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The dislocation and disclination density defining the structure of a crystal constrained on a
general curved background is computed analytically in the thermodynamic limit, when the number
of particles is arbitrarily large. It is shown that the minimum of the elastic energy, where strains
are optimally close to zero, can be formulated in terms of a connection (a rule on how to parallel
transport vectors). It is shown that the thermodynamic solution consist of disclinations surrounded
by scars (grain boundaries with variable spacing). The approach allows to compute the interaction
potential. For a sphere, a full characterization of the scars is provided, and it is shown that the
potential of interaction among disclinations “dressed” by scars is inversely proportional to the sinus
of the geodesic distance and that the ground state consists of twelve dressed disclinations that display
icosahedral symmetry. The case of a torus is also considered. More generally, the thermodynamic
solution implements a “perfect screening” condition, where defects completely screen the Gaussian
curvature. Implications for the problem of melting are discussed.

I. INTRODUCTION

Understanding the type of crystalline order that oc-
curs on a lattice constrained on a general curved manifold
is a fundamental problem with many recent experimen-
tal realizations in soft systems such as lipids, colloids or
surfactants[1–7] as well as in hard systems such as metal-
lic glasses, superconductors or carbon nanotubes among
many other relevant examples[8]. Although there has
been remarkable theoretical progress [9–22], most stud-
ies have focused on the limit of a relatively small number
of particles. In this article, I investigate the thermody-
namic limit, that is, the limit when the number of parti-
cles is arbitrarily large. This situation has been addressed
previously[3, 20, 23] by considering a limit of weak cur-
vature.

The key elements in any crystal on a curved
background are topological defects and Riemannian
curvature[24, 25]. Indeed, disclinations and dislocations
are necessary to relieve the stresses induced by the cur-
vature. Intuitively, the disclinations are akin to electro-
static charges and the dislocations to polarizable dipoles,
which combine to neutralize the curvature. In two dimen-
sional solids, for example, previous calculations strongly
suggest [3, 11, 20] that in the thermodynamic limit, at
zero temperature, a “perfect” screening of defects neu-
tralizing the curvature should follow. More precisely∫

K(x)dA =

ND∑
i=1

qi +

∫
∇ · ~PdA , (1)

with K(x) the Gaussian curvature, ND is the number

of isolated disclinations (each of charge qi) and ~P is the
“polarization”, which is related to the dislocation density.

A clear example of “perfect screening” is provided by
an icosahedron, see Fig. 1, where each vertex accumu-
lates a π

3 of Gaussian curvature, which are screened by
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FIG. 1. (Top Left) Icosahedron, where each vertex is a discli-
nation with Gaussian curvature K(x) = π

3
δ(x − xi).(Top

Right) Trivial parallel transport from point A to D by the
vector fields eθ, eψ. (Bottom Left) Frame corresponding to
the trivial connection with the vortices at the north and
south poles. (Bottom Right) Parallel transporting segment
AC along segment AB, and parallel transporting segment AB

along AC results in gap that is given by ~b = − cot(θ)eψ, in-
dicative of a non-zero torsion or dislocation density.

π
3 disclinations. In this case, however, no additional dis-
locations are required and the remaining lattice, consist-
ing of six coordinated vertices forming a perfectly planar
hexagonal lattice, can be constructed on the planar face
of the icosahedron. Note that the physical bonds between
nearest neighbor particles in different sites are parallel.
On a general manifold, however, the curvature is contin-
uous, and, in principle, cannot be completely screened by
a number of discrete disclination charges. In such case,
there is no notion of parallelism, as attempting to con-
struct the lattice requires the specification of a rule that
tells how to parallel transport vectors (a connection). In
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curved geometries, parallel transport of a vector gener-
ally depends on the amount of curvature encircled by the
path, so the parallel transport is not unique, and not suit-
able for the construction of a lattice. It is known, how-
ever, that a path independent parallel transport from a
point P1 to any other point P2 (on a sphere, for example)
can be defined from

~V = V θeθ(P1) + V ψeψ(P1)→ V θeθ(P2) + V ψeψ(P2) ,
(2)

where eθ, eψ are the unit tangent vectors defined by
spherical coordinates. As shown in Fig. 1, such paral-
lel transport has two distinct features: It is singular at
the north and south poles, and the parallel transport of
two vectors along each other does not result in a closed
parallelogram, as shown in Fig. 1. The first feature is
indicative that the entire Gaussian curvature is now lo-
calized at both poles in the form of two vortices each with
charge 2π. The second is that this newly defined connec-
tion has geometric torsion[26]. Such “trivial” connections
have been known, for example in navigation, as they cor-
respond to loxodromic paths, which become straight lines
in the Mercator projection. In physical terms, such con-
nections implement a lattice where the rows of atoms are
as close as possible to have zero strains. This equivalence
between optimal strains and trivial connections forms the
basis of the approach developed in this paper.

