
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Anisotropic macroturbulence and diffusion associated with
a westward zonal jet: From laboratory to planetary

atmospheres and oceans
Boris Galperin, Jesse Hoemann, Stefania Espa, Gabriella Di Nitto, and Guglielmo Lacorata

Phys. Rev. E 94, 063102 — Published  9 December 2016
DOI: 10.1103/PhysRevE.94.063102

http://dx.doi.org/10.1103/PhysRevE.94.063102


Anisotropic macroturbulence and diffusion associated with a westward zonal jet -
from laboratory to planetary atmospheres and oceans

Boris Galperin∗ and Jesse Hoemann
College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA

Stefania Espa and Gabriella Di Nitto
DICEA, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy

Guglielmo Lacorata
ISAC, National Research Council, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy

(Dated: October 26, 2016)

Turbulence with inverse energy cascade and its transport properties are investigated experimen-
tally in a flow associated with a westward propagating jet. Turbulence and the jet were produced
by an electro-magnetic force in a rotating tank filled with an electrolytic saline solution. The
parabolic free surface emulated the topographic β-effect which evoked the zonation. The spectral
and transport flow characteristics were highly anisotropic. Turbulence is diagnosed by exploring
the analogy between vertical and horizontal turbulent overturns in, respectively, stably stratified
and quasi-geostrophic flows which gives rise to a method of potential vorticity (PV) monotonizing.
The anisotropization of transport properties of the flow is investigated using the finite scale Lya-
punov exponent (FSLE) technique. After initial exponential particle separation, radial (meridional
in geophysical and planetary applications) diffusion attains a short-ranged Richardson regime which
transitions to the Taylor (scale-independent diffusivity) one. The azimuthal (zonal) diffusion exhibits
a double-plateau structure which attains a super-diffusive regime on large scales. The transition to
the Taylor regime for the radial diffusion takes place at a scale of turbulence anisotropization. The
radial eddy diffusivity in both regimes as well as the transition scale are all determined by the rate
of the inverse energy cascade, ε, that can be diagnosed by the PV monotonizing. Conversely, ε can
be deduced from the scale of the Richardson-Taylor regime transition in the radial eddy diffusiv-
ity which, thus, provides an additional tool of diagnosing anisotropic macroturbulence with inverse
energy cascade.

PACS numbers: May be entered using the \pacs{#1} command.

I. INTRODUCTION

There has been a continuing interest in zonal (east-
west) flows due to their importance for planetary at-
mospheric and oceanic circulations. Giant gas planets
boast powerful zonal jets in both directions [1]; strong
eastward jets dominate Earth’s atmosphere and ocean’s
Antarctic Circumpolar and western boundary currents’
extensions following their separations from the coasts [2],
and narrower and weaker alternating jets or ‘striations’
are observed in the oceans at mid-latitudes [3–5]. The
jets owe their existence to the restoring force associated
with the latitudinal variation of the Coriolis parameter,
f = 2Ω sin θ, where Ω is the angular velocity of the plan-
etary rotation, and θ is the latitude. A measure of this
variation is β = (1/R)df/dθ = 2(Ω/R) cos θ, R being the
planetary radius, and its impact is known as a β-effect.
The β-effect-related force is akin to an elastic force as
it tends to return a displaced fluid particle to its equi-
librium latitude giving rise to fluctuations around that
latitude known as the Rossby waves. In summary, a
fluid with a β-effect is said to exhibit the Rossby wave
elasticity [6].
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Planetary circulations are usually concentrated in thin
layers of large horizontal extent such that the horizon-
tal velocities are much larger than their vertical coun-
terparts. Although the flows are stably stratified, they
feature large Reynolds numbers and are strongly non-
linear and turbulent. Due to the effects of geometric
constraint and stable stratification, planetary fluids ac-
quire properties of two-dimensional (2D) turbulence. In
addition, planetary rotation and stable stratification fa-
cilitate material conservation of a new variable, the po-
tential vorticity (PV) [e.g. 7], which is intimately related
to Rossby waves and controls many dynamic features.
Rossby waves interact with planetary turbulence and to-
gether, they form complicated wave-turbulence jigsaw
puzzles [8] in which waves and turbulence coexist on all
scales [9]. The union of turbulence and waves character-
istic of large-scale planetary circulations can be thought
of as macroturbulence [10].

The formation and maintenance of zonal jets can be re-
lated to the horizontal mixing of PV, in the same fashion
as the formation and maintenance of layered structures
in a stably stratified ocean can be related to the verti-
cal mixing of the density gradient [e.g. 11, 12]. While the
former is a process that takes place on large scales and in-
volves Rossby waves and turbulence with up-scale energy
cascade, the latter occurs on relatively small scales and
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embroils the aggregation of internal gravity waves and
turbulence characterized by a down-scale energy cascade.

Turbulent mixing in both cases is sustained by shear
instabilities that draw their energy from external sources.
The forcing renders the density and PV profiles non-
monotonic thus facilitating the instabilities. The power
of the forcing that goes into turbulence in both cases can
be estimated by monotonizing the density and PV pro-
files using the Thorpe’s sorting algorithm [13–15]. In the
former case, this algorithm yields the Thorpe’s scale, LT ,
that was found commensurate with the Ozmidov length
scale, LO = (ε/N3)1/2, where ε is the rate of the down-
scale energy transfer and N is the Brunt-Väisälä fre-
quency. Physically, LO is a scale at which the turbulent
eddy turnover time is equal to the period of internal grav-
ity waves. The determination of LT , which is often quite
straightforward, is thus practically equivalent to estimat-
ing ε from LO. In the latter case, the sorting algorithm
yields a scale LM that was found commensurate with
the scale Lβ = (ε/β3)1/5 [16] where ε is the rate of the
up-scale energy transfer [17–19]. In analogy to LO, tur-
bulence dominates the dynamics on scales shorter than
Lβ while Rossby waves prevail on longer scales [20]. In
practical situations, finding ε from LM is much simpler
and efficient than using the spectra that require extensive
spatial and temporal data.

Macroturbulence entangles dynamics and transport
and so some of the variables may be pertinent to both
processes. By obtaining these variables from the dynam-
ics, we may be able to learn about the transport, and vice
versa, characteristics of turbulence may be amenable to
diagnosis by analyzing transport and dispersion. One of
the most important variables of such ‘dual use’ is the rate
of the energy transfer ε as it relates large-scale forcing to
small-scale dissipation for flows with down-scale, or di-
rect energy cascade, and small-scale forcing to large-scale
dynamics for flows with up-scale, or inverse energy cas-
cade. On the other hand, such crucial characteristics as
eddy viscosities and eddy diffusivities are often related
to either of ε dependent on the nature of a flow [21, 22].

