αr generate a torque τ = 2κ̃(α − αr). The background fluid of

density ρ̃ and viscosity η̃ oscillates linearly with velocity Ũ = Ã(πf̃) sin(2πf̃ t̃), where f̃ is

the oscillation frequency and Ã is the peak-to-peak oscillation amplitude and t̃ is time (in

seconds).

b. Dimensionless parameters. We use l̃, T̃ = 1/f̃ and ρ̃ as the length, time, and

density scales, respectively. Non-dimensional analysis yields four independent, dimensionless

parameters: the mass m and spring stiffness κ of the swimmer, and the amplitude A and

viscosity η of the background flow,

m ,
m̃

ρ̃l̃3
, κ ,

κ̃

ρ̃l̃4f̃ 2
, A ,

Ã

l̃
, η ,

η̃

ρ̃l̃2f̃
. (1)

A few remarks on the order of magnitude of the dimensional and non-dimensional parameters

are in order. For example, we consider a typical micro-swimmer of mass m̃ = 1µg (ρs ≈

104kg/m3), spring stiffness κ̃ = 0.1(µg ·m)/s shouldn’t this be (µg ·m2)/s2 and size l̃ =

100µm, ã = 10µm. Let the micro-swimmer be submerged in a fluid of density ρ̃ = 103kg/m3

and viscosity η̃ = 10−3kg/(m · s) as in the case of water, with background flow oscillations

of amplitude Ã = 200µm and frequency f̃ = 1Hz. Then the corresponding dimensionless
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mass spring stiffness flow amplitude fluid viscosity

dimensional m̃ = 1µg κ̃ = 0.1(µg ·m)/s Ã = 200µm η̃ = 10−3kg/(m · s)

dimensionless m = 1 κ = 1000 A = 2 η = 100

TABLE I. One set of dimensional and non-dimensional parameters for the micro-swimmer in os-

cillatory flow.

parameters are m = 1, κ = 1000, A = 2, η = 100. See TABLE I.

More generally, two relevant Reynolds numbers can be used to characterize this system

(see [14]): the fluid advective Reynolds number Refluid = ρ̃l̃Ãf̃/η̃; and the swimmer Reynolds

number Reswimmer = ρ̃s l̃
2f̃ /η̃. Here, we consider dense swimmers with Ã/l̃ be O(1) and

ρ̃s/ρ̃ ≫ 1 for which Refluid ≪ Reswimmer. That is, we consider the case of dense swimmers but

negligible fluid inertia. For example, for the set of parameters in TABLE I, Refluid = 0.02 <

Reswimmer = 0.1 < 1. Note that this is equivalent to a small Stokes number Stk = ts/tf ,

defined as the ratio of the swimmer’s relaxation time ts in response to fluid drag forces to

the fluid characteristic time tf = 1/f̃ . The non-dimensional mass m = πρ̃sã
2/ρ̃l̃2 is O(1)

given that we considered ρ̃s/ρ̃ ≫ 1 and ã/l̃ ≪ 1. We vary the stiffness κ over several orders

of magnitude to explore its effect on the swimmer’s behavior: small values of κ correspond

to a ‘floppy’ swimmer while κ ≫ 1 approaches a rigid swimmer. The dimensionless viscosity

η = A/Refluid must be large (η ≫ 1) since Refluid ≪ 1.

c. Kinematics. Let (x, y) denote the position of the apex of the swimmer in a fixed

inertial frame (ex, ey) where the x-direction is chosen to coincide with the direction of the

background flow oscillations. Let θ denote the orientation of the swimmer from the x-

axis. The translational and rotational velocities of the swimmer are given by (ẋ, ẏ) and θ̇.

In addition, the opening angle α of the swimmer changes passively in time such that its

rotational speed is denoted by α̇.

Consider an infinitesimal segment of the swimmer. The local translational velocity u at

that segment due to the swimmer’s translational and rotational motions can be written as

the sum of two components u = u‖ + u⊥, where u⊥ = (u · e⊥)e⊥ and u‖ = (u · e‖)e‖ and

(e‖, e⊥) are unit vectors parallel and perpendicular to the swimmer. Here, we write explicit

expressions of u‖ and u⊥ for each of the two arms forming the swimmer. For convenience,

we denote the arm oriented at −(θ − α) by arm 1 and that oriented at θ + α by arm 2, see
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FIG. 1. Deformable swimmer consisting of two rigid bars of mass m and length l connected at one

end via a torsional spring of stiffness κ in a zero-mean oscillatory background flow of amplitude A

and frequency f . The hydrodynamic drag force acting on each segment of the body is calculated

using the resistive force theory for slender filaments. The drag anisotropy provides a means to

generate forces that are not necessarily aligned with the direction of actuation by the background

flow (see text for notation).