II. GEOMETRIC FORMULATION FOR
CRYSTALS IN ARBITRARY GEOMETRIES

While disclinations are associated with Gaussian cur-
vature, dislocations are identified as sources of geomet-
ric torsion[24, 27]. In this way, a very natural physical
interpretation of the process of “trivialization” of a con-
nection by torsion emerges, where the dislocations role
is to “spread” the discrete disclination charge and fully
screen out the curvature, resulting in a configuration that
is basically flat, and where the parallel transport is de-
fined by the vectors defining the crystallographic axis.
This is a completely general result, beyond consideration
of crystals. For example, the free energy of an hexatic
membrane with bond orientational order θ on a curved
manifold with metric gµν is given as[28]

Fhex =
KA

2

∫
d2x
√
ggµν(∂µθ+ΩDµ −ΩLµ)(∂νθ+ΩDν −ΩLν ) ,

(3)
where ∇µ = ∂

∂xµ − ΩLµ defines the standard covariant

derivative (Levi-Civita) connection and ΩD accounts for
the distribution of disclinations. The difference in sign
reflects that defects screen curvature of the same sign. It
is convenient to consider ΩD,L as 1-forms, whose exterior
derivative d[26] gives

dΩL = K(x)ΩM , dΩD = SD(x)ΩM , (4)

with K(x) the Gaussian curvature, SD(x) =∑ND
j=1

qj√
g δ(x−xj) is the disclination density (with qi the

disclination charge) and ΩM = θ1 ∧ θ2 =
√
gdx1 ∧ dx2 is

the volume two form.
Thus, the free energy becomes a function of the com-

bination Υµ = ΩDµ − ΩLµ and is given by

F =
Y

2
(dΥ,

1

∆p
dΥ) =

∫ ∫
(KD−S)

1

∆p
(KD−S) , (5)

where ∆ is the Laplacian. The case p = 1 describes the
hexatic order Eq. 3[28] while p = 2 describes a general
2D crystal[11]. For this latter case, dislocations need to
be introduced as

Ω(D,d)
µ = ΩDµ +

Nd∑
i=1

biµ√
g
δ(x− xi) (6)

S(D,d)(x) =

Nd∑
i=1

1√
g
εαβbiα∂µ(e µ

β δ(x− xi)) + SD(x)

where bα is the Burgers vector and formulas have been
written in local or “einvein” coordinates (see SI). For a
flat monolayer, the above formulas reduce to the known
results[25].

The thermodynamic limit is obtained as the lattice
constant a of the underlying lattice becomes vanishingly
small compared with the dimensions (in physical units)
of the curved manifold. In such limit, the dislocation
density satisfies

Nd∑
i=1

biα√
g
δ(x− xi) = βα(x) +O(a/R) (7)

where R is a characteristic parameter defining the surface
(For a sphere, R is obviously the radii, for a torus, the
smaller of the two radii, etc..). This formula defines a
continuum dislocation density β, and the last term serves
to remind the error made in such approximation, an issue
to which I will return later.

From differential geometry, the standard Levi-Civita
connection satisfies ΩL,α = −dθα. A new connection may
be defined by subtracting to the Levi Civita connection
the dislocation density ΩCα = ΩLα − βα, and satisfies

dθ̂α + ΩC,αΩM = βαΩM (8)

dΩC = KΩM , (9)

Upon identifying β with the torsion, these equations
are the Cartan Structure equations[26], which define the
most general connection that is compatible with the met-
ric (see also, appendix 1). Here K is the curvature asso-
ciated with this new connection, which is different than
the Gaussian curvature. Following the trivialization dis-
cussed in Fig. 1, the dislocation density (the torsion) β
will be chosen so that the new curvature K is given as

K(x) =

D∑
i=1

qj√
g
δ(x− xi)→ dΥ = 0 , (10)

that is, the curvature is entirely concentrated in a few iso-
lated points (such as the two poles for the case in Fig. 1).
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As I will argue further below, such construction is al-
ways possible. In this way, the dislocation density β suc-
ceeds in undressing the Gaussian curvature into isolated
charges, which are perfectly screened by disclinations,
in the same way as for the icosahedron previously dis-
cussed. In this way, the trivialization of the connection
implements the “perfect screening” condition.

