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Abstract.	Cholesteric	liquid	crystals	can	potentially	provide	a	means	for	tunable	self-

organization	of	colloidal	particles.	However,	the	structures	of	particle-induced	defects	and	

the	ensuing	elasticity-mediated	colloidal	interactions	in	these	media	remain	much	less	

explored	and	understood	as	compared	to	their	nematic	liquid	crystal	counterparts.	Here	we	

demonstrate	how	colloidal	microspheres	of	varying	diameter	relative	to	the	helicoidal	pitch	

can	induce	dipole-like	director	field	configurations	in	cholesteric	liquid	crystals,	where	

these	particles	are	accompanied	by	point	defects	and	a	diverse	variety	of	nonsingular	line	

defects	forming	closed	loops.	Using	laser	tweezers	and	nonlinear	optical	microscopy,	we	

characterize	the	ensuing	medium-mediated	elastic	interactions	and	three-dimensional	

colloidal	assemblies.	Experimental	findings	show	a	good	agreement	with	numerical	

modeling	based	on	minimization	of	the	Landau-de	Gennes	free	energy	and	promise	both	

practical	applications	in	the	realization	of	colloidal	composite	materials	and	means	of	

controlling	nonsingular	topological	defects	that	attract	a	great	deal	of	fundamental	interest.		



1.	Introduction	

	 Foreign	 particles	 introduced	 into	 nematic	 liquid	 crystals	 (LCs)	 typically	 prompt	

formation	of	defects	in	their	vicinity	in	order	to	compensate	for	the	boundary	conditions	at	

the	 particle	 surfaces,	 such	 that	 the	 net	 topological	 hedgehog	 charge	 of	 the	 system	 is	

conserved	 [1,2].	 The	 nature	 of	 defects	 and	 resultant	 symmetries	 in	 the	 particle-induced	

deformations	of	the	director	field	depend	on	the	type	and	strength	of	surface	anchoring	[1-

6]	and	also	on	 the	shape	and	topology	of	 the	particles	 [7-18].	For	example,	particles	with	

strong	 homeotropic	 surface	 anchoring	 give	 rise	 to	 hyperbolic	 hedgehog	 point	 defects,	

imparting	dipolar	symmetry	to	the	resultant	director	configuration	[1].	Particles	with	weak	

homeotropic	anchoring	(or	having	size	comparable	to	the	cell	 thickness)	give	rise	 to	half-

integer	disclination	loops	(also	called	a	“Saturn-ring”	defect)	around	them	and	the	resulting	

elastic	quadrupolar	symmetry	[2-4].	Similar	types	of	dipolar	and	quadrupolar	symmetries	

of	elastic	deformations	in	the	LCs	were	also	demonstrated	for	particles	with	tangential	and	

other	 boundary	 conditions	 for	 the	 nematic	 director	 [19-27].	 Nematic	 colloids	 with	

hexadecapolar	 symmetry	of	 elastic	distortions	have	been	 recently	observed	 too	 [28].	The	

particle-induced	defects	stabilized	by	the	colloidal	particles	and	the	resultant	deformation	

in	n(r),	 lead	 to	new	kinds	of	 elasticity-mediated	colloidal	 interactions	 in	nematic	LCs	 [1],	

which,	 in	 turn,	 give	 rise	 to	 one-	 two-	 and	 three-dimensional	 colloidal	 structures,	 such	 as	

chains	and	crystal	arrays	[29].		

Colloidal	interactions	involving	the	orientational	elasticity	effects	have	been	studied	

in	depth	and	well-understood	for	nematic	LCs	but	the	case	of	cholesteric	LCs	remains	much	

less	explored	[30-45].	It	can	be	heuristically	argued	that,	because	of	the	periodic	helicoidal	

structure,	 cholesteric	 LCs	 promise	 a	 richer	 landscape	 for	 formation	 of	 defects	 around	

colloidal	 particles	 and	 resultant	 interactions	 between	 them,	 as	 compared	 to	 the	 case	 of	



nematic	LCs	[30-45].	 	Furthermore,	the	parameter	d/p	(ratio	of	diameter	of	the	particle	to	

the	intrinsic	pitch	of	the	cholesteric	LC)	can	be	potentially	exploited	to	“tune”	the	nature	of	

defects	and	the	ensuing	elastic	interactions.		For	example,	a	particle	with	d	<<	p	is	expected	

to	effectively	“see”	the	local	cholesteric	medium	as	a	weakly	twisted	“nematic”,	but	a	very	

different	 behavior	 can	 be	 expected	 in	 the	 regime	 of	 d	 ≥p.	 Indeed,	 recent	 studies	 (both	

experimental	and	theoretical)	of	colloidal	particles	with	sizes	comparable	or	larger	than	the	

cholesteric	 pitch	 revealed	 a	 large	 variety	 of	 singular	 defect	 loops	 that	 match	 surface	

boundary	conditions	at	particle-LC	 interfaces	 to	 the	 far-field	uniformly	twisting	helicoidal	

structure	of	 the	 cholesteric	LC	 [31,38,39].	However,	 these	 studies	of	 colloidal	dispersions	

typically	dealt	with	singular	loops	of	defect	lines	and	revealed	only	a	subset	of	possible	field	

configurations.	

In	 this	 work,	 we	 demonstrate	 how	 colloidal	 spheres	 with	 perpendicular	

(homeotropic)	 surface	 boundary	 conditions	 for	 the	 director	 field	 n(r)	 and	 with	 varying	

diameter	relative	to	the	helicoidal	pitch	can	induce	dipole-like	director	field	configurations	

in	cholesteric	LCs.	We	show	that	these	particles	are	accompanied	by	singular	point	defects	

and	 different	 types	 of	 nonsingular	 line	 defects.	 Using	 laser	 tweezers	 [41,46,47]	 and	

nonlinear	 optical	 microscopy	 [48],	 we	 characterize	 the	 elasticity-mediated	 colloidal	

interactions	 and	 the	 ensuing	 three-dimensional	 (3D)	 colloidal	 assemblies.	We	 study	 how	

various	 kinds	 of	 elasticity-	 and	 defect-mediated	 interactions	 lead	 to	 3D	 assemblies	 of	

colloidal	particles	bound	by	elastic	forces	or	by	entangled	defects.	The	experiments	show	a	

good	 agreement	 with	 numerical	 modeling	 based	 on	 the	 minimization	 of	 the	 Landau-de	

Gennes	 free	 energy	 [49,50].	 Our	 findings	 may	 provide	 the	 means	 of	 generating	 and	

controlling	 nonsingular	 topological	 defect	 lines	 and	 their	 loops	 as	 well	 as	 could	 lead	 to	



novel	 approaches	 for	 the	 design	 and	 realization	 of	 LC-colloidal	 composite	materials	with	

pre-engineered	properties	and	response	to	external	stimuli	like	electric	fields	[51-54].		