Fig. 1(a). Consider an infinitesimal segment ds of arm 1 located at an arc-length s measured

from the swimmer’s apex. The local components of the translational velocity u1(s, t) of arm

1 are given by

u⊥1 =
[

−ẋ sin(θ − α) + ẏ cos(θ − α)− s(θ̇ − α̇)
]

e⊥1,

u‖1 = [ẋ cos(θ − α) + ẏ sin(θ − α)] e‖1.
(2)

Similar expressions can be readily obtained for the components of the local translational

velocity u2(s, t) of arm 2,

u⊥2 =
[

−ẋ sin(θ + α) + ẏ cos(θ + α)− s(θ̇ + α̇)
]

e⊥2,

u‖2 = [ẋ cos(θ + α) + ẏ sin(θ + α)] e‖2.
(3)

The local directions (e‖1, e⊥1) and (e‖2, e⊥2) are indicated on Fig. 1.

d. Hydrodynamic forces and moments. We compute the drag forces acting on the body

using the resistive force theory for slender filaments. Accordingly, the local drag force fd

per unit length opposing the swimmer’s motion relative to the background flow can be

written as the sum of two components: a parallel component f‖ = −ξ‖[u‖ − U(ex · e‖)e‖]
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and a perpendicular component f⊥ = −ξ⊥[u⊥ − U(ex · e⊥)e⊥] as depicted in Fig. 1. Here,

U = πA sin(2πt) is the dimensionless flow velocity. The drag coefficients per unit length ξ‖

and ξ⊥ are proportional to the fluid viscosity and are set to ξ‖ = η and ξ⊥/ξ‖ = 2. This

drag anisotropy (ξ⊥ 6= ξ‖) is essential for locomotion in viscous flows; see, for example, [34]

and references therein. Applying these expressions locally to bars 1 and 2, we get that

fd1 = f‖1 + f⊥1 and fd2 = f‖2 + f⊥2, where

f‖1 = −ξ‖
[

u‖1 − U cos(θ − α)e‖1
]

, f⊥1 = −ξ⊥ [u⊥1 + U sin(θ − α)e⊥1] , (4)

and

f‖2 = −ξ‖
[

u‖2 − U cos(θ + α)e‖2
]

, f⊥2 = −ξ⊥ [u⊥2 − U sin(θ + α)e⊥2] . (5)

The net hydrodynamic drag force on each arm is obtained by integrating the local drag

force along the length of the arm. Namely, the net drag forces on arms 1 and 2 are given by

F1 =
∫ l

0
fd1 ds and F2 =

∫ l

0
fd2 ds. The net drag moments about the apex of the swimmer

are given by M1 = −e‖1 ×
∫ l

0
f⊥1 s ds and M2 = −e‖2 ×

∫ l

0
f⊥2 s ds.

To conclude, we note that the resistive force theory does not take into consideration

hydrodynamic interactions between the segments of the swimmers, which may be relevant

near the swimmer’s apex, depending on the opening angle. A rough calculation of these

hydrodynamic interactions show that they contribute only slightly to the overall drag forces

and lead to qualitatively similar results [35].

e. Equations of motion. The equations governing the free motion of the swimmer in

oscillatory background flows are obtained from the balance of linear and angular momenta

of the system. To this end, we write the balance laws for each arm independently. We then

add the balance of linear momenta for the two arms to obtain the translational equations of

motion of the system. For convenience, we keep the rotational equations of motion in terms

of θ − α and θ + α instead of rewriting them in terms of the shape angle α and orientation

θ. To this end, we get

Mq̈ = Fm + Fk + Fd, (6)
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where q = [x, y, θ − α, θ + α]T , ()T is the transpose operator, and (̈) = ∂2/∂t2 is the second

time derivative. In (6), M is the mass matrix given by

M =





















2m 0 ml
2
Sθ−α

ml
2
Sθ+α

0 2m −ml
2
Cθ−α −ml

2
Cθ+α

ml
2
Sθ−α −ml

2
Cθ−α

ml2

3
0

ml
2
Sθ+α −ml

2
Cθ+α 0 ml2

3





















, (7)

where we used the abbreviations Sθ+α = sin(θ + α), Sθ−α = sin(θ − α), Cθ+α = cos(θ + α),

and Cθ−α = cos(θ − α). The terms Fm, Fk and Fd on the right-hand side of (6) are the

inertial, spring and hydrodynamic forces and moments, respectively. The inertial and spring

forces and moments are given by

Fm =





















−ml
2

[

Cθ−α(θ̇ − α̇)2 + Cθ+α(θ̇ + α̇)2
]