Generally, the external forcing (the solar heating and
internal heat sources) plays a paramount role in sustain-
ing all planetary dynamic and transport phenomena and
so our ability to estimate ε cannot be overstated. Numer-
ous oceanographic and planetary observations indicate
that the large-scale dispersion often obeys the Richard-
son’s diffusion law at diverse locations and on a variety
of scales [23–28]. The Richardson’s law involves ε and
points to the underlying role of turbulence. The method
of PV monotonizing can potentially be used for its esti-
mation. The present study elaborates another method of
diagnosing macroturbulence and estimating ε, this time
by analyzing dispersion processes. The basic premise
of this method is the observation detailed in [29] that
in flows with dispersive waves and anisotropic inverse
energy cascade, the meridional diffusion undergoes the
transition from the Richardson’s to the Taylor’s diffu-
sion regime. The scale of this transition is close to Lβ ,

the fact that allows us to develop a new method which
can be an alternative to PV monotonizing. When the
data is sufficient to use PV monotonizing and dispersion
estimate independently, the two methods provide a bet-
ter constraint of the value of ε and allow us to avoid using
data-intense spectral tools.

The analysis necessary for developing such diagnostics
can be conveniently performed in a well-controlled envi-
ronment of a laboratory facility. In our previous investi-
gation, a facility at the University of Rome was used to
explore and quantify the effect of the PV monotonizing
on a flow field and the relationship between LM and Lβ
[16]. The present study extends this analysis to turbu-
lent diffusion in a basic flow associated with a westward
jet. Particle dispersion will be quantified by means of the
finite-scale Lyapunov exponent (FSLE) method.

There are several reasons to concentrate the attention
in the preceding and present studies on a westward jet
despite the fact that major terrestrial oceanic and atmo-
spheric jets are eastward. Physically, westward jets are
unstable and associated with PV mixing and eddy shed-
ding [e.g. 30]. These features are common to the west-
ward South-Equatorial currents in all oceans. Under the
action of a seasonal forcing, these currents periodically
become unstable and radiate waves known as the Tropi-
cal Instability Waves (TIWs) [31–33] and associated an-
ticyclonic eddies to the north and south of the equator
that play important role in weather variability such as
the El Niño - Southern Oscillation (ENSO) phenomenon
[e.g. 34].

Even more dramatic examples emerge from considera-
tion of circulations of giant planets’ atmospheres. Almost
all westward jets on Jupiter and Saturn are barotropically
unstable [35] and shed eddies of a variety of shapes, both
cyclonic and anticyclonic. On Jupiter, a near 30◦N west-
ward jet irregularly undulates in latitude and is time-
variable in appearance, the features for which it was
coined ‘The Jovian Ribbon’ [36]. On Saturn, the 34◦N
westward jet becomes unstable and radiates trains of
westward propagating cyclonic eddies sometimes referred
to as the String of Pearls [37, 38]. Many details of these
phenomena are still unknown, either for the lack of data
or understanding of physics, and our laboratory investi-
gations are expected to provide new knowledge in both
areas.

The paper is composed in the following manner. Sec-
tion II describes the experimental setup, section III pro-
vides the spectral analysis of the flow field, section IV
compares eddy diffusivities in quasi-geostrophic and sta-
bly stratified turbulence, introduces the notion of the
Available Rotational Kinetic Energy (ARKE) as a ro-
tational counterpart of the Available Potential Energy
(APE), section V discusses the FSLE method, section
VI applies this method to describe experimental results
on diffusion, and section VII is summary and conclusions.
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Figure 1. Schematic representation of the experimental de-
vice. The magnets are placed in a 90◦ arc of the radius a =
17cm (sector I).

II. THE EXPERIMENTAL SETUP

To study the method of PV monotonizing and asso-
ciated diffusion laws, a series of laboratory experiments
was performed in a tank filled with an electrolytic solu-
tion (mean depth of 4 cm) rotating counter-clockwise (to
emulate the Earth’s rotation) with the angular velocity Ω
= 3.0rad s−1. The experimental facility is shown on Fig.
1. A detailed description of the facility is given in [39, 40]
where we studied anisotropic dynamic and transport pro-
cesses in flows with a homogeneous forcing and their de-
pendence on the flow parameters (i.e. the intensity of
the forcing, rotation rate, etc.). The radius of the work-
ing section and the deformation radius were R = 29.7cm
and LD ' 10.4cm, respectively. The parabolic curvature
of the free surface evoked a local β-effect; the average
value of β was about 0.53cm−1s−1. The forcing was pro-
duced by passing a constant electric current through the
working fluid over an array of 10 small, 12mm in diam-
eter, permanent magnets mounted under the bottom of
the tank in a 90◦ arc of a radius r = 17cm. The mag-
nets were spaced at 1-2 cm from each other and had
the same sense of polarity. This configuration induced
a westward momentum that facilitated formation of a
westward zonal jet. Unlike the meandering oceanic jets,
sometimes referred to as striations, the stationary po-
sition of the magnets locked jet’s location. The sector
that contained the magnets was designated as sector I.
Other three sectors were used for studies of the dynamics
and diffusion in flows with inhomogeneous forcing and/or
no direct forcing at all. The electro-magnetic force also
produced chaotic stirring whose scale, Lξ ' 1cm, was de-
termined by magnets’ diameter and spacing, both about
1cm. This forcing sustained the inverse energy cascade.

Velocities were measured by analyzing images of pas-
sively advected styrene particles with mean size of about
5 × 10−5m monitored by a video camera with a spatial
resolution of 1023 × 1240 pixels at a frequency of 20Hz.

The particles were seeded at a fluid surface illuminated
by two lamps. The contrast was enhanced by using white
particles over a black bottom. Transparent lid of the tank
insulated the working fluid from the ambient air. The
camera co-rotated with the system and the data record-
ing computer. The acquired images were analyzed by a
feature tracking algorithm [39] that reconstructs parti-
cle trajectories from displacements between subsequent
frames over a fixed time step of 0.05 s and produces in-
stantaneous Lagrangian velocities. The time history of
the Eulerian velocity field was then obtained by inter-
polating the sparse data over a regular grid. The polar
coordinate grid employed in this study had N = 60 cir-
cles (radial resolution of about 0.5cm) and M = 90 rays
for each of the four sectors (angular resolution of 1◦).

The Rossby number of the large-scale flow, Ro =
U/ΩL, U and L being typical velocity and horizontal
scales, respectively, was reasonably small, Ro = O(10−1),
such that the flow could be analyzed in the framework of
forced quasi-geostrophic turbulence [41]. An important
parameter in this theory is the potential vorticity given
by

q = (ζ + 2Ω)/H(r), (1)

where ζ is the vertical component of the relative vortic-
ity and H(r) is fluid’s depth. The variation of H with r
produces a topographic γ-effect which causes flow aniso-
tropization and zonation, i.e., the formation and main-
tenance of zonal jets [42–44]. A local topographic β for
experiments in a rotating tank was derived in [45].