	

2.	Experimental	methods,	technique,	and	materials	

Cholesteric	LCs	 are	prepared	by	mixing	 the	 room-temperature	nematic	hosts	4-Cyano-4'-

pentylbiphenyl	(5CB)	or	ZLI2806	with	a	chiral	dopant	CB15	(all	 from	EM	Chemicals).	The	

helicoidal	pitch	p	value	is	set	by	controlling	the	volume	fraction	of	the	chiral	additive	(Cchiral)	

of	known	helical	twisting	power	for	a	given	nematic	host	hHTP	[30]	according	to	the	relation	

p	 =	 (hHTP	 ×	 Cchiral)-1,	 which	 works	 well	 for	 relatively	 small	 volume	 fractions	 of	 the	 chiral	

additive	~0.01	used	 in	 this	study	[30,45].	For	 the	mixtures	obtained	by	doping	CB15	 into	

the	 5CB	 nematic	 host,	hHTP=7.3	µm-1,	whereas	hHTP=5.9	µm-1	 for	 the	 cholesteric	mixtures	

prepared	by	doping	CB15	into	the	ZLI2806	nematic	host	[30].	These	hHTP	values	were	used	

to	calculate	Cchiral	for	the	values	of	pitch	in	the	range	p=5-25	µm,	as	presented	for	particular	

experiments	 in	 the	 captions	 of	 the	 corresponding	 figures.	 Additionally,	 the	 values	 of	 p	

where	measured	separately	using	the	Grandjean-Cano	method	[30,44-46],	showing	a	good	

agreement	with	the	values	estimated	based	on	the	chiral	additive	volume	fractions	during	

the	 LC	 sample	 preparation.	 We	 have	 utilized	 solid	 silica	 particles	 of	 known	 nominal	

diameter	[18].	These	particles	were	treated	with	N,N-dimethyl-N-octadecyl-3-aminopropyl-

trimethoxysilyl	 chloride	 (DMOAP),	 by	 following	 procedures	 detailed	 elsewhere	 [8,18],	 in	

order	to	set	perpendicular	surface	boundary	conditions	for	the	LC	director	on	the	colloidal	

particle	surfaces.	The	particles	were	re-dispersed	in	the	LC	and	the	resultant	dispersion	was	

then	sonicated	to	break	occasional	particle	aggregates.	LC	cells	were	fabricated	using	two	

glass	 substrates	 of	 thickness	 0.15	mm,	 as	 required	 for	 the	 optimization	 of	 imaging	 and	

optical	trapping	with	high	numerical	aperture	(1.4)	oil	immersion	objectives.	Strong	planar	



surface	anchoring	boundary	conditions	on	the	inner	surfaces	of	confining	substrates	of	the	

cells	 were	 set	 by	 spin-coating	 and	 curing	 a	 thin	 layer	 of	 polyimide	 PI-2555	 (HD	 Micro-

Systems),	 and	 then	 unidirectionally	 rubbing	 it	 with	 a	 piece	 of	 velvet	 cloth	 to	 define	 the	

surface	boundary	conditions	for	the	LC	director.	The	thickness	of	LC	cells	was	set	within	30-

60	 µm	 by	 sandwiching	 the	 glass	 substrates	 with	 silica	 microspheres	 of	 corresponding	

diameters	 and	 (based	 on	 the	 3D	 nonlinear	 optical	 imaging	 of	 the	 vertical	 cross-sections	

described	below)	was	found	to	be	uniform,	with	variations	smaller	than	1µm	[8,11,21].	The	

substrates	were	glued	together	using	fast-setting	epoxy	[42,43].	The	colloidal	dispersions	in	

the	cholesteric	LC	were	infiltrated	into	the	cells	by	using	capillary	forces.		

Optical	 manipulation	 and	 3D	 imaging	 were	 performed	 with	 an	 integrated	 setup	

composed	 of	 holographic	 optical	 tweezers	 and	 a	 multimodal	 nonlinear	 optical	 imaging	

system	 described	 in	 details	 elsewhere	 [46,48].	 The	 3D	 director	 structures	 were	 studied	

using	 a	 combination	 of	 conventional	 polarizing	 optical	 microscopy	 and	 a	 3D	 nonlinear	

imaging	 technique	 dubbed	 “three-photon	 excitation	 fluorescence	 polarizing	 microscopy”	

(3PEF-PM)	[48],	which	is	based	on	fluorescence	of	the	cholesteric	LC	(including	the	chiral	

additive)	molecules	excited	through	three-photon	absorption	of	femtosecond	infrared	laser	

light.	The	3PEF-PM	fluorescence	intensity	exhibits	a	strong	dependence	on	the	orientation	

of	 linear	 polarization	 of	 the	 excitation	 beam	 relative	 to	n(r)	 [48].	 3PEF-PM	 images	were	

comprised	of	3D	stacks	of	optical	slices	and	were	used	to	reveal	director	structures	as	well	

as	 relative	 positions	 of	 colloidal	 particles,	 and	 the	 corresponding	 locations	 and	

configurations	of	topological	defects	accompanying	them.	All	presented	optical	microscopy	

observations,	 as	well	 as	 the	 laser	 trapping	 and	 3D	 imaging	 experiments	were	 performed	

using	a	100×	or	60×	oil	 immersion	objectives	with	numerical	aperture	≈1.4.	Optical	video	

microscopy	allowed	us	to	probe	colloidal	particle	dynamics	through	recording	the	particle	



motion	with	 a	 charge	 coupled	 device	 camera	 (Flea,	 PointGrey)	 or	 a	 fast	 camera	HotShot	

512SC	(from	NAC	Image	Technology,	Inc.).	We	then	determined	the	time-dependent	spatial	

positions	of	 the	particles	 from	captured	 image	 sequences	using	motion	 tracking	 software	

ImageJ	(freeware	obtained	from	the	National	 Institute	of	Health),	which	was	then	used	to	

estimate	 the	 particle	 velocities,	 interaction	 potentials	 and	 forces	 [28],	 as	 discussed	 in	

details	elsewhere	[7,12].	

	

3.	Diversity	of	cholesteric	LC	defects	induced	by	colloidal	particles	

	 Experiments	and	theoretical	modeling	of	cholesteric	LC	colloids	conducted	thus	far	

have	 typically	 revealed	 twisted	 Saturn-ring	 types	 of	 defects	 around	 particles	 with	

homeotropic	surface	anchoring	[32-47].	The	disclination	loop	commonly	winds	around	the	

particle	due	to	the	inherent	helicoidal	structure	of	the	cholesteric	LC’s	ground-state	director	

field.	 In	 this	 work,	 in	 addition	 to	 the	 twisted	 disclination	 loop	 defects,	 we	 report	

observation	of	point	defect	in	the	vicinity	of	spherical	colloidal	microparticles,	albeit	these	

defect-colloidal	elastic	“dipoles”	are	significantly	different	from	their	nematic	counterparts	

(Fig.	 1).	 We	 experimentally	 confirm	 the	 existence	 of	 long-term	 stable	 point	 defects	 as	

shown	 in	 Fig.	 1,	 where	we	 use	 a	 high-power	 (~250mW)	 optical	 trap	 to	 locally	melt	 the	

cholesteric	LC	with	≈12	μm	pitch	in	a	small	region	surrounding	a	particle	of	10	μm	diameter.	