Thus, the equations defining the minimum of the free
energy Eq. 5, that is Eq. 10, amounts to the statement
that Υ is a closed 1-form and that the dislocation density
is determined up to an arbitrary exact form

dΥ = 0

β′ = β + dζ (11)

so that the solution Eq. 10 is not unique. In addition, if
the de Rham cohomology group H1(S) of the manifold is
non-trivial, additional topological inequivalent solutions
become possible.

Note that the Stokes theorem implies that the integral
over the entire closed manifold of the form in Eq. 11 is∫

dζ = 0 , (12)

so that the additional “gauge invariance” is interpreted
as modifying the distribution of dislocations, but not its
total number.

III. RESULTS: THE CASES OF THE SPHERE
AND THE TORUS.

As a first example, I consider the manifold to be a
sphere S2, described with coordinates (ϑ, ψ). The Levi-
Civita connection is

ΩL = − cot(ϑ)θ̂ψ (13)

so that dΩL = 1 · ΩM and the Gaussian curvature is
K = 1.

The obvious dislocation density calculated from the
Cartan structure equations Eq. 8 is βϑ = 0, βψ =
− cot(ϑ), which exactly implements the “Mercator” triv-
ialization discussed in the introduction. The associated
curvature becomes

K = 2πδ(ϑ− 0) + 2πδ(ϑ− π) , (14)

that is, as expected, the entire curvature is concentrated
into two vortices, each carrying a 2π curvature. Such
defects are not consistent with a spherical crystal. An
acceptable solution containing twelve q = π

3 disclinations
can be found as a superpositions of 6 of these solutions,
namely

βϑ = −1

6

6∑
i=1

cot(ωi)

sin(ωi)
sin(ϑi) sin(ψ − ψi)

βψ =
1

6

6∑
i=1

cot(ωi)

sin(ωi)
[sin(ϑ) cos(ϑi)−

− cos(ϑ) sin(ϑi) cos(ψ − ψi)] (15)

FIG. 2. Solution for the dislocation density on the sphere
in the thermodynamic limit (Eq. 15 and Eq. 19). Solution
Eq. 15
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FIG. 3. Magnitude of the dislocation density as a function of
geodesic distance from one disclination to the next-to-nearest
disclination. The three zeros correspond to two vortices q = 1
and one anti-vortex q = −1. The magnitude diverges near
disclinations.

where (ϑi, ϕi)i=1···6 describes the orientations of the axis
where each of the six disclination pairs are placed and
cos(ωi) = cos(ϑ) cos(ϑi)+sin(ϑ) sin(ϑi) cos(ψ−ψi). Since
one disclination pair can be placed along the axis defining
the north-south pole ϑ = 0, and another disclination can
be placed at ψ = 0, the solution Eq. 15 has nine free
parameters.

There is, however, an additional boundary condition
that must be met. In its most general case, Eq. 15 leads
to a situation where Burgers vector add to non-zero val-
ues at the position of disclinations. This is clearly un-
physical as a disclination cannot have a Burgers vector.
The same conclusion can also be arrived from Eq. 7, as,
by construction, each of the discrete dislocation density
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at finite lattice spacing will obviously have a zero Burg-
ers vectors at the disclination, so this should be also be
the case for the limit. Therefore, I arrive at the following
boundary condition

βϑ(xj)=̃0

βψ(xj)=̃0 , (16)

where xj , j = 1 · · · 6 runs over the positions of each discli-
nation pair, and the =̃ sign is used to emphasize that the
actual disclination at xj is should be omitted.

The general potential between two dressed disclina-
tions, that is, including the scars, is a function of the
geodesic distance s, so it can be written as V (s). The
overall potential for the twelve dressed disclinations will
therefore be

U =

12∑
i=1

12∑
j>i

V (sij) , (17)

where sij is the geodesic distance between the two i, j
disclinations. Note, that the minimization of the above
potential energy should lead to Eq. 15 and Eq. 16. Such
condition immediately leads to V (s) = 1

sin(s) as the only

possibility for function V (this statement can be verified
by showing that the minimum of Eq. 18 leads to Eq. 15
and Eq. 16). Note that the interaction between a pair of
dressed disclinations is always repulsive. Therefore, the
potential energy for the twelve disclinations is given as

U =

6∑
i=1

6∑
j>i

1

sin(sij)
, (18)

where the summation only needs to run up to 6, as the
other 6 dressed disclinations follow by inversion symme-
try. Thus, Eq. 16 appears as the condition of zero force
between screened disclinations.