III. FLOW ANALYSIS

Three experiments, referred to as Exp. 29, 30 and 31,
were performed. They only differed by the strength of the
applied electric current, I, such that the rate of the en-
ergy injection due to the forcing was the sole controlling
parameter. The values of I as well as the experimental
results are summarized in Table I.

A. Visual appearance

The flow consisted of a westward (easterly) jet, large-
scale eddies on both sides of it, and smaller-scale turbu-
lence. Figure 2 shows instantaneous and time-averaged
flow fields in sector I (90◦ sector on the right of the red
vertical line) and sector II. The instantaneous images of
sector I exhibit meandering jets squeezed between west-
ward propagating eddies with the intensity of the eddies
increasing with increasing forcing. The eddies were pro-
duced by the barotropic instability associated with the
jet. On the one hand, the eddies highlighted the pres-
ence of the nonlinear Rossby waves, hence the direction
of their propagation. On the other, they were main-
tained by the barotropic instability whose Rayleigh-Kuo
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Figure 2. Instantaneous (panels a-c; experiments 29-31) and time-averaged (panels d-f) velocities and stream functions. The
vertical red line delineates the forced sector I located in the right halves of the semi-circles.

(or Charney-Stern) threshold criterion is that the PV
radial gradient, ∂q/∂r, crosses the zero value. Accord-
ingly, the zero-crossings of the PV gradient were moving
up and down (north and south, respectively) along any
fixed radius thereby reflecting passing of the ‘northern’
or ’southern’ (cyclonic and anticyclonic, respectively) ed-
dies, respectively, as evident in Fig. 3. The dynamics of
the interaction between zonal flows, Rossby waves, and
eddies is very rich. It becomes evident now that the large-
scale eddies are produced not by the small-scale forcing
but by the barotropic instability taking place on larger
scales. The eddies, in turn, give their energy back to
a zonal flow thereby establishing a two-way energy ex-
change whose amplitude may exceed ε by several orders
of magnitude. This conclusion may seem paradoxical be-
cause, recalling the Riemann-Lebesgue theorem,

lim
k→∞

∫ 1

0

f(x) sin(kx)dx = 0

for an R-continuous function f(x) : [0, 1], one would ex-
pect that the long-term average of the amplitude of this
exchange would tend to zero leaving no room for the
effect of the small-scale forcing upon large-scale struc-
tures. This is not so, however, as Sukoriansky et al. [46]
showed that such an average tends to ε thus highlighting
the importance of the forcing, the ensuing inverse energy
cascade, and the magnitude of ε. Note that important
elements of the zonal flow - eddies energy exchange may
be lost if time- and/or space-averaging are applied, the
practice often used in various geophysical and planetary
investigations. It will be shown later that such an aver-
aging may also distort diffusion characteristics.

In the unforced sector II, the eddies gradually die out
after which one can only discern non-meandering zonal
jets. One infers that sustained jet meandering eddy shed-
ding are direct results of the forcing. The time-averaged
images present quite a different picture as it shows strong
alternating zonal jets and no eddies at all. These experi-
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Figure 3. Radial profiles of the instantaneous radial gradients of the potential vorticity, ∂q/∂r, along the radial section at
θ = 237◦ for t= 72 s (left panel) and 95 s (right panel) for Experiment 31. The five lines in each panel provide temporal
representations. The dark blue is the current instant, while the ‘older’ lines (by only a frame or two) are shown in progressively
lighter hue. This is done to ease the tracking of the movement of ∂q/∂r.

mental traits resemble ocean observations that highlight
numerous westward-propagating eddies closely entwined
with zonal currents on relatively short time scales [5, 47].
Upon time averaging, the meandering currents and ed-
dies fuse into zonal jets [4]. In analogy to other experi-
ments [e.g. 48, 49], the scales of the eddies and jets exceed
the forcing scales thus pointing to a complex interaction
between the inverse energy cascade and eddies - zonal
flows exchange.

B. Spectral analysis

Spectral analysis of the experimental results was per-
formed using the truncated Bessel-Fourier decomposition
in a 90◦ sector,

f(r, φ) =

M∑
m=0

N∑
n=1

Jm

(
αmn

r

R

)
(amn sin 4mφ

+ bmn cos 4mφ) , (2)

where f(r, φ) is an arbitrary well-behaving function such
that f(R,φ) = 0, Jm is the Bessel function of the m-th
order, αmn is its n-th zero, and amn, bmn are the expan-
sion coefficients [50]. With the azimuthal resolution of
1◦, M is limited to 45.

The argument of the Bessel function in (2) maps the
space of geometric scales associated with the index n onto
a space of scales associated with the Bessel functions’
zeros, αmn, for every index m. To restore a geometric
scale corresponding to n from a scale associated with
αmn for a given m, one needs to multiply the latter by a
factor αmn/n.

To accommodate the spectral anisotropy due to a β-
effect, we define the zonal (radial) and residual spectra
as, respectively,

EZ(α0n) ≡ 1

2
b20nJ

2
1 (α0n) , (3)

ER(αmn) ≡ 1

4

M∑
m=1

(a2mn + b2mn)J2
m+1(αmn). (4)

If and when a flow features inverse energy transfer and
otherwise approaches the regime of zonostrophic turbu-
lence [9, 16], the spectra are expected to become

EZ(α0n) ' CZβ2 (α0n/R)
−5
R−1, (5)

ER(αmn) ' CKε2/3 (α1n/R)
−5/3

R−1, (6)

where CZ ' 0.5, CK ' 6. Two details need to be elab-
orated. Firstly, since αmn, m and n are nondimensional
numbers rather than wave numbers, the spectra represent
the energy per unit number rather than unit wave num-
ber and so the expressions in the rhs of (5) and (6) are di-
vided by R to preserve correct dimensionality. Secondly,
for relatively small n, only first few non-zonal modes
contribute to ER significantly and so Eq. (6) contains
α1n only. The residual spectrum is approximated by the
modes with m = 1 that carry the maximum energy.

The zonal (5) and residual (6) spectra intersect at a
scale

L̂0
β ≡ R/α0n = (CK/CZ)3/10(α0n/α1n)1/2Lβ (7)

which defines the index n of the intersection. We note
that L̂0

β depends on the constants CK and CZ while Lβ
is constant-independent and, thus, better suited for the
purposes of this study. We also note that such defined
scale corresponds to the index α0n. As mentioned earlier,
a corresponding geometric scale for L̂0

β is obtained by

multiplying (7) by a factor α0n/n giving

L̂β = (α0n/n)L̂0
β = R/n

= (CK/CZ)3/10(α0n/n)(α0n/α1n)1/2Lβ . (8)

This scale is the exact polar coordinate analog of the
scale Lβ used in e.g. [9].