−ml
2

[

Sθ−α(θ̇ − α̇)2 + Sθ+α(θ̇ + α̇)2
]

0

0





















, Fk =





















0

0

κ(α− αr)

−κ(α− αr)





















, (8)

where αr is the rest angle of the torsional spring. The hydrodynamic forces and moments

are given by

Fd =















Cθ−α −Sθ−α Cθ+α Sθ+α

Sθ−α Cθ−α Sθ+α −Cθ+α

0 − l
2

0 0

0 0 0 l
2





























F‖1

F⊥1

F‖2

F⊥2















. (9)

where F‖1 and F⊥1 are the components of the net drag force F1 on arm 1,

F⊥1 = −ξ⊥l

[

−(ẋ− U)Sθ−α + ẏCθ−α −
l

2
(θ̇ − α̇)

]

,

F‖1 = −ξ‖l [(ẋ− U)Cθ−α + ẏSθ−α] .

(10)

and F‖2 and F⊥2 are the components of F2 on arm 2,

F⊥2 = −ξ⊥l

[

(ẋ− U)Sθ+α − ẏCθ+α +
l

2
(θ̇ + α̇)

]

,

F‖2 = −ξ‖l [(ẋ− U)Cθ+α + ẏSθ+α] .

(11)
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f. Massless swimmers. Consider the special case of zero mass m = 0 and finite spring

stiffness κ. Equations (6) reduce to a set of first-order ordinary differential equations

ẋ = U, ẏ = 0, θ̇ = 0, α̇ = −
4κ

3l3ξ⊥
(α− αr). (12)

This system of decoupled linear equations can be solved analytically. The body moves

with the background flow in the x-direction, while its position in the y-direction and its

orientation θ remain constant for all time. The shape variable α changes according to

α = αr + (α(0)− αr)e
− 4κ

3l3ξ⊥
t
. (13)

That is, α converges exponentially fast to the spring rest angle αr as time t increases. For

fixed l and ξ⊥, the convergence rate is faster for larger values of κ, that is, for stiffer springs.

g. Rigid swimmers. For rigid dense swimmers (κ = ∞, m > 0), the opening angle α

is fixed, say α = αr, and α̇ = α̈ = 0. The elastic terms vanish in equation (6) and the

equations reduce to

ẋ = U, ẏ = 0, θ̈ = −
3ξ⊥l

4m
θ̇ −

3 cosαr

2l
U̇ sin θ. (14)

Clearly, without elasticity, the equations for x and y decouple from the orientation equation.

The body moves with the background flow in the x-direction and maintains its initial position

in the y-direction similar to the case of massless swimmers. However, the dynamics of the

orientation angle θ is governed by a nonlinear parametrically-excited equation, reminiscent to

the damped Matthieu equation, see, e.g., [36–40]. The case θ(0) = 0 is a fixed point of this

equation. By analogy to the damped Matthieu equation, a detailed study of the stability

of this fixed point should reveal transitions from stable and unstable behavior depending

on parameter values. In this study, we focus on the stability of the system of equations (6)

when both inertia and elasticity are at play, as discussed in section III.

h. Work and efficiency. We compute the average work W done by the hydrodynamic

forces on the swimmer over one period T of background flow oscillations,

W =
1

T

∫ t+T

t

[
∫ l

0

(fd1 · u1 + fd2 · u2) ds

]

dt. (15)

The net displacement of the swimmer along the x-axis, if any, over one oscillation period of

the background flow can be measured using the T -averaged quantity

〈x〉 =
1

T

∫ t+T

t

x(t)dt. (16)
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FIG. 2. Displacement x shown in grey and time averaged displacement 〈x〉 shown in solid black

(top row) and shape changes α versus time (bottom row) for: (a) rigid swimmer of mass m = 1

and infinite spring stiffness, (b) elastic swimmer of zero mass and spring stiffness k = 50, and

(c) swimmer of mass m = 1 and spring stiffness k = 50. In all cases, the rest angle of the

spring is αr = 45◦, the fluid viscosity is η = 50 and the oscillatory background flow is given by

U = Aπ sin(2πt) where A = 10. The initial conditions are x(0) = ẋ(0) = 0, y(0) = ẏ(0) = 0,

θ(0) = θ̇(0) = 0, α(0) = 10◦ and α̇(0) = 0.