Upon	 turning	off	 the	 laser	 trap,	 the	 locally	melted	LC	quenches	back	 to	 cholesteric	phase	

and	 at	 first	 exhibits	 a	 singular	 twisted	 disclination	 loop	 (Fig.	 1).	 However,	 this	 singular	

disclination	 loop,	which	 is	clearly	visible	because	of	strong	 light	scattering,	relaxes	over	a	

time	period	of	5-10	s	to	a	point	defect	as	shown	using	the	 image	sequences	 in	Fig.	1(a,d).	

The	resultant	point	defect	can	be	seen	 in	an	 image	taken	between	crossed	polarizers,	Fig.	

1(b,e),	as	well.	Interestingly,	bright	field	and	dark	field	optical	microscopy	observations	and	



light	scattering	reveal	no	additional	singular	defects.	The	deformation	of	n(r)	in	the	vertical	

plane	 (orthogonal	 to	 cholesteric	 helicoidal	 pseudo-layers	 reflecting	 the	 periodicity	 of	

director	twist)	can	be	seen	in	vertical	3PEF	cross-section	shown	in	Fig.	1(c).	The	sequence	

of	micrographs	 shown	 in	 Fig.	 1(d)	 reveals	 a	 similar	 transformation	 of	 a	 twisted	 singular	

disclination	 loop	to	a	point	defect	when	a	particle	of	 the	same	10	μm	diameter	 is	studied	

within	 the	 cholesteric	 LC	 of	 longer	 pitch	 (≈25	 μm),	with	 the	 vertical	 cross-section	 of	 the	

helicoidal	pseudo-layered	structure	shown	in	Fig.	1(f).		

	 	
Fig.	1.	Optical	imaging	of	defects	around	a	spherical	colloidal	particle	in	a	cholesteric	LC.	(a)	
After	 the	LC	around	a	particle	 is	 locally	melted	using	optical	 tweezers,	upon	quenching,	a	
twisted	 singular	 disclination	 loop	 appears	 (i)	 and	 then	 continuously	 transforms	 (ii,iii)	
transforms	into	a	point	defect,	which	can	be	seen	from	the	bright	field	micrograph	based	on	
scattering	 (iii).	 The	 10-μm	diameter	 spherical	 particle	 in	 (a-c)	 is	 studied	 in	medium	 of	 a	
p=12μm	cholesteric	LC.	(b)	Observation	of	the	particle	and	the	induced	point	defect	in	the	
polarizing	 optical	 micrograph	 obtained	 between	 crossed	 polarizers	 parallel	 to	 the	
micrograph’s	 edges.	 (c)	 3PEF-PM	 vertical	 cross-section	 of	 the	 helicoidal	 pseudo-layered	
structure	of	the	cholesteric	LC	around	the	particle.	(d-f)	A	set	of	images	similar	to	the	ones	
shown	 in	 (a-c),	 respectively,	 but	 for	 a	 particle	 10	 μm	 in	 diameter	 incorporated	 into	 a	
cholesteric	LC	with	the	p=25	μm	pitch.			
	
	 The	observed	transformation	of	a	disclination	loop	into	a	point	defect	appears	to	be	

qualitatively	 similar	 to	 that	 known	 for	 nematic	 LCs,	where	 point	 defects	 have	 lower	 free	

energy	 and	 are	 more	 stable	 than	 the	 ring-shaped	 disclination	 loops	 for	 colloidal	

microparticles	 with	 strong	 homeotropic	 anchoring	 dispersed	 in	 thick	 LC	 cells	 [1,56,57].	

Indeed,	 what	 distinguishes	 our	 experiments	 as	 compared	 to	 the	 previous	 experimental	



studies	[31]	is	that	the	particles	are	placed	in	cells	much	thicker	than	the	particle	diameter	

[33],	as	well	as	that	the	particle	size	is	relatively	large.	However,	the	3PF-PM	cross-sectional	

images	shown	in	Fig.	1(c,f)	reveal	that	the	cholesteric	pseudo-layers	(each	corresponding	to	

π-twist	of	the	director)	are	actually	interrupted	by	the	particles,	as	well	as	that	the	director	

field	 configuration	 is	 much	 more	 complex	 as	 compared	 to	 that	 observed	 for	 the	 defect-

colloidal	dipoles	in	nematics	[1,18].	Therefore,	we	use	numerical	modeling	to	gain	insights	

into	 the	 structure	 of	 the	 director	 field	 configurations	 in	 these	 cholesteric	 LC	 colloids,	 as	

discussed	below.	

	

4.	Theoretical	determination	of	particle-induced	field	configurations		

4.1	Landau-de	Gennes	Free	Energy	and	Surface	Anchoring	Energy	Terms	

Within	the	framework	of	Landau-de	Gennes	(LdG)	theory,	LCs	are	described	by	a	traceless	

symmetric	 tensor	 order	 parameter	 (OP)	𝑄!" , 𝑖, 𝑗 = 1, . . ,3,	 which	 may	 be	 related	 to	 the	

anisotropic	 (deviatoric)	part	of	 the	magnetic	 susceptibility	 tensor	of	 the	 liquid	crystalline	

material	 [55].	 By	 definition	𝑄!" = 0	in	 the	 isotropic	 phase	 and	 different	 from	 zero	 in	

orientationally	 ordered	 nematic	 or	 cholesteric	 phases.	 According	 to	 the	 Landau	

phenomenological	 approach,	 the	Landau-de	Gennes	 free	 energy	density	 is	presented	as	 a	

Taylor	 expansion	 in	 the	 scalar	 combinations	 of	 the	 tensor	 OP:	Tr𝐐!	and	Tr𝐐!,	 where	Tr	

indicates	 a	 trace	 operator.	 Usually,	 the	 expansion	 series	 is	 truncated	 to	 the	 forth	 power	

in 𝑄!" 	without	 losing	 the	physics	of	 the	nematic-isotropic	phase	 transition,	but	 in	general,	

higher	 order	 terms	 are	 present.	 Then,	 to	 the	 forth	 order	 in	𝑄!" ,	 the	 general	 form	 of	 the		

Landau-de	 Gennes	 free	 energy	 functional	 	𝐹!"# 	of	 a	 chiral	 nematic	 may	 be	 written	 as	

[55,56]:	



𝐹!"# =

𝑎𝑄!"! − 𝑏𝑄!"𝑄!"𝑄!" + 𝑐 𝑄!"!
! + !!