Given that the potential Eq. 18 implies that a discli-
nation pair repeal each other, it is intuitively clear, and
I have also verified it with numerical minimizations, that
the zero force condition Eq. 16 consists of 12 disclinations
that sit on the vertices of an icosahedron, in positions

(0, 0), (arctan(2),
2π

5
k), (π− arctan(2),

π

5
+

2π

5
k), (π, 0) ,

(19)
with k = 0 · · · 4. Note that even though dΥ = 0, the form
Υ itself is not zero. Also, for a sphere H1(S2) = 0, and
there are not additional topological distinct solutions.

The dislocation density β defined by Eq. 15 and Eq. 19
is shown in Fig. 2. Note that β can be regarded as a
vector field, so it displays 32 vortices (12 around each
disclination) and 30 anti-vortices (mid-way each nearest-
neighbor disclinations). The magnitude of the disloca-
tion density is shown in Fig. 3 along the path connecting
two next-to-nearest disclination, where it intersects three
vortices (2 vortices and 1 antivortex). The additional
“gauge” invariance can be used to optimize the distribu-
tion Eq. 15: by including a function ζ(ψ) = a cos(5ψ)
(on each of the 12 disclinations), the dislocations become

FIG. 4. Solution for the dislocation density on the torus in
the thermodynamic Eq. 20 for aspect ratio r = 1.7. Solution
with λ1, λ2, ζ1, ζ2 = 0.

FIG. 5. Solution for the dislocation density on the torus in
the thermodynamic Eq. 20 for aspect ratio r = 1.7. Solution
with λ1 = 0.5, λ2 = 0.3

significantly different from zero only along the paths con-
necting nearest neighbor disclinations defining a distribu-
tion of “pentagonal buttons”[11].

The same methods provide the solution for a torus
manifold. Using (ϑ, α) coordinates (see appendix Sect 2,

the Levi Civita connection is ΩL = − sin(α)
r+cos(α)θ

1, where

r = R1

R2
> 1 is the aspect ratio of the torus. The most

general dislocation density satisfying Eq. 11 is

β = − sin(α)dϑ+λ1dϑ+λ2dα+ d(ζ1(α) + ζ2(ϑ)) , (20)

where λ1, λ2 are arbitrary real numbers that parameter-
ize the De Rahm Cohomology group H1(T 2) = R ⊕ R
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and ζ1,2 are arbitrary functions. In Fig. 5(top), the solu-
tion with λ1, λ2, ζ1, ζ2 = 0 is shown, and consists of finite
length grain boundaries with no disclinations (pleats[3]).
In Fig. 5(bottom), the solution with (λ1 = 0.5, λ2 = 0.3)
is shown, with Burgers vectors that twist along the circles
with constant ϑ. Solutions with isolated disclinations[8]
are also possible, but will not be discussed here.

IV. CONCLUSIONS

The general solution Eq. 11 immediately leads to a free
energy Eq. 5 that is identically zero. This does not im-
ply that the resulting crystal is perfectly flat, it is only
flat up to corrections of order O(a/R), see Eq. 7. A
concrete example will serve to illustrate this degeneracy:
The energy of an isolated disclination in a flat disc of
radius R grows like R2[25]. Whenever such disclination
is surrounded by low angle grain boundaries, the “per-
fect screening” condition leads to an elastic energy that
is of order R2O(a/R) = aR. There is, however, a large
freedom in the choice of the actual grain boundaries: m
radial grains where dislocations within a grain are sepa-
rated a distance

D = b/
(

2 sin
[ π

6m

])
(21)

will perfectly screen the disclination for any value of m or
orientation of the grains[14]. This freedom in the choice
of grain boundary is what the “gauge symmetry” Eq. 11,
in the general case, parameterizes.

Of course, the degeneracy implied by the “gauge sym-
metry” is removed at order O(a/R), but then, there are
additional free energy contributions that come into play,
such as, defect core energies, bond orientational terms
and many others. The critical step is therefore the con-
tinuum limit Eq. 7. This limit can be performed by
the following construction[15]: The minimum number
of disclinations is determined by topological constraints
and placed where the curvature is maximum. Disloca-
tions defining the scar are then added whenever the area
around that point exceeds or fails the area of an entire
triangle =

√
3a2/4, where a is the lattice constant. Such

dislocation density will provide an optimal approxima-
tion for finite a and converges to the exact analytical
solution.