For the cases where locomotion is achievable (〈x〉 6= 0), we define the cost of locomotion c

as the average work divided by the average distance over one period,

c =
W

〈x〉
. (17)

Smaller c means less work “used” for a fixed distance traveled. It is convenient to denote the

efficiency of the system e as the inverse of the cost of locomotion, e = 1/c. This definition

of efficiency is consistent with the one used in [41] and [42] for underwater and terrestrial

locomotion. Intuitively, e is analogous to the “miles-per-gallon” concept.

III. RESULTS

We first examine the behavior of the swimmer when placed in a symmetric configuration

about the x-axis. We solve (6) numerically for initial conditions x(0) = ẋ(0) = 0, y(0) =

ẏ(0) = 0, θ(0) = θ̇(0) = 0, α(0) = 10◦ and α̇(0) = 0. Fig. 2 depicts the displacement x

versus time t for three distinct swimmers: (a) a rigid swimmer of mass m = 1 and infinite

10



O
sc

ill
at

or
y

fl
ow

α˚t=0 t=T/2 t=T t=3T/2 t=2T

x

θ˚

0 5 10
Time(t)

0

40

80

U

FIG. 3. The swimmer shown in Fig. 2(c) changes shape passively and swims parallel to the flow.

The opening angle α oscillates at the same frequency as the background oscillatory flow while the

orientation θ of the swimmer is identically zero.

spring stiffness κ, (b) an elastic massless swimmer with m = 0 and finite κ = 50, and (c) a

swimmer of finite mass m = 1 and spring stiffness κ = 50. In all three cases, the remaining

parameter values are set to αr = 45◦, η = 50 and A = 10. The rigid swimmer and the

elastic massless swimmer exhibit oscillatory motion but no net displacement in oscillatory

flows, as predicted by (12) and (14). This zero net motion is consistent with Purcell’s

scallop theorem, where two-link bodies connected via one hinge cannot swim by reciprocal

motions in drag-dominant flows. However, the swimmer with finite mass and elasticity

swims parallel to the flow oscillations, with net displacement 〈x〉 = 1
T

(

∫ t+T

t
x(t)dt

)

per

oscillation period T , see Fig. 2(c). This is because inertia (non-zero mass) introduces a

nonlinearity in the forces Fm that couples the displacement x(t) to the shape deformations

α(t) due to the finite spring stiffness, and leads to breaking the time-reversible symmetry

of two-link swimmers in drag-dominant flows. The opening angle α of the rigid swimmer

is constant while that of the massless swimmer converges exponentially to the rest angle of

the spring αr = 45◦, consistent with (13). When inertia and elasticity are combined, the

swimmer undergoes periodic closing and opening motions at the same frequency as that of

the background flow U , as illustrated in Fig. 3. In all three cases, the displacement in the y

direction and the orientation θ are identically zero owing to the symmetry of the problem

and initial conditions.

Fig. 4 (top row) shows the net displacement 〈x〉 of the swimmer as a function of the

four dimensionless parameters m, κ, A and η. In all simulations, initial conditions are set

to θ(0) = θ̇(0) = 0 and α(0) − αr = α̇(0) = 0 and the rest angle of the spring is set to

αr = 45◦. The swimmer’s mass m affects the amount and direction of net displacement

(Fig. 4(a)). For m ≈ 5, the swimmer achieves maximum displacement in the positive x-
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FIG. 4. Net displacement, work and efficiency in symmetric motions as a function of (a) mass

m, (b) spring stiffness κ, (c) amplitude A and (d) viscosity η. The nominal parameters are set as

m = 1, κ = 50, A = 1 and η = 50.

direction, whereas m ≈ 17 produces maximum negative displacement. The displacement

converges to zero for massive swimmers (as m → ∞), consistent with physical intuition.

The spring stiffness κ also affects the amount and direction of net displacement (Fig. 4(b)).