!
𝜕!𝑄!"𝜕!𝑄!" +

!!
!
𝜕!𝑄!"𝜕!𝑄!" +

!!!!
!
𝜀!"#𝑄!"𝜕!𝑄!"! 𝑑𝑉,	(1)	

where	𝑝 	is	 the	 equilibrium	 cholesteric	 pitch	 and	 summation	 over	 repeated	 indices	 is	

assumed.	 The	 phenomenological	 expansion	 coefficients	𝑎,	𝑏,	 and	𝑐	are	 in	 the	 general	 case	

functions	of	temperature	𝑇.	In	practice,	𝑎	is	assumed	to	depend	linearly	on	𝑇,	while	𝑏,	and	𝑐	

are	 considered	 temperature	 independent.	 The	 nematic-isotropic	 phase	 transition	 is	

controlled	 by	 the	𝑇-dependent	 coefficient	 𝑎,	 which	 is	 taken	 to	 be	 in	 the	 form	𝑎 𝑇 =

𝑎! 𝑇 − 𝑇∗ ,	 where	𝑎!	is	 a	 material	 dependent	 constant	 and	𝑇∗	is	 the	 supercooling	 limit	

temperature	 of	 the	 isotropic	 phase.	 	 The	 phenomenological	 parameters	𝐿!, and 𝐿!	can	 be	

related	 to	 the	Frank-Oseen	 splay,	𝐾!!,		 twist,	𝐾!!,  and	bend,	 𝐾!!,	elastic	 constants.	To	 this	

end	one	must	 substitute	 into	Eq.	 (1)	an	uniaxial	Ansatz	 	𝑄!" =
!!!
!
(𝑛!𝑛! −

!!"
!
),	where	𝑄!	is	

the	 bulk	 value	 of	 the	 scalar	 orientational	 order	 parameter,	 and	𝑛! 	are	 the	 Cartesian	

components	of	the	director	field,	and	transform	the	gradient	terms	to	the	standard	Frank-

Oseen	 splay,	 twist	 and	 bend	 elastic	 free	 energy	 densities.	 This	 gives	

𝐾!! = 𝐾!! =  9𝑄!!(𝐿! + 𝐿! 2) 2,	and	𝐾!! =  9𝑄!!𝐿! 2.	 In	general	𝐾!!	and	𝐾!!	are	diffeerent,	

but	in	most	cases	the	difference	is	small	and	the	LdG	free	energy	(1)	provides	an	adequate	

description. In	 general,	 additional	 (also	 higher	 order)	 gradient	 terms	 in	 the	 free	 energy	

expansion	(1)	are	possible,	which	will	make	the	corresponding	𝐾!! and	𝐾!!	to	be	different	

from	each	other.	However,	the	introduction	of	higher	order	gradient	terms	will	not	change	

the	physical	picture,	and	 therefore	here	we	restrict	our	attention	only	 to	 the	minimalistic	

model	 where	 	𝐾!! and	𝐾!!	are	 equal	 to	 each	 other	 (which	 is	 actually	 the	 case	 for	 the	

experimental	material	parameters	of	ZLI2806,	for	which	𝐾!! ≈	𝐾!!		[30]),	but	different	from	



𝐾!!. The	 integral	 in	Eq.	 (1)	 is	 taken	over	 the	 three-dimensional	domain	𝑉	occupied	by	 the	

LC		with	the	immersed	colloidal	particles.	

We	describe	homeoptropic	(perpendicular)	anchoring	of	the	director	at	the	surface	

of	colloidal	particle	by	the	following	surface	anchoring	free	energy	functional	

𝐹! =𝑊 𝑄!" − 𝑄!"!
!𝑑𝑠!" ,				(2)	

where	𝑊 > 0	is	the	anchoring	strength,	and	the	surface-preferred	value	of	the	tensor	order	

parameter	 𝑄!"! = 3𝑄!(𝑁!𝑁! − 𝛿!" 3) 2,	where	𝐍	is	 the	 normalized	 outward	 normal	 vector	

to	the	confining	surface	and		𝛿!"  is	the	Kronecker	delta	symbol.	

The	uniaxial	nematic	with	the	bulk	order	parameter	𝑄! =  𝑏 8𝑐 (𝑎 + 1− 8𝜏 9) is	

thermodynamically	 stable	 at	 𝜏 ≡ 24𝑎𝑐 𝑏! < 1 .	 We	 use	 𝑎! = 0.044×10!𝐽/𝑚!, 	 𝑏 =

0.816×10!𝐽/𝑚!,	𝑐 = 0.45×10!𝐽/𝑚! ,	𝐿! = 6×10!"𝐽/𝑚,	,	 and	𝐿! = 12×10!"𝐽/𝑚,	 which	 are	

typical	values	for	5CB	[57]	and	𝑇∗ = 307 𝐾.	For	these	values	of	the	model	parameters,	the	

bulk	 correlation	 length	 𝜉= 2√2𝑐(3𝐿! + 2𝐿!) 𝑏 ≅ 15𝑛𝑚 	at	 the	 isotropic-nematic	

coexistence	and	at	𝜏 = 1 [58].	

	

4.2	Geometry	and	Initial	Conditions	for	Computer	Simulations	

We	consider	the	sample	volume 𝑉 = 𝐿×𝐿×𝐿	and	assume	that	the	colloidal	particle	of	radius	

𝑅=d/2	has	its	center	𝐫! = (0,0,0)	in	the	center	of	the	computational	cube.	As	the	initial	

conditions	we	use	a	combination	of	an	uniaxial	twisted	equilibrium	configuration	(at	far	

distances	from	the	colloidal	particle),	isotropic	configuration	(within	a	spherical	shell,	with	

the	outer	radius	𝑅! ,	around	the	particle)	and	the	dipole	Ansatz	of	Lubensky	et	al.	[59]	

(applied	within	a	spherical	shell	with	the	outer	radius	𝑅! < 𝑅! 	around	the	particle)	to	

model	a	hedgehog	defect.	Thus,	at	a	point	𝐫	which	satisfies	∥ 𝐫− 𝐫! ∥> 𝑅!  we	set	the	initial	



nematic	director	𝐧! = (− sin 𝑞! 𝐿 2− 𝑦 , 0, cos 𝑞! 𝐿 2− 𝑦 ),	with	the	initial	degree	of	

the	nematic	orientational	order	𝑄! = 𝑄! ,	where	𝑞! =  2𝜋 𝑝 	and	for	𝑅! <∥ 𝐫− 𝐫! ∥≤ 𝑅!  we	

set	𝑄! = 0.	Next,	in	the	domain	𝑅 ≤∥ 𝐫− 𝐫! ∥≤ 𝑅! we	set	

𝐧! = sinΘ 𝐫 cos𝜙, sinΘ 𝐫 sin𝜙, cosΘ 𝐫 ,                                    (3)	

	where	𝜙 is	the	azimuthal	angle	and	the	director	tilt	angle	[59]	

Θ 𝐫 = 2𝜃 − atan
𝑟 sin𝜃 

𝑟 cos  𝜃 + 𝑧!
− atan

𝑧!𝑟 sin𝜃 
𝑧!𝑟 cos  𝜃 + 1 .                                     (4)	