The relationship between L̂β and Lβ expressed by (8)
is specific to the polar coordinate system due to the map-
ping of the space of n onto the space of αmn. In other
often used coordinate systems, i.e. Cartesian and spheri-
cal, such mapping is not required and so the proportion-
ality coefficient between L̂β and Lβ is free of the factors
that depend on the Bessel functions’ zeros [e.g. 9].
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Figure 4. Experimental zonal (EZ , thin line) and residual
(ER, thick line) spectra and their rms fittings to Eqs. (5) and
(6). The index n denotes the n-th zero of the Bessel function
with an index m, Jm(αmn) = 0, as explained after Eq. (2).
Left, middle and right panels pertain to the Experiments 29,
30, and 31, respectively.

Table I. Summary of the experimental setup and results.

Exp. Ia εb × 104 CZ nc Lβ
d U LR

e Rβ
f

A cm2s−3 cm cm s−1 cm
29 2 2.1 0.2 13 0.3 0.1 0.6 1
30 4 11.0 0.2 9 0.4 0.3 1.1 1.2
31 6 29.0 0.2 8 0.45 0.6 1.5 1.36

a electric current
b the rate of the inverse energy cascade
c n-th zero of the Bessel function with an index m, Jm(αmn) = 0
d Lβ = (ε/β3)1/5

e LR = (2U/β)1/2 - the Rhines’s scale
f Rβ = LR/Lβ - the zonostrophy index

Figure 4 presents the spectra for all experiments and
their rms fitting to expressions (5) and (6) [51]. The
ranges of the available wave numbers are short yet
marginally sufficient to determine the slopes. Figure 4
reveals strong anisotropy whereas the zonal spectrum is
steep and close to the −5 slope reminiscent of the regime
of zonostrophic turbulence [9] while the residual spec-
trum is close to the Kolmogorov-Kraichnan (KK) law
(6). The corresponding values of ε are given in Table I.

The presence of the −5/3 slope is insufficient to ascer-
tain the existence of the inverse energy cascade as the di-
rection of the energy flux cannot be deduced from a spec-
trum. It can be diagnosed independently by the analysis
employing third order longitudinal structure functions,
DLLL = 〈(δuL)3〉, where δuL is the velocity difference
between two points projected onto a vector connecting
these points, its length being `, and 〈〉 denotes statistical
averaging [e.g. 52–56]. In a locally-isotropic and homo-
geneous turbulence, the structure functions are equal to

DLLL = −4/5ε` (9)

for the direct energy cascade in 3D turbulence (the Kol-
mogorov four-fifths law) and

DLLL = −3/2ε` (10)

in 2D turbulence with inverse energy cascade. In the
former case, ε > 0 is the rate of the viscous dissipation,

while in the latter, ε < 0 is the rate of the inverse energy
cascade. Thus, the sign of DLLL points to the direction
of the energy flux - for the direct cascade, DLLL < 0
while for its inverse counterpart, DLLL > 0 [53, 57, 58].

Although the flows in the experiment are inhomoge-
neous and anisotropic, the time-averaged fields, as evi-
dent in Fig. 2 (d-f), may be assumed approximately ax-
ially symmetric if the structure functions are computed
in the forced sector. The accuracy of this assumption in-
creases with decreasing ` [e.g. 59]. Thus, the sign ofDLLL

provides the diagnostic of the direction of the energy cas-
cade while its magnitude can be used to re-evaluate the
magnitudes of ε obtained from the spectra. We keep in
mind that the latter represent sector-averaged values of ε
which may differ from those obtained from the structure
function analysis which produces localized values and so
only an-order-of-magnitude agreement can be expected.

The structure functions for all three experiments are
shown in Fig. 5. They are positive for all experiments
and for all ` thus indicating that the flows featured in-
verse energy cascade. The existence of the inverse cas-
cade can also be inferred visually, from the disparity be-
tween small scales of the forcing and large scales of the re-
sulting structures under the action of rotation with small
Ro. For very small separations, DLLL ∝ `5 for experi-
ments 30 and 31, in agreement with Lindborg [53]. All
structure functions exhibit a short linear regime starting
at about 2.5cm, 3.8cm, and 4.5cm and ending at about
3.5cm, 6cm and 7.3cm for experiments 29, 30 and 31, re-
spectively. All these values approximately correspond to
the beginnings and ends of the KK ranges in the spectra
shown in Fig. 4. The lengths of the linear intervals are,
approximately, 1cm, 2.2cm and 2.8cm, respectively. In
the linear range, DLLL ' 0.5ε` with ε estimated from
the spectra and given in Table I. This expression em-
ploys the geometric length `. Written in terms of lengths
associated with the Bessel functions’ zeros, as explained
earlier, ` should be reduced by approximately a factor
of 3 thereby bringing the scaling for DLLL in agreement
with the theoretical expression (10). Given the shortness
of the inertial range and errors in estimating ε from the
spectra, this numerical agreement is very good.

In quasi-2D turbulence with inverse energy cascade
and a β-effect, possible flow regimes can be classified in
terms of several non-dimensional parameters formed by
the ratios of characteristic length scales, Lξ, LD, Lβ and

LR, the latter being the Rhines scale, LR = (2U/β)1/2, U
is the rms of total velocity [60, 61]. Since the deformation
radius, LD, was larger than the span of the jets and the
eddies for all experiments, the zonation was unimpeded
by the flow divergence [see e.g. 62] and so the dynamic
effect of LD was negligible. The two remaining relevant
parameters are the zonostrophy index, Rβ = LR/Lβ , and
Rξ = Lβ/Lξ. As shown in [9], the effect of the forcing
scale becomes small for Rξ & 2. Although in our exper-
iments Rξ was smaller than 1, the forcing scale did not
appear to make a significant impact.

The results of the spectral analysis are summarized in
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Figure 5. Longitudinal structure functions for experiments
29 (lower line), 30 (middle line) and 31 (upper line). Normal-
ized structure functions, DLLL/ε`, are shown in the insert
with the order of the lines reversed and the horizontal line
corresponding to DLLL/ε` = 0.5; ε is obtained from Table I.

Table I. We note the relatively low values of the zono-
strophy index Rβ , between 1 and 1.36. As elaborated
in [9, 44], flows with Rβ . 2 are eddy-dominated and
feature weak (or latent, [see e.g. 63, 64]) zonal jets. For
comparison, the large-scale oceanic circulation, for which
Rβ < 2 [44], exhibits multiple westward propagating ed-
dies [e.g., 47, 65] and latent zonal jets [e.g. 3, 66]. As
mentioned earlier in section III A and substantiated in
Fig. 2, the oceanic jets also become more distinct upon
time averaging [e.g. 63, 64, 66].

According to Table I, the coefficient CZ in the zonal
spectrum (5) is nearly constant for all experiments, CZ '
0.2. This value is in a reasonable agreement with the
results of numerical simulations in [19] (about 0.4) but
somewhat smaller than about 0.5 found in [60]. The con-
stancy of CZ , along with the very existence of the inter-
val with the −5 slope for the zonal spectrum, could be
construed as the evidence of the regime of zonostrophic
turbulence. Given the low values of Rβ , however, the
presence of this regime in unexpected.