Maximum displacement is achieved in the positive x-direction at κ ≈ 60. The displacement

tends to zero as k → ∞, that is, as the swimmer approaches a rigid body. The effects of

the amplitude of flow oscillations A and fluid viscosity η on the displacement are shown

in Fig. 4(c) and (d). The displacement grows monotonically with increasing A. The net

displacement goes to zero as η → 0 because the hydrodynamic drag forces are proportional

to viscosity and approach zero as η → 0. In this limit, the assumption of drag-dominant

flows breaks down and fluid inertia should be explicitly accounted for in the model, which

is beyond the scope of the present study. As η → ∞, the drag forces go to infinity and

overpower the interplay between inertia and elasticity of the swimmer. No net displacement

is achievable in this limit. Displacement is maximum at η ≈ 5.
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FIG. 5. Linear motion of a symmetric swimmer. (a) Time courses of orientation θ subject to two

initial perturbations θ(0) = 60◦ and 120◦. Initially, α(0) = αr = 45◦. And the critical perturbation

θcr = 88.5◦ with parameter values given as m = 1, κ = 50, A = 15, and η = 50. (b) Time evolution

of the swimmer position (x(t), y(t)). The smaller perturbation θ(0) = 60◦ < θcr results in a positive

net displacement in the x-direction, shown in the bottom figure. And the larger θ(0) causes the

swimmer to flip its direction.

The hydrodynamic work W done by the fluid on the passive swimmer depends non-

monotonically on the swimmer’s properties m and k but increases monotonically with in-

creasing flow amplitude A and viscosity η, as shown in Fig. 4 (middle row). Correspondingly,

the efficiency e is optimal for finite values of mop = 5 and kop = 60, as depicted in Fig. 4

(bottom row). Small m leads to weaker symmetry-breaking and propulsion, whereas large

m requires more effort to displace the swimmer by a given distance. Similar argument holds

for the effect of spring stiffness: elasticity is weaker for κ < κop leading to weaker elastic

energy storage and breaking of the time reversal symmetry whereas κ > κop indicates stiffer

springs that require more work to be actuated, resulting in smaller efficiencies.

We now examine the stability of the passive motion in the x-direction when the swimmer

is subject to perturbations in its initial orientation θ(0). More specifically, we keep the same

initial condition for the opening angle α(0) = αr = 45◦ but perturb the orientation angle

θ(0) from 0 to 180◦ by increments of 1◦. We numerically integrate the nonlinear system

of equations (6) from t = 0 to t = 200 using the adaptive fourth- and fifth-order Runge

Kutta scheme in Matlab. We find that for initial perturbations below a critical value θcr,

the swimmer’s orientation converges to θ = 0 and the swimmer continues to move in the
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FIG. 6. Dynamics behavior of the swimmer as a function of mass, spring stiffness, amplitude and

viscosity. Nominal parameter values are chosen as m = 1, κ = 50, A = 15, and η = 50.

positive x-direction, whereas for perturbations larger than θcr, the swimmer’s orientation

flips to θ = 180◦ and the swimmer changes its direction of motion. Fig. 5(a) shows the

time evolution of the orientation θ subject to two initial perturbations θ(0) = 60◦ and

θ(0) = 120◦. Here, parameter values are set to m = 1, κ = 50, η = 50 and A = 15. The

critical orientation θcr across which the swimmer flips its direction of motion is 88.5◦. For

θ(0) = 60◦ < θcr, the swimmer aligns itself with the background flow and moves to the right

and for θ(0) = 120◦ > θcr, the swimmer also aligns with the oscillatory flow but flips its

orientation and drifts to the left.

A close examination of the dependence of θcr on the mass m and spring stiffness κ of the

swimmer and the amplitude A and viscosity η of the background flow shows that the value

of θcr is not very sensitive to these parameters; see the thick black lines in Fig. 6 delineating

the boundary between the basins of attraction of θ = 0 and θ = 180◦. This parametric study

also reveals that the swimmer’s motion depends non-trivially on parameter values. More

specifically, we find that symmetric swimming in the x-direction (with θ = 0 or θ = 180◦) is

not always a stable attracting behavior. The grey regions in Fig. 6 highlight the parameter

values for which such symmetric swimming is unstable. In these regions, the passive two-link

swimmer follows one of three distinct behaviors: fluttering, chaotic or tumbling. Fig. 7 shows

representative trajectories of all four types of behavior: (a) stable symmetric swimming in

the x-direction, which we denote as “linear” swimming, (b) fluttering motion where the

swimmer advances along the x-direction while periodically moving from side-to-side in the

y-direction, (c) chaotic-like motion, and (d) tumbling motion where the swimmer’s apex

periodically traces a closed trajectory while θ increases monotonically.