In	Eq.	(4)		𝑟 = ||𝐫||,	𝜃	is	the	polar	angle,		and	𝑧! 	is	the	𝑧 − coordinate 	of	the	hyperbolic	

hedgehog.	The	Lubensky	Ansatz	in	Eq.	(3)	is	constructed	by	using	the	solution	 𝐧!! =

sinΘ 𝐫!! , cosΘ 𝐫!!  to	the	corresponding	two-dimensional	problem	and	then	spinning	

it	(the	solution)	about	the	𝑧 axis	to	give	Eq.	(3).		In	the	corresponding	two-dimensional	

system		Θ 𝐫!! 	describes	the	superposition	of	three	topological	defect:	the	original	

hedgehog	defect	of	the	strength	𝑞 = −1	at	(0,−𝑧!);	and	two	compensating	defects	needed	

to	satisfy	the	normal	boundary	conditions	at	the	surface	of	the	colloids,	one	defect		with	

𝑞 = +2	placed	at	(0,0),	and	another	with	𝑞 = −1	at	(0,−𝑧!!!).	The	last	defect	is	an	image	of	

the	original	hedgehog.	One	example	of	such	initial	configuration	is	illustrated	in	Fig.	2.	

Finally,	we	always	set	𝐿 = 𝑛𝑝,	where	𝑛	is	an	integer,	and	impose	fixed	boundary	conditions	

on	𝑄!" 	with	the	values	specified	by	the	expression	on	𝑄!"! 	evaluated	at	the	system	

boundaries	∂V.				



	

	

Fig.	2.	An	example	of	the	initial	configuration	used	to	initialize	the	numerical	minimization	

of	the	total	free	energy	given	by	Eq.(1)	plus	Eq.(2)	with	𝑅! = 1.75𝑅,𝑅! = 1.5𝑅	(see	text	for	

details),	 and	 	 cholesteric	 pitch	𝑝 = 4𝑅 = 2𝑑.	 The	 color	 scale	 encodes	𝑛!!,	where	𝑛!	is	 the	

component	of	the	director	perpendicular	to	the	far-field	helical	axis	χ 	and	along	the	vertical	

edge	of	the	computer-simulated	presentations	of	the	3D	director	configurations,	such	as	the	

initial	 conditions	 shown	here;	 in	 the	 color	 scheme	encoding	𝑛! ,	 red	 corresponds	 to	𝑛!!	=1,	

blue	to	𝑛!!	=0,	and	all	other	colors	to	the	values	within	0-1.	In	the	initial	configuration,	the	

nematic	 dipole	 ansatz	within	 the	 volume	 separated	 by	 the	 inner	 sphere	 and	 the	 ground-

state	cholesteric	helicoidal	structure	 far	away	 from	the	particle	down	to	 the	outer	sphere	

are	separated	by	an	 isotropic	region	(blue)	 in-between	the	 two	spheres.	Spatially	varying	

orientations	of	the	black	rods	represent	the	director	field.	

	
	
4.3	Details	and	Procedures	of	Numerical	Modeling	

In	the	following,	the	Landau-de	Genens	free	energy	Eq.	(1),	augmented	by	the	surface	term	

in	Eq.	(2),	 is	minimized	numerically	using	finite	elements	method	with	the	adaptive	mesh	



refinement.	 	 The	 surface	of	 colloidal	 particle	 is	 represented	by	 a	union	of	 triangles	using	

open	 source	 GNU	 Triangulated	 Surface	 Library	 [60],	 and	 then	 the	 nematic-containing	

domain	 of	 the	 sample	 with	 the	 volume	𝑉	is	 discretized	 by	 using	 the	 Quality	 Tetrahedral	

Mesh	 Generator	 [61].	 Linear	 triangular	 and	 tetrahedral	 elements	 are	 used	 and	 the	

integration	over	the	elements	is	performed	numerically	by	using	fully	symmetric	Gaussian	

quadrature	 rules	 [62-64].	 Consequently,	 the	 discretized	𝐹!"# 	is	 minimized	 exploiting	

INRIA's	 M1QN3	 optimization	 routine	 [65].	 A	more	 detailed	 description	 of	 the	 numerical	

simulation	procedures	is	provided	in	Ref.	[66].	

	

4.4	Results	of	Numerical	Modeling	

Figures	3-5	 summarize	 the	numerically	 calculated	LC	 configurations	 for	 the	values	of	 the	

equilibrium	cholesteric	pitch,	𝑝 = 4𝑅, 3𝑅, 2𝑅,	respectively.	In	all	three	cases	we	observe	the	

formation	 of	 a	 hedgehog	 “point”	 defect	 nearby	 the	 colloidal	 particle,	 consistent	 with	 the	

experiments	 (Fig.	 1).	 The	 point	 defects	 are	 located	 in	 the	 plane	 passing	 through	 the	

equatorial	 midplane	 of	 the	 colloidal	 sphere	 parallel	 to	 the	 cholesteric	 “pseudo-layers”,	

which,	 in	 turn,	 are	 orthogonal	 to	 the	 far-field	 helical	 axis	 χ .	 The	 core	 of	 the	 hyperbolic	

hedgehog	point	defect	has	the	fine	structure	of	a	half-integer	disclination	ring	[67-71],	Figs.	

3(b),	4(b),	and	5(b),	with	the	radius	of	the	tube	forming	a	torus-shaped	region	of	reduced	

order	parameter	in	the	range	of	few	nematic	coherence	lengths	𝜉.	The	observation	of	such	

ring-shaped	core	of	a	point	defect	is	consistent	with	theoretical	models	[68-71]	and	recent	

experiments	[67].	The	point	defects	are	found	localizing	along	an	axis	passing	through	the	

microsphere	center	perpendicular	to	the	far-field	helicoidal	axis	and	parallel	to	the	far-field	

helicoidal	director	orientation	at	the	sample	depth	location	of	the	particle’s	center.		



The	planes	containing	 the	singular	disclination	rings	are	oriented	perpendicular	 to	

the	𝑧 −axis	 and	 parallel	 to	 the	 local	 surface	 of	 the	 near-by	 colloidal	 microsphere	 for	 all	

studied	 values	 of	𝑝,	 Figs.	 3(b),	 4(b),	 and	 5(b).	 These	 point	 defects	 with	 the	 ring-like	

structure	of	the	core	are	the	only	singular	defects	induced	by	the	nematic	colloidal	particles	

with	 perpendicular	 anchoring	 in	 the	 cholesteric	 LC.	 However,	 we	 also	 observe	 the	 non-

singular	 solitonic	 configurations	 shown	 in	 Figs.	 3,4.5(c,d)	 by	 the	 green	 surfaces.	 These	

solitonic	nonsingular	configurations	are	comprised	of	closed	loops	of	the	so-called 𝜆 −lines	

and	are	characterized	by	the	escape	of	the	director	into	the	3rd	dimension,	which	in	our	case	

is	the	direction	along	the	solitonic	 line’s	contour	[Figs.	3(d),	4(d),	and	5	(d)].	Surprisingly,	

the	 scalar	 order	 parameter	 around	 the	𝜆 − lines	 has	 values	 slightly	 larger	 than	 the	

corresponding	bulk	values,	which	allows	to	visualize	the	twist-escaped	cores	of	the	defect	

lines	based	on	the	increased	local	value	of	the	scalar	order	parameter	[Figs.	3(d),	4(d),	and	