To understand the reason behind attaining near-
zonostrophic spectra in the observed flow which was far
from the zonostrophic regime recall that in our previ-
ous numerical studies where zonostrophic regime was
achieved, the forcing was homogeneous, isotropic and
concentrated on small scales [e.g. 9, 67]. In the experi-
ments, however, the forcing was spatially inhomogeneous
and the zonal jet was produced by direct application of
the electro-magnetic force thus bypassing the zonation
process. Most likely, this forcing facilitated the zonal ki-
netic energy spectra to attend distributions close to those

in the zonostrophic regime. The zonal spectrum (5) is
forcing-independent and determined solely by β and the
wave number, but the constant CZ may be a function
of Rξ. One may conclude that the spectrum (5) would
ultimately be attained in forced β-plane turbulence with
any forcing yet the forcing’s properties affect the value
of CZ . If this indeed is the case, then laboratory flows
analogous to those produced in the present experiments
could be used as a proxy to the regime of zonostrophic
turbulence.

Turning to the residual spectra we note that the in-
dexes where EZ(n) and ER(n) intersect are in agreement

with Eq. (8). The corresponding scale, L̂β , marks the
threshold of spectral anisotropy. An analogous length
scale in the spherical geometry was identified in simula-
tions in [60]. As evident from (8), although scales L̂β
and Lβ are proportional, only the scale Lβ is constant-
independent and, thus, better suitable for the use in PV
monotonizing algorithm [16]. The scale L̂β , on the other
hand, plays an important role in diffusion processes [29].
Furthermore, as shown in the next section, it can be de-
duced from the observed diffusion characteristics thereby
providing an additional to LM tool of diagnosing macro-
turbulence.

IV. PARALLELS BETWEEN AVAILABLE
POTENTIAL AND ROTATIONAL KINETIC

ENERGIES AND BETWEEN EDDY
DIFFUSIVITIES IN STABLY STRATIFIED AND

QUASI-GEOSTROPHIC TURBULENCE

In theories of homogeneous isotropic turbulence, it is
customary to invoke a one-dimensional representation of
the eddy diffusivity coefficient K [68],

K ∝ u2TL, (11)

where u2 is a measure of the turbulence kinetic energy
and TL is the Lagrangian integral time scale. Conditions
under which (11) can be recast in terms of the mixing
length `,

K ∝ u2
1/2
`, (12)

were discussed in [24].
Geophysical and planetary turbulence is strongly

anisotropic and so, if (12) were to be used, one needs
to reassess the physical meaning of the mixing length `
in diapycnal and isopycnal applications. In both cases,
models of K usually involve a product of an eddy velocity
and an eddy length scale (e.g. [24, 69, 70] for the former
and e.g. [71–77] for the latter) whose determination is a
key unresolved problem.

In the spirit of the seminal work by Richardson [78] and
following [9, 29], we define K(`) as an effective diffusivity
accumulated at a scale ` due to contributions from all
scales up to `,

K(`) ∝ E(`)1/2`, (13)



8

where E(`) is the turbulence energy contained in all scales
bounded by `. For homogeneous isotropic turbulence
with the Kolmogorov energy spectrum, (13) gives the
classical Richardson diffusion law,

K(`) ∝ ε1/3`4/3, (14)

where ε is the rate of either the direct or inverse en-
ergy cascade. The definition (13) can be expanded to
anisotropic flows that combine turbulence and waves.
The effect of the anisotropy is then reflected in the choice
of ` in different directions.

A critical parameter in such flows is a scale at which
a wave period is approximately equal to the time scale
of turbulent overturns. Recall that in stably stratified
flows, this is the Ozmidov scale, LO, and in small-scale
forced quasi-geostrophic turbulence, such scale is Lβ .
Additional critical scales are those marking the respec-
tive thresholds of spectral anisotropy. They correspond
to crossovers between the Kolmogorov and steep spec-
tra developing in slow manifolds in the directions along
which waves do not propagate [16, 79]. Those scales are
proportional to, respectively, LO and Lβ and denoted

L̂O and L̂β . Simulations [e.g. 29] and experiments [e.g.,
39] indicate that along these directions, only the scales

up to L̂O or L̂β contribute to the eddy diffusivity. On

larger scales, ` remains ‘frozen’ at the L̂O or L̂β values
and so K(`) becomes scale-independent and reminiscent
of the Taylor regime. In the orthogonal directions, how-
ever, diffusion obeys the Richardson law on much longer
scales until overtaken by the zonal advection.

In the case of stable stratification, E(`) in the Taylor

regime is E(`) = E(L̂O) = 1
2N

2L̂2
O ≡ Ep, where Ep is the

part of the available potential energy (APE) that can be
converted to turbulence (note that Ep → 0 when ε→ 0).
The vertical eddy diffusivity in this case,

Kz(L̂O) ∝ E1/2
p L̂O ∝

ε

N2
, (15)

is the celebrated Ellison-Britter-Osborn expression.
Since L̂O ' LT [15], density monotonizing yields the

value of ε and, thus, the vertical and horizontal eddy
diffusivities in both Richardson and Taylor regimes [21,
79].

A similar analysis can be performed on (13) for quasi-

geostrophic turbulence where the appropriate scale is L̂β
and the kinetic energy of turbulence can be computed
from the KK spectrum which usually exists on scales not
exceeding L̂β ,

Er =

∫ n̂β

∞
CKε

2/3n−5/3dn =
3

2
CKε

2/3n̂
−2/3
β . (16)

Here, CK ' 6 is the Kolmogorov-Kraichnan constant
and n̂β is the wave number corresponding to the scale

L̂β . In the spherical geometry, β = Ω/R, where Ω and
R are, respectively, the angular velocity and the radius

of a sphere [60]. Introducing a non-dimensional index

ñβ = Rn̂β = πR/L̂β , (16) can be transformed to

Er = (3/2)CKΩ2R2ñ−4β . (17)

In analogy to Ep, Er defines a part of the available rota-
tional kinetic energy (ARKE) in quasi-geostrophic flows
that can be converted to turbulence (Er → 0 when
ε → 0). Since the rotational kinetic energy (per unit
mass) of a body with the moment of inertia I rotat-
ing with the angular velocity Ω is 1

2IΩ2, the product

3CKR
2ñ−4β plays a role of the equivalent moment of in-

ertia of a flow on scales dominated by turbulence.
On a fast rotating sphere, in the regime of zonostrophic

turbulence, the total rotational kinetic energy of a flow,
including the zonal jets, can be approximated by

Et ' (5/4)CZΩ2R2ñ−4R , (18)

where CZ = O(1) and ñR is the index associated with
the Rhines scale LR = (2U/β)1/2, U being the rms of
total velocity [61, 80] (in (18) we take into account that
the part of the spectrum for n ≤ nR = L−1R may be flat
due to the action of a large-scale drag). As in Eq. (16),
one can identify the product, (5/2)CZR

2ñ−4R , with the
equivalent moment of inertia of the total flow. Note that
while Er substantially depends on ε, Et depends on a
single geometrical property of the zonal jets, their width
which roughly scales with LR [61].