We analyze the passive stability of symmetric swimming by imposing a finite initial per-
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turbation θ(0) and solving the fully nonlinear governing equations of motion in (6). We focus
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on the time evolution of the orientation angle θ: if it oscillates with decreasing amplitude and

converges to θ = 0, we say linear swimming in the x-direction is passively stable. Otherwise,

linear swimming is unstable. We then classify the type of behavior in the unstable regions of

the parameter space into fluttering, chaotic-like, and tumbling. We map out these results to

six distinct cross-sections of the four-dimensional parameter space (m, κ,A, η) as shown in

Fig. 8. Here, each cross-section is discretized using an adaptive mesh of increments ∆m, ∆η,

∆A, ∆(log κ) varying in size from 0.25 to 1. The simulations at each point in the parameter

space are repeated for several values of the initial perturbation θ(0) to ensure that the results

are independent of the size of the initial perturbation and reflect the intrinsic behavior of the

system. We obtain clear transitions from stable (white regions) to unstable (grey regions)

linear swimming. For example, in the (A, η) cross-section, we see that symmetric swimming

is stable when the oscillation amplitude A is small and fluid viscosity η is large. The (m, κ)

cross-section reveals that if the spring is too “floppy,” the motion is more likely to be unsta-

ble. Larger mass m is also associated with unstable linear swimming. In the regions where

linear swimming is unstable, we observe ordered transitions from linear to fluttering, chaotic

then tumbling motions. Similar transitions have been reported in the problem of coins and

flat plates falling in water [43–46] at intermediate and large Re. The wake of the falling ob-

ject plays an important role in these transitions; see, e.g., [47] and references therein. Here,

transitions between these regimes occur at zero Re as a result of the interplay between the

swimmer’s properties (m and κ) and the fluid properties (A and η). To our best knowledge,

this is the first time such detailed parametric study is conducted and such transitions are

reported at zero Re. These transitions could have important implications on applications

such as sorting of deformable cells and microstructures in microfluidic channels as well as

on shedding light on the physical mechanisms underlying active and passive transitions in

the behavior of microswimmers, as discussed next.

IV. DISCUSSION

We presented a novel mechanism for flow-driven locomotion of a Λ-shaped microswim-

mer. Namely, we examined the response of a deformable two-link swimmer in viscous fluid

to background flow oscillations with zero mean velocity. We found that buoyant swimmers

(or swimmers of negligible mass) as well as rigid swimmers exhibit no net displacement, con-
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sistent with Purcell’s scallop theorem. However, dense and simultaneously elastic swimmers

are able to swim passively in oscillatory homogeneous flows along the flow lines, because the

deformation of the Λ-shaped particle is different during the two half periods. Therefore the

time-symmetry is broken and Purcell’s scallop theorem does not apply.

For given flow parameters, the direction of motion (left or right) is dictated by the swim-

mer’s properties, mass and spring stiffness, as well as by its initial orientation and spring rest

angle. We then analyzed in details the effects of parameter values on the net displacement.

We found that the net displacement increases monotonically with the oscillation amplitude.

We also found that the swimming efficiency decreases monotonically with the amplitude

and viscosity of the background flow while the mass and stiffness of the swimmer can be

tuned to achieve optimal symmetric swimming. We then analyzed the stability of symmetric

swimming when subject to perturbations in its initial orientation relative to the background

flow oscillations. We found that, for a range of parameter values, symmetric swimming is

a stable attracting solution. In fact, for these parameter values, we identified two stable

orientations θ = 0 and θ = 180◦ associated with two directions of motion of the swimmer:

swimming to the right or to the left parallel to the oscillatory background flow. We probed

the stability of these swimming motions by conducting a detailed parametric study. Our

results show that, to achieve a stable motion by tuning the amplitude of the background

flow oscillations, the swimmer should have small mass and large spring stiffness and should

be swimming in a fluid of high viscosity, consistent with physical intuition. We also identi-

fied ranges of parameter values where these symmetric solutions are unstable and where the

swimmer undergoes either fluttering, chaotic-like or tumbling behavior. These transitions

could be exploited to design microfluidic channels for cell sorting by flow oscillations, where

cells of different mass and elastic properties would respond differently to the same flow os-

cillations. Further, these transitions could provide physical mechanisms by which swimmers

can be made to change their behavior passively from linear swimming to tumbling by tuning

the flow properties.