5(d)],	 in	 contrast	 to	 the	 singular	 defects	 that	 have	 locally	 decreased	 values	 of	 the	 scalar	

order	parameter	within	their	cores	[Figs.	3(b),4(b)	and	5(b)].	Since	the	director	field	within	

the	 loops	 of	 nonsingular	 defect	 lines	 is	 continuous,	 these	 solitonics	 structures	 are	 not	

expected	 to	 cause	 light	 scattering	and	 (unlike	 the	 singular	defects)	 are	 thus	 “invisible”	 in	

bright-field	micrographs,	in	agreement	with	the	experimental	observations	(Fig.	1).	

	



	

Fig.	 3.	 LC	 configurations	 at	𝑝 = 4𝑅, 𝑅 = 1𝜇𝑚	shown	 (a)	 with	 the	 help	 of	 a	 cross-section	
passing	through	the	particle	center	and	the	hyperbolic	point	defect	nearby	and	(b)	within	a	
zoomed-in	 region	 of	 this	 cross-section	 in	 the	 vicinity	 of	 a	 point	 defect;	 (c)	 as	 a	 three-
dimensional	perspective	view	of	 the	nonsingular	solitonic	structure	and	 the	director	 field	
cross-section	shown	 in	 (a),	with	 the	zoomed-in	region	showing	details	of	 the	nonsingular	
twist-escaped	 configuration	depicted	 in	 (d).	We	note	 that	 the	3D	perspective	 view	 in	 (c),	
unlike	 the	 individual	 cross-section	 in	 (a),	 shows	 3D	 perspective	 presentations	 of	 the	
molecular	rods	and	director	when	they	are	 in	all	possible	orientations,	 including	the	ones	
orthogonal	to	the	cross-sectional	 image	plane.	 In	(a,b,d)	color	encodes	 	𝑛!!,	where	𝑛!	is	the	
vertical	(in	the	frame	of	the	figure)	component	of	the	director;	red	color	corresponds	to	𝑛!!	
=1,	 blue	 to	𝑛!!	=0,	 and	 the	 other	 colors	 to	 the	 values	 within	 0-1.	 In	 (b)	 the	 split-core	
structure	of	 the	hyperbolic	hedgehog	is	shown	as	an	 iso-surface	(a	small	red	ring,	viewed	
edge-on	 and	 perpendicular	 to	 the	 plane	 of	 the	 figure)	 corresponding	 to	 a	 constant	 value	
𝑄 < 𝑄!	of	the	scalar	orientational	order	parameter.	The	green	surfaces	in	(c,d)	correspond	
to	 the	 iso-surfaces	 	 of	 a	 constant	𝑄 > 𝑄!	and	 represent	non-singular	defect	 	 lines,	 the	 so-
called	𝜆 −lines.	Spatially	varying	orientations	of	the	black	rods	represent	the	director	field.	
					 	
	
	



	

Fig.	 4.	 LC	 configurations	 at	𝑝 = 3𝑅,	𝑅 = 1𝜇𝑚	shown	 (a)	 with	 the	 help	 of	 a	 cross-section	
passing	through	the	particle	center	and	the	hyperbolic	point	defect	nearby	and	(b)	within	a	
zoomed-in	 region	 of	 this	 cross-section	 in	 the	 vicinity	 of	 a	 point	 defect.	 (c)	 A	 three-
dimensional	perspective	view	of	 the	nonsingular	solitonic	structure	and	 the	director	 field	
cross-section	shown	 in	 (a),	with	 the	zoomed-in	region	showing	details	of	 the	nonsingular	
twist-escaped	configuration	depicted	in	(d).	In	(a,b,d),	the	colors	encode		𝑛!!,	where	𝑛!	is	the	
vertical	(in	the	frame	of	the	figure)	component	of	the	director;	red	color	corresponds	to	𝑛!!	
=1,	blue	 to	𝑛!!	=0,	 and	 the	other	 colors	 to	 the	values	of	𝑛!!	within	0-1.	 In	 (b)	 the	 split-core	
structure	of	 the	hyperbolic	hedgehog	is	shown	as	an	 iso-surface	(a	small	red	ring,	viewed	
edge-on	 and	 perpendicular	 to	 the	 plane	 of	 the	 figure)	 corresponding	 to	 a	 constant	 value	
𝑄 < 𝑄!	of	the	scalar	orientational	order	parameter.	The	green	surfaces	in	(c,d)	correspond	
to	 the	 iso-surfaces	 	 of	 a	 constant	𝑄 > 𝑄! 	and	 represent	 non-singular	𝜆 −defect	 	 lines.	
Spatially	varying	orientations	of	the	black	rods	represent	the	director	field.	
	
	



	

Fig.	 5.	 LC	 configurations	 at	𝑝 = 2𝑅	shown	 (a)	 with	 the	 help	 of	 a	 cross-section	 passing	
through	 the	 particle	 center	 and	 the	 hyperbolic	 point	 defect	 nearby	 and	 (b)	 within	 a	
zoomed-in	 region	 of	 this	 cross-section	 in	 the	 vicinity	 of	 a	 point	 defect.	 (c)	 A	 three-
dimensional	 perspective	 view	 of	 a	 nonsingular	 solitonic	 structure	 and	 the	 director	 field	
cross-section	shown	in	(a),	with	the	zoomed	in	region	depicted	in	(d)	showing	details	of	the	
nonsingular	 twist-escaped	 configuration.	 In	 (a,b,d),	 the	 colors	 encode	 	𝑛!!,	where	𝑛!	is	 the	
vertical	(in	the	frame	of	the	figure)	component	of	the	director;	red	color	corresponds	to	𝑛!!	
=1,	blue	 to	𝑛!!	=0,	 and	 the	other	 colors	 to	 the	values	of	𝑛!!	within	0-1.	 In	 (b)	 the	 split-core	
structure	of	the	hyperbolic	hedgehog	is	shown	with	the	help	of	an	iso-surface	(a	small	red	
ring,	 viewed	 edge-on	 and	 perpendicular	 to	 the	 plane	 of	 the	 figure)	 corresponding	 to	 a	
constant	value	𝑄 < 𝑄!	of	 the	scalar	orientational	order	parameter.	Green	surfaces	 in	 (c,d)	
correspond	 to	 the	 iso-surfaces	 	 of	 a	 constant	𝑄 > 𝑄!	and	 represent	 non-singular	 (in	 the	
material	director	field)	defect	 	lines	with	twist-escaped	defect	cores,	the	so-called	𝜆 −lines	
[30,41].	Spatially	varying	orientations	of	the	black	rods	represent	the	director	field.	
	