Viewed as a measure of the zonal jets’ variability due
to turbulence, the ratio Et/Er can be expressed in terms
of the zonostrophy index Rβ ≡ ñβ/ñR,

Et
Er
' 5CZ

6CK

(
ñβ
ñR

)4

=
5CZ
6CK

R4
β , (19)

which rapidly increases with Rβ . In the ocean, where
Rβ ' 1.7 [44], the ratio (19) is O(10−1) and the jets are
hardly distinguishable from turbulence, i.e. latent. On
Jupiter, on the other hand, Rβ & 5 [28], the ratio (19) is
O(102) and so the zonation is profound, the zonal jets are
strong and the turbulence signal is weak, just as observed
on Jupiter and Saturn.

By analogy with (15), substituting E
1/2
r and L̂β in

(12) one obtains an expression for the scale-independent,
Taylor-regime-like lateral eddy diffusivity in forced quasi-
geostrophic turbulence,

Ky(Lβ) ∝ E1/2
r L̂β ∝ ε3/5β−4/5, (20)

with the O(1) coefficient. This scaling was verified in
laboratory experiments [39].

The Taylor-like eddy diffusivities for the vertical and
meridional mixing, Eqs. (15) and (20), respectively, in
anisotropic turbulence with dispersive waves constitute
profound physical laws with important practical implica-
tions.

For the former, consider vertical (diapycnal) mixing in
the Antarctic Circumpolar Current (ACC). In the frame-
work of the DIMES (Diapycnal and Isopycnal Mixing
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Experiment in the Southern Ocean) campaign, Ledwell
et al. [81] studied vertical diffusion of trifluoromethyl sul-
fur pentafluoride (CF3SF5) released at the isopycnal sur-
face of about 1500m at the latitude of the release. The
vertical spread of the tracer was observed for 1 year and
the final profile was compared with the one computed us-
ing a one-dimensional diffusion equation with a constant,
Taylor-like diffusivity coefficient, Kz = 1.28×10−5m2s−1,
best fitted to the evolution of the mean profile. The re-
sult of this comparison is shown in Fig. 6. The tracer
spread nearly equally, for about 100m, up and down from
the release height with no accumulation at any particular
level, i.e. no level exhibits features of a mixing barrier.
The measure of turbulent overturns, the Ozmidov scale
LO, was only about 1m, which is considerably smaller
than the vertical size of the tracer’s spread. This re-
sult indicates that the actual mixing was taking place
everywhere in the tracer’s cloud on scales of the order
of LO and the total spread was a cumulative effect of
a large number of small-scale overturning mixing events.
With the measured value of the Brunt-Väisälä frequency,
N ' 1.5 × 10−3s−1, the Ellison-Britter-Osborn model
(15) with the proportionality coefficient set at 0.2 was
utilized to estimate the rate of the viscous dissipation, ε,
from the value of Kz. Thus obtained value of ε was about
50% higher than the estimate based on direct measure-
ments using the microstructure profiler.

With regard to the meridional diffusivity in the en-
vironment of turbulent flows with inverse cascade, we
use Eq. (20) to describe the lateral spread of the de-
bris and gases after the Shoemaker-Levy 9 (SL9) comet
impact upon Jupiter in 1994 [see, e.g., 82]. The debris
and gases turned out to be natural conservative tracers
perfectly suited for dispersion observations. Such obser-
vations were conducted for several years following the
impact.

A study by Friedson et al. [27], in which mean optical
depth was used as a concentration surrogate, concluded
that the advection due to the residual circulation was in-
sufficient to describe the temporal dispersion of the im-
pact cloud and so the authors included meridional diffu-
sion with a scale-independent, Taylor-type diffusivity co-
efficient, Ky = (1−10)×106m2s−1, in the region between
10 and 100mbar. Our estimate based upon Eq. (20), with
the rate of the inverse energy cascade ε ' 10−5m2s−3, as
estimated from the Cassini data by Galperin et al. [28],
and β ' 10−12m−1s−1, yields Ky ' 4 × 106m2s−1, in
good agreement with the values used in [27]. In addi-
tion, unlike calculations in the latter paper, Eq. (20)
produces no negative eddy diffusivities.

Figure 7 shows the meridional spread of the cloud of
debris as a function of time. A gradual meridional ex-
pansion of the initially latitudinally-narrow tracer profile
is evident, just as it was in the case of the vertical diffu-
sion in the ACC discussed earlier. As in the latter case,
the maximum size of eddies contributing to Ky was Lβ ,
a scale approximately equal to the width of a zonal jet.
This scale was much smaller than a scale of the lateral

Figure 6. Vertical diffusion of a tracer in the Antarctic Cir-
cumpolar Current. The ordinate is height relative to the cen-
ter of the initial profile. The abscissa is the concentration
in femtomolars (fM; 1 fM = 1 × 10−15 moles/liter). Dashed
curve: initial mean concentration measured shortly after re-
lease, multiplied by 0.005. Solid curve: final mean profile
measured 1 year later. The gray uncertainty envelope is
based on variations of the shape of individual profiles. Dash-
dotted curve shows final profile for an integration of the one-
dimensional diffusion equation, starting with the initial pro-
file, for a diapycnal diffusivity of 1.28 × 10−5m2s−1. After
Ledwell et al. [81]. c©American Meteorological Society. Used
with permission.

expansion of the debris cloud yet there was no debris
accumulation at any particular latitude. Even though
powerful zonal jets on Jupiter are sometimes assumed to
play a role of the barriers for the meridional mixing [e.g.
83], Fig. 7 does not support this assumption. Instead,
it demonstrates that the lateral dispersion is a Taylor
diffusion process, both qualitatively and quantitatively,
which is driven by macroturbulence with inverse energy
cascade. Note also that Figs. 6 and 7 demonstrate the
affinity of the diffusion processes in vastly diverse flows
that feature different regimes of anisotropic turbulence
with opposite directions of the energy transfer and dif-
ferent types of dispersive waves.