Although it may appear that the results have been
obtained within linear elastic theory, they are, in fact
more general. From standard results in differential
geometry[26], it is possible to express Υ = d†(ΨΩM ),
where Ψ is the generalization of the Airy function[25] to
curved geometries. Such function satisfies an expansion
in the “incompatible stress function”, which goes beyond
linear elasticity theory [29]. This formalism provides a
rigorous justification for the formalism discussed here,
but making it more precise will be left for a subsequent
publication.

In summary, an explicit solution of the structure, in
the form of the distribution of disclinations and dislo-
cations in the thermodynamic limit for any geometry is

provided. The solution is highly degenerate. The results
provide a precise and practical formulation of the perfect
screening condition [3, 11, 20] and allow a determination
of the effective potential between disclinations dressed
with scars, Eq. 18. Using these results, it is shown that
in the thermodynamic limit, the ground state of a sphere
contains 12 disclinations with the symmetry of an icosa-
hedron. With the current advances of both experimental
and numerical methods [18, 21, 22], where large systems
are realized, the importance of the thermodynamic limit
result becomes even more clear. Furthermore, the under-
lying geometric interpretation is completely revealed.

The discussion in this paper has been confined to closed
manifolds. It is possible to generalize the results to man-
ifolds with boundaries. If it is allowed to adjust the
boundary so that the stresses are zero at the boundary,
the equations defining the perfect screening Eq. 13 can be
applied with the only modification that the dislocation
density is zero at the boundary. If some stress is applied
at the boundaries, as considered in ref. [20, 23], these
external stresses need to be implemented as boundary
conditions, which is not conceptually difficult but some-
what more complex in practice[29].

The results presented are also relevant for a discussion
of finite temperature effects. For a sphere, for example,
it shows that the icosahedral order of the disclinations is
maintained in the thermodynamic limit, and therefore,
the long-range effect of such disclinations, which interact
with a potential Eq. 18, keeps the icosahedral symmetry
all the way till melting[25]. The precise melting mecha-
nism will be investigated in future work. Last, but not
least, the solutions discussed in this paper are relevant
for other problems, for example, in determining triangu-
lations of a manifold where triangles are optimally close
to equilateral.
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1. Differential Geometry basics

A general surface is described by an embedding ~r(x),
and inherits a metric from flat space given by

gµν = ∂µ~r · ∂ν~r . (22)

It is convenient to diagonalize the metric in terms of the

non-coordinate basis {êα} and {θ̂α}, through the viel-
beins coefficients

θ̂α = eαµdx
µ , êα = e µ

α

∂

∂xu
, (23)
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so that gµν = δαβe
α
µe
β
ν . The 1-form connection de-

scribes how to transport vectors at different points, and
is defined according to

ωαβ = Γαγβ θ̂
γ , (24)

where the tensor Γαγβ implements the connection. The
connection must be compatible with the metric, so that
the norm and angle of two vectors does not change during
parallel transport. This metric compatibility condition
leads to

ωαβ = −ωβα =⇒ ωαβ = εαβΩ , (25)

where herein the right arrow is used to indicate the sim-
plifications that occur for the two dimensional case. Here

Ω = Ωαθ̂
α is a 1-form. With these definitions, the Cartan

structure equations are given as

dθ̂α + ωαβ ∧ θ̂β = Tα =⇒ dθ̂α + ΩαΩM = BαΩM

dωαβ + ωαγ ∧ ωγβ = Rαβ =⇒ dΩ = KΩM , (26)

where Tα = 1
2T

α
βγ θ̂

β ∧ θ̂γ =⇒ BαΩM is the torsion

tensor, and Rαβ = 1
2R

α
βγδ θ̂

γ ∧ θ̂δ =⇒ εαβKΩM is the

curvature tensor, with ΩM = θ̂1 ∧ θ̂2 the area form.
There is a special connection, sometimes named the

Levi-Civita (LC) connection, where the torsion vanishes
identically. In this case, vectors are parallel transported
along geodesics. I denote this connection as ΩL, and it
satisfies the equations.

ΩL,αΩM = −dθ̂α
dΩL = KΩM , (27)

where K(x) is the standard Gaussian curvature.

2. Toroidal Coordinates

The toroidal coordinates employed in this paper are:

x(α, ϑ) = (R1 +R2 cos(α)) cos(ϑ)

y(α, ϑ) = (R1 +R2 cos(α)) sin(ϑ)

z(α, ϑ) = R2 sin(α) , (28)

where both α, ϑ run from 0 to 2π.
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