	

5.	Colloidal	self-assemblies	



	 		

	
	

Fig.	 6.	 Elastically	 bound	 colloidal	 particle	 assemblies.	 (a-c)	 Chiral	 dipolar	 particles	 form	
assemblies	 prompted	 by	 attractive	 elastic	 interactions.	 These	 assemblies	 are	 not	 only	
confined	to	 the	same	cholesteric	pseudo-layer	as	 in	(a,f)	but	also	 form	when	the	particles	
are	 separated	 along	 the	 helical	 axis	 by	 ≈p/4	 (b)	 or	 ≈p/2	 (c).	We	note	 that	 these	 are	 just	
examples	 and	 other	 initial	 center-to-center	 inter-particle	 separations	 are	 possible	 too,	
albeit	 particle	 interactions	 become	 weak	 at	 separations	 >p.	 (d)	 An	 in-plane	 assembly	 of	
multiple	chiral	dipolar	particles,	with	the	configuration	of	a	curved	chain.	(e)	An	assembly	
formed	 by	 several	 particles	 at	 different	 depths	 along	 the	 helical	 axis.	 (f)	 Two	 particles	
confined	 to	 the	 same	 cholesteric	 pseudo-layer	 shown	 in	 the	 vertical	 cross-section	 image	
obtained	 by	 using	 3PEF-PM	 and	 corresponding	 to	 (a).	 (g)	 Inter-particle	 separation	 as	 a	
function	of	time,	probed	while	the	particles	are	attracted	towards	each	other	to	form	the	in-
plane	 assembly	 in	 (a).	 (h)	 The	 interaction	 energy	 of	 the	 assembly	 in	 (a)	 as	 a	 function	 of	
inter-particle	separation.	
	

In	 relatively	 dilute	 particle	 dispersions,	 we	 observe	 colloidal	 self-organization	 of	

microspheres	 in	 cholesteric	 LCs,	 which	 we	 explore	 with	 the	 help	 of	 holographic	 laser	

tweezers	[46].	As	shown	in	three	exemplary	scenarios	in	Fig.	6	(a-c),	differing	from	nematic	

dipolar	 colloids,	 we	 observe	 multiple	 possible	 particle-defect	 end-configurations	 of	 the	

colloidal	 particles	 in	 cholesteric	 LCs,	 depending	 on	whether	 the	 interacting	 particles	 are	

initially	confined	in	the	same	cholesteric	pseudo-layer	or	separated	by	a	distance	of	up	to	

p/2	 along	 the	 helical	 axis.	 To	 demonstrate	 this,	 we	 have	 used	 d=4	 μm	 silica	 particles	



(treated	 to	 give	 homeotropic	 anchoring)	 dispersed	 in	 a	 p=5	 μm	 cholesteric	 LC.	 The	 self-

assembled	 elastically	 bound	 pairs	 of	 particles	 have	 center-to-center	 inter-particle	

separations	 ≈	 4.75R.	 By	 using	 laser	 tweezers	 and	 video	 microscopy,	 we	 experimentally	

observed	that	there	is	a	strong	inter-particle	repulsion	when	colloidal	inclusions	are	pushed	

towards	each	other	with	the	laser	tweezers.	As	the	particle	depth	positions	are	varied	using	

optical	 traps,	 the	 center-to-center	 separation	 vectors	 rd-p	connecting	 the	point	 defect	 and	

the	particle	rotate	synchronously	with	the	rotation	of	the	local	director	in	the	midplane	of	

the	microspheres	(Figs.	3-5).	Unlike	the	elastic	dipoles	 in	nematic	colloids	[1],	which	only	

form	 self-assemblies	 of	 parallel	 dipoles	 separated	 along	 the	 far-field	 director	 or	 anti-

parallel	dipoles	separated	in	a	direction	perpendicular	to	the	far-field	director,	the	variety	

of	stable	and	metastable	two-particle	self-assemblies	 in	cholesteric	LCs	 is	enriched	by	the	

alignment	 of	 the	 particle-defect	 vectors	with	 respect	 to	 the	 far-field	 helicoidal	 structure.	

Rather	 than	binding	 only	 into	 configurations	with	parallel	 or	 anti-parallel	 orientations	 of	

the	 particle-defect	 vectors,	 as	 in	 nematics,	 cholesteric	 colloids	 can	 form	 long-term	 stable	

assemblies	 with	 these	 vectors’	 relative	 orientations	 dependent	 on	 the	 relative	 depths	 of	

their	 positions	 with	 respect	 to	 the	 surrounding	 far-field	 helicoidal	 structure.	 In-plane	

elasticity-mediated	 colloidal	 interaction	 between	 particles	 initially	 located	 at	 the	 same	

depths	result	in	curved	chain-like	structures,	 i.e.,	the	tangent	to	the	chain	contour	and	the	

direction	 of	 a	 participant	 dipole	 do	 not	 coincide,	 as	 shown	 in	 Fig.	 6(a)	 and	 Fig.	 6(d).	We	

show	 the	 same	 structure	 in	 Fig.	 6(f)	 in	 the	 cross-sectional	 image	 in	 the	 vertical	 xz-plane	

obtained	 using	 3PEF-PM,	 which	 reveals	 the	 distortions	 of	 the	 cholesteric	 helicoidal	

structure	 locally	 caused	 by	 the	 particles.	 Figure	 6(g)	 shows	 the	 inter-particle	 center-to-

center	 distance	 as	 a	 function	 of	 time,	 as	 the	 particles	 separated	 apart	 by	 laser	 tweezers	

attract	 towards	each	other.	Figure	6(h)	shows	 the	pair	 interaction	energy	(in	 the	units	of	



kBT,	where	T	is	the	absolute	temperature	and	kB	is	the	Boltzmann	constant)	of	this	pair	as	a	

function	 of	 their	 separation,	which	we	derived	 from	 the	 experimental	 data	 shown	 in	 Fig.	

6(g)	by	assuming	 that	 the	 inertia	effects	 can	be	neglected	and	 that	 the	elastic	 interaction	

forces	are	balanced	by	the	viscous	drag	forces	[30].	We	see	that	the	magnitude	of	the	elastic	

binding	energy	of	the	final	two-particle	colloidal	configuration	is	about	~800kBT,	and	hence	

it	 is	very	stable	with	respect	 to	 the	effects	of	 thermal	 fluctuations.	This	binding	energy	 is	

somewhat	smaller	than	that	previously	measured	for	nematic	dipolar	colloidal	particles	of	

similar	size	[1,21].	This	observation	could	be	related	to	the	fact	that	it	may	be	more	difficult	

for	 the	 cholesteric	 LC	 colloids	 to	 share	 elastically	 distorted	 regions	 as	 compared	 to	 their	

nematic	counterpart,	thus	yielding	a	lower	elastic	binding	energy.	The	large	final	separation	

distances	 between	 particles	 within	 the	 self-assembled	 configurations	 can	 be	 understood	

from	examining	the	computer-simulated	structures	shown	in	Figs.	3-5.	Indeed,	in	addition	

to	 the	singular	point	defects,	our	particles	are	separated	by	a	coronas	of	perturbations	of	

the	 helicoidal	 structure	 with	 nonsingular	 defect	 lines	 forming	 closed	 loops	 (Figs.	 3-5).	