The results presented will be modified, but qualitatively similar, when gravitational effects

or hydrodynamic interactions between the arms are taken into account [35]. Our results are

specific to passive swimming in oscillatory flows, with no direct control of the shape variable.

However, an analogy can be made to active swimming where the swimmer’s shape is actuated

via internal forces or torques generated by the swimmer [48], as opposed to direct control
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of the shape kinematics [1, 8–10]. Controlling the swimmer’s forces or torques instead of

its shape kinematics poses a problem of dynamic stability of motion similar to the stability

problem considered here. Numerical evidence suggests that torque actuation of Purcell’s

three-link swimmer could lead to chaotic-like motion as well as stable swimming behavior

depending on the actuation parameters [48]. This analogy motivates the following questions:

would a detailed parametric study of the torque-actuated three-link swimmer in [48] reveal

similar transitions from stable swimming to fluttering, chaotic-like and tumbling behavior? if

so, could these transitions be related to the physical mechanisms that underly the transition

from run to tumble in bacterial cells [4]? These questions will be addressed in future studies.
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[21] M. Sitti, Nature 458, 1121 (2009).

[22] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, Nature 437,

862 (2005).

[23] U. K. Cheang, D. Roy, J. H. Lee, and M. J. Kim, Appl. Phys. Lett. 97, 213704 (2010).

[24] A. Snezhko and I. S. Aranson, Nat. Mater. 10, 698 (2011).

[25] S. T. Chang, V. N. Paunov, D. N. Petsev, and O. D. Velev, Nat. Mater. 6, 235 (2007).

[26] G. Loget and A. Kuhn, Nat. Commun. 2, 535 (2011).

[27] H.-R. Jiang, N. Yoshinaga, and M. Sano, Phys. Rev. Lett. 105, 268302 (2010).

[28] S. Thutupalli, R. Seemann, and S. Herminghaus, New J. Phys. 13, 073021 (2011).

[29] M. Leoni, J. Kotar, B. Bassetti, P. Cicuta, and M. C. Lagomarsino, Soft Matter 5, 472 (2009).

[30] D. Klotsa, K. A. Baldwin, R. J. Hill, R. Bowley, and M. R. Swift, Phys. Rev. Lett. 115,

248102 (2015).

[31] L. G. Leal, Ann. Rev. Fluid Mech. 12, 435 (1980).

[32] B. Kaoui, Phys. Rev. E 77, 021903 (2008).

[33] S. K. Doddi and P. Bagchi, Int. J. Multiphas. Flow 34, 966 (2008).

[34] E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601 (2009).

[35] M. Laumann, E. Kanso, D. Kienle, and W. Zimmermann, in preparation (2016).

[36] R. S. Zounes and R. H. Rand, Int. J. Nonlinear Mech. 37, 43 (2002).

[37] R. S. Zounes and R. H. Rand, Nonlinear Dyn. 27, 87 (2002).

[38] L. Ng and R. Rand, Chaos, Solitons & Fractals 14, 173 (2002).

[39] E. Kanso, A. J. Szeri, and A. P. Pisano, J. Microelectromech. S. 13, 323 (2004).

[40] R. Rand and T. Morrison, Nonlinear Dyn. 40, 195 (2005).

[41] F. Jing and E. Kanso, Regul. Chaotic Dyn. 18, 380 (2013).

19



[42] F. Jing and S. Alben, Phys. Rev. E 87, 022711 (2013).

[43] S. B. Field, M. Klaus, M. Moore, and F. Nori, Nature 388, 252 (1997).

[44] A. Andersen, U. Pesavento, and Z. J. Wang, J. Fluid Mech. 541, 65 (2005).

[45] E. Kanso, L. Heisinger, and P. Newton, J. Fluid Mech. 742, 243 (2014).

[46] P. Ern, F. Risso, D. Fabre, and J. Magnaudet, Annu. Rev. Fluid Mech. 44, 97 (2012).

[47] L. Vincent, W. S. Shambaugh, and E. Kanso, J. Fluid Mech. 801, 250 (2016).

[48] Y. Or, Phys. Rev. Lett. 108, 258101 (2012).

20


	Passive swimming in viscous oscillatory flows
	Abstract
	Introduction
	Problem formulation
	Results
	Discussion
	Acknowledgments
	Conflict of Interest Statement
	References