Turning back to Eq. (20) we note that Ky depends on
ε in both the Richardson’s and Taylor’s diffusion regimes,
albeit in different fashions. The observation that the
scale L̂β , delineating the transition between the two dif-
fusion regimes, is intimately related to ε could be used to
diagnose ε from diffusion observations. This new method
could be employed as either an alternative or a supple-
ment to the method of PV monotonizing. In practical
applications, the transition scale can be estimated us-
ing the finite-scale Lyapunov exponent (FSLE) technique
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Figure 7. Meridional spread of the debris following the collision of the Shoemaker-Levy 9 comet with Jupiter. The crosses
represent longitude-mean perturbation optical depths at 230 nm derived from the changes in reflectivity after 18 May 1994:
(a) 25 August 1994, (b) 4-5 March 1995, (c) 15 May 1996, (d) 6 November 1997. Optical depths were integrated over longitude
in each of the latitude bands between −60◦ and +30◦. Regions of negative mean optical depth are found where the average
brightness of the bin was higher than it was prior to the arriving of impact debris. The solid lines are synthetic profiles calculated
with the dynamical model that includes horizontal eddy diffusivity. Dash-dotted and dash-triple-dotted lines correspond to the
results with the eddy diffusivity coefficient, respectively, reduced or increased by a factor of 5 compared to its nominal value.
After Friedson et al. [27]; reprinted with the permission from Elsevier.

[e.g., 84]. The duality of the methods of estimating ε by
PV monotonizing and a change in the diffusion regime
will be elaborated in the following section using the pre-
viously employed experimental facility with a westward
jet.

V. THE FSLE METHOD

Since the velocities in our experiments were estimated
by tracking particle trajectories, we could use this in-
formation to evaluate particle dispersion with the FSLE
technique. The FSLE quantifies an average growth rate
of non-infinitesimal perturbations at different scales of
observation [85]. Briefly, it is assumed that at time

t = 0 a ‘reference’ trajectory xxx(0) is perturbed to xxx′(0) =
xxx(0)+δxxx(0), where ‖δxxx(0)‖ ≡ δmin � 1 (all length scales
are non-dimensionalized with the maximum characteris-
tic length scale of the system). A sequence of thresholds
δn, n = 1, . . . , N can be introduced with δn = δ1ρ

n−1,
where the amplification factor is ρ > 1. Then, the statis-
tics of the growth times τ(δ) between δ and ρδ is com-
puted on a large number of trajectory pairs, for each
δ = δn. The FSLE is defined according to

λ(δ) =
ln ρ

〈τ(δ)〉
, (21)

where 〈τ(δ)〉 is the average time that the trajectory sep-
aration at scale δ takes to grow by a factor ρ [see also
86]. Different functional dependencies λ = f(δn) define
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different dispersion regimes [e.g., 39].
FSLE can be a function of xxx in which case λ(δ,xxx) is

a Lagrangian measure of the local amplification rate of
a perturbation of size δ imposed on a trajectory initially
passing through a point xxx. In this case, (21) becomes

λ(δ,xxx) =
1

〈τ(δ,xxx)〉
ln ρ (22)

which defines a map of the local rate of dispersion for
an ensemble of trajectory pairs relative to their initial
positions. We observe that for statistically stationary
flows neither (21) nor (22) are explicitly time dependent.
The FSLE maps diagnose regions with higher dispersion
and those where dispersion is lower or null; the latter can
be identified with the mixing barriers [87]. To account for
anisotropic dispersion, the FSLE can be computed for the
meridional and zonal components of the distance between
particles separately as was done by Lacorata et al. [88]
for dispersion in the lower stratosphere.

The initial dispersion is typically characterized by ex-
ponential growth of the fluid particles’ separation. In
this regime, relative dispersion is nonlocal and we expect
λ(δ) ' λL = const, λL being an estimate of the maxi-
mum Lagrangian Lyapunov exponent [84]. We identify
the maximum separation of a particle pair attained at
the end of the exponential regime as δL.

In flows with forcing, the initial, exponential stage
of dispersion may evolve into the power law scaling
λ(δ) ∼ δ−2/3 which corresponds to the Richardson’s t3

time dependence and Kolmogorov’s (in 3D flows) or KK’s
(in 2D flows) −5/3 energy density spectrum. For either
flow, the FSLE approach yields

λ(δ) =
C

1/3
R ln ρ

ρ2/3 − 1
ε1/3δ−2/3, (23)

where δ > δL and CR is the Richardson constant. For 2D
flows with inverse energy cascade, CR ∼ O(1) [89]. The
Richardson’s law scaling may further evolve into the Tay-
lor’s diffusion regime for which λ(δ) ∼ δ−2. As mentioned
earlier, in 2D turbulence with a β-effect, the transition
between the regimes is expected to occur at a geometrical
scale δt ' L̂β .

VI. TURBULENT DIFFUSION IN THE
LABORATORY AND IMPLICATIONS FOR

PLANETARY FLOWS

The three experiments analyzed in section III were
used for studies of the diffusion. The results are sum-
marized in Figs. VI and 9. The top row in Fig. VI
shows the FSLE maps, λ(δ,xxx), constructed by following
two trajectories from an initial separation δ0 = 0.7cm to
a final separation threshold ρδ over the observation time
T=25 s. The amplification factor is ρ = 2. If the final
separation threshold was not attained after the time T ,
the FSLE was set to zero. The computed values were
mapped onto trajectories’ initial positions.

The figure elucidates the differences in dispersion as-
sociated with forced and unforced jets. For the former,
increasing turbulence intensity (measured by ε) enhances
the dispersion. The increase in λ with increasing ε for a
fixed δ is consistent with (23). One notes the FSLE de-
crease in the vicinity of the jet’s axis and their asymmetry
revealing somewhat larger dispersion on the ‘southern’
flank of the jet which could be a result of the increase
of the eddy size with increasing radius stipulated by the
round geometry of the experimental device. While the
FSLE is never null in the jet’s domain over the forced
sector I, it rapidly falls to zero around the middle part of
the jet in the unforced sector II and is fully extinguished
in sectors III and IV.

It was suggested in e.g. [83, 90] that an unstable, east-
erly jet may become a mixing barrier and so our results
in the unforced sectors do not appear surprising. It is
not so in the forced sector I. Figure 2 in [83] and Fig.
3 in [90] indicate that easterly jets are associated with
monotonic PV profiles thus implying that the jets’ envi-
rons experienced no significant forcing due to the absence
of the available rotational kinetic energy. In our experi-
ments, however, forcing was applied to sector I and the
ensuing turbulence played a major role in the dynamics
and dispersion. Figure VI shows persistent instability in
sector I while Fig. 3 shows the instabilities migrating
between the ‘northern’ and ’southern’ flanks of the jet
and could be aligned with the locations of FSLE max-
ima. The instability sporadically occurs in sector II even
though the flow there is not forced directly. In sector
III, the flow is practically always stable although some
residual turbulence might survive.

The rapid decrease of λ along the central section of the
jet in sectors II and III can be explained by the absence
of the direct forcing and is somewhat reminiscent of the
manifestation of a mixing barrier in the easterly jet as
elaborated in [83, 90]. A slower decay of λ on jet’s flanks
over the unforced sectors can probably be attributed to
the remote forcing by the breaking Rossby waves as they
propagate westward from sector I. A weak forcing in sec-
tor II leads to a collapse of the radial dispersion while
most of the zonal dispersion appears to be due to the
advection by the jet.

In summary, forced westward jets do not act as mix-
ing barriers due to the cross-jet turbulent diffusion. The
enhanced mixing on jets’ flanks can be facilitated by tur-
bulence developing from the barotropic instability. These
conclusions are in line with the results discussed in sec-
tion IV regarding the Jovian zonal jets. It was argued,
and also elucidated by Fig. 7, that, however powerful,
the jets cannot suppress meridional diffusion which is
sustained by macroturbulence. The magnitude of the
meridional diffusivity coefficient in the Taylor’s regime
can be estimated from Eq. (20) and is consistent with
the values inferred from observations.

Further insight into diffusion by macroturbulence is
provided by the FSLE analysis of the experimental re-
sults summarized in Fig. 9 and Table II. By show-
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Figure 8. FSLE maps (top), samples of instantaneous (middle) and fully time- and sector-averaged (bottom row) profiles of the
radial PV gradient. The left, middle, and right columns pertain to the Experiments 29, 30 and 31, respectively. The Roman
numbers mark different sectors; sector I contains the magnets. While the flow in this sector is barotropically unstable most of
the time, the occurrence of the instability decreases away from the sector. The color bar numbers show powers of 10.

Figure 9. Radial (black squares) and zonal (open circles) FSLE computed with ρ = 21/4. Straight lines represent the Richardson,

λ(δ) ∼ δ−2/3, (solid) and Taylor, λ(δ) ∼ δ−2, (dotted) diffusion laws. Left, middle and right panels pertain to the Experiments
29, 30, and 31, respectively.
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Exp. L̂β δT LM L̂β/LM
cm cm cm

29 2.5 2.6 1.3 1.9
30 3.4 3.1 1.7 2.0
31 3.7 3.8 1.9 1.95

Table II. Comparison of the scale L̂β with the transitional
scale δT and PV monotonizing scale LM .

ing the FSLEs in the radial (meridional) and azimuthal
(zonal) directions, Fig. 9 underscores the anisotropic
nature of dispersion in turbulence with a β-effect. In
all three experiments, the zonal FSLEs display two suc-
cessive plateaus. As the FSLE plateaus correspond to
the exponential dispersion of two Lagrangian particles
trapped in a coherent structure [e.g. 85], one can identify
the first plateau with single eddies on both sides of the
jet, and the second one with the entire zonal meander-
ing ‘ribbon’. Thus, the two major scales corresponding
to these structures are the size of the eddies estimated
at about 5-6 cm, and the wavelength of the ‘ribbon,’
about 20 cm. Subsequently, the first zonal plateau ends
at about 5-6 cm followed, after a short transition, by a
lower secondary plateau extending to about 20 cm. At
its exit, the zonal FSLEs have a slope compatible with
the Richardson’s regime. This regime could be antici-
pated because the Rossby wave elasticity that facilitates
the Richardson - Taylor regime transition in the radial
direction, does not act in the zonal direction. The sec-
ondary plateau being lower reflects the decrease in the
dispersion rate caused by a temporary ‘trapping’ of the
Lagrangian particles by the meandering ‘ribbon’ inside of
which the particles can recirculate while departing from
each other. This does not occur, of course, when the sep-
aration is smaller than the size of a single eddy, and this
is why the separation in that case is somewhat faster.

Bounded by the Rossby wave elasticity, there are no
secondary structures in the radial direction and so the
radial FSLEs have only one plateau. The FSLE levels
in the radial and zonal directions are about the same as
in the zonal one because the dispersion is isotropic as
δ → 0. Since the zonal plateau accounts for the trans-
lation of eddies in the zonal direction, it is always some-
what longer than its meridional counterpart. At the exit
from the meridional plateau, denoted δL, the FSLE ex-
hibits a short range of the Richardson’s regime at the end
of which, denoted δT and computed in excess of δL, it
experiences sharp crossover to the Taylor’s regime. The
range of the Richardson’s regime, δT , is very close to
the measured values of L̂β . In addition, one observes a

nearly constant ratio between L̂β and LM . These results

points to the affinity between L̂β and LM , between the
Richardson’s diffusion regime and PV mixing, as both
are powered by the Kolmogorov-Kraichnan turbulence,
and, thus, ensure consistency between the estimates of ε
from the kinetic energy spectra, PV monotonizing, and

meridional dispersion as quantified by the FSLE method.

VII. DISCUSSION AND CONCLUSIONS

The application of the results of this investigation to
the analysis of dispersion processes on Jupiter and, pos-
sibly, other gas giant planets was discussed in section IV.
In the oceanographic context, these results are even more
useful because more dispersion data is available.

Studies by e.g. LaCasce and Bower [23], LaCasce
[25], Lumpkin and Elipot [26], Ollitrault et al. [91] indi-
cate that the Richardson’s and Taylor’s diffusion regimes
are ubiquitous in the World ocean. The transition be-
tween the regimes in the subsurface layer occurs on scales
of 200-300 km which are of the order of the width of the
alternating zonal jets [3, 66]. Several investigations note
strong diffusion anisotropy [e.g. 92–94] whereas merid-
ional diffusivities are much smaller than their zonal coun-
terparts. Diffusion anisotropization is sometimes at-
tributed to the effect of the mean zonal flow upon the
lateral diffusivity [95]. The present results point to an al-
ternative explanation of this phenomenon, i.e., the aniso-
tropization of the inverse energy cascade at the crossover
length scale L̂β . The oceanic kinetic energy spectra usu-
ally deviate from the KK and zonostrophic distributions
and so the coefficient in (8) is prone to some uncertainty.
In addition, this coefficient may vary with geographic
location. Using (8) and taking β ∼ 10−11m−1s−1 and
L ∼ 200−300km, one evaluates ε between 10−8 and 10−9

m2s−3 which is not dissimilar to the values reported by
Arbic et al. [96]. According to (20), such ε yields Ky

in the range between 2.5 × 103 and 104m2s−1, also in
agreement with the observed values [e.g., 92–94].

For the deep water, LaCasce and Bower [23] show the
transition at L ∼ 100km which gives ε ∼ 10−10m2s−3, in
quantitative agreement with the estimates found in e.g.
[3, 97]. Then, Ky is evaluated at about 103m2s−1. The
decrease of ε with depth is consistent with the decrease
of the eddy kinetic energy [94] and stems from the dif-
ferences in energy partitioning among the modes. The
surface signal reflects inverse cascade in the baroclinic
mode which is more energetic than its counterpart in the
deep ocean which is mostly barotropic [98].

Concluding we re-emphasize that a combination of PV
monotonizing and particles’ dispersion characteristics of-
fers a powerful and effective tool for quantification of
macroturbulence. This tool has predictive skills and of-
fers a plethora of applications in studies of planetary cir-
culations as well as the large-scale oceanic circulations
and climate.
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