Bringing	 the	 particles	 closer	 would	 require	 modifying	 these	 solitonic	 configurations,	

possibly	 through	 generating	 additional	 singular	 defects,	 which	 is	 associated	 with	 strong	

energetic	 barriers	 that	 explain	 strong	 repulsive	 forces	 emerging	 when	 the	 particles	 are	

pushed	towards	each	other	to	center-to-center	distances	smaller	than	4R.		

In	 Fig.	 6(b,c),	 we	 demonstrate	 the	 other	 two	 possible	 end-configurations	 bound	

elastically	to	each	other,	where	the	microspheres	are	additionally	displaced	with	respect	to	

each	other	along	the	helical	axis	by	≈ 𝑝/4	in	Fig.	6(b)	and	≈ 𝑝/2	in	Fig.	6(c).	In	both	cases,	

the	 strengths	 of	 elasticity-mediated	 binding	 are	 similar	 to	what	we	 observed	 (Fig.	 6)	 for	

interactions	within	the	plane	orthogonal	to	the	far-field	helical	axis	and	within	600-800kBT.	

By	controlling	the	vertical	positions	of	the	particles	(as	the	initial	conditions)	we	can	make	



use	 of	 these	 rich	 elastic	 interactions	 to	 optically	 guide	 various	 colloidal	 assemblies,	 as	

demonstrated	using	two	different	examples	shown	in	Fig.	6(d,e).	Figure	6(d)	shows	an	in-

plane	 colloidal	 structure	 confined	 to	 the	plane	orthogonal	 to	 the	 far-field	helical	 axis	 and	

akin	 to	 a	 curved	 chain	 formed	by	particles	 localized	within	 the	 same	 cholesteric	pseudo-

layer.	 Figure	 6(e)	 shows	 particles	 additionally	 separated	 along	 the	 helical	 axis	 while	

elastically	 bound	 to	 each	 other,	 forming	 a	 stable	 spiraling	 colloidal	 self-assembly.	 In	

concentrated	 dispersions	 of	 colloidal	 microspheres	 in	 cholesteric	 LCs,	 a	 large	 variety	 of	

combinations	of	these	different	self-assembly	scenarios	can	be	expected	and,	in	fact,	many	

of	 them	 have	 been	 already	 observed	 in	 the	 past	 experimental	 study	 of	 cholesteric	 LC	

colloidal	emulsions	[72].	

In	 addition	 to	 the	 elasticity-mediated	 forms	 of	 self-assembly	 discussed	 above,	 we	

find	that	the	colloidal	particles	can	also	interact	with	each	other	such	that	the	resultant	end-

configurations	of	particles	can	be	entangled	by	various	loops	of	defect	lines	and	with	shared	

defect	configurations	that	differ	 from	that	of	the	superposition	of	defect	structures	due	to	

individual	 particles.	 This	 is	 an	 interesting	 class	 of	 interactions	 that	 offers	 multiple	

arrangements	 for	 optically	 guided	 3D	 assembly	 of	 particles	 into	 a	 large	 zoo	 of	 desired	

colloidal	 configurations.	 Some	of	 these	configurations	 share	 their	 structural	 features	with	

those	 observed	 earlier	 [29-41,	 73],	 albeit	 loops	 of	 nonsingular	 defect	 lines	 are	 always	

present.	 The	 point-like	 defects	 near	 the	 particles	 occasionally	 open	 up	 to	 form	 singular	

disclination	loops	when	these	particles	are	optically	pushed	co-localize	close	to	each	other,	

which	then	merge	into	single	singular	defect	loops	entangling	the	colloidal	pairs.	In	Fig.	7(a)	

we	see	two	particles	bound	by	a	loop	of	disclination	while	the	particle	centers	are	displaced	

with	respect	to	each	other	along	the	helical	axis.	This	configuration	is	created	by	adjusting	

vertical	positions	of	the	particles	and	placing	them	with	tweezers	so	that	they	attractively	



interact	to	spontaneously	form	this	defect	configuration	[Fig.	7	(d)].	Our	video	microscopy	

analysis	[Fig.	7	(d)	and	(e)]	reveals	that	the	two-particle	colloidal	assembly	 is	much	more	

strongly	bound	as	compared	to	its	counterparts	shown	in	Fig.	6,	yielding	the	elasticity-	and	

defect-enabled	colloidal	binding	energy	around	6,500kBT.	This	binding	energy	is	consistent	

with	the	fact	that	the	assemblies	are	highly	robust	with	respect	to	thermal	fluctuations	and	

always	long-term	stable.	Once	this	out-of-plane,	two-particle	assembly	is	formed,	it	can	be	

optically	 manipulated	 and	 transformed	 into	 one	 of	 the	 other	 defect-entangled	 particle	

assemblies,	 such	 as	 the	 ones	 shown	 in	 Fig.	 7(f,g,h)	 and	 Fig.	 7(i,j,k),	 where	 these	 new	

configurations	are	formed	as	a	result	of	entanglement	by	different	types	of	singular	defect	

loops	occurring	in	addition	to	nonsingular	solitonic	director	structures.		

	
Fig.	7.	Defect-bound	particle	assemblies	studied	using	10	μm	diameter	particles	in	a	12	μm	
pitch	cholestetic	LC.	We	optically	form	and	switch	between	several	types	of	in-plane	or	out-
of-plane	assemblies.	(a,b,c)	transmission	micrograph	(a),	3PEF-PM	in-plane	section	(c),	and	
3PEF-PM	vertical	cross-section	(b),	respectively,	for	one	type	of	in-plane	colloidal	assembly.		
(d)	 Inter-particle	 separation	 vs.	 time	 during	 formation	 of	 assembly	 shown	 in	 (f).	 (e)	
Interaction	energy	vs.	distance	between	particles	as	it	forms	the	colloidal	assembly	shown	
in	 (f).	 (f,g,h)	 similar	 set	 of	 images	 as	 in	 (a-c)	but	 for	out-of-plane	defect-bound	assembly.	
(i,j,k)	Similar	set	of	 images	as	 in	 (a-c)	but	 for	a	different	 in-plane	colloidal	self-assembled	
structure.		
	 	



We	have	also	studied	configurations	of	colloidal	structures	using	particles	with	d=10	

μm	dispersed	in	a	longer-pitch	cholesteric	LC	(p≈25	μm),	which	are	presented	in	Fig.	8.	In	

this	case,	though,	we	observe	a	yet	different	kind	of	elasticity-mediated	assembly,	which	is	

reminiscent	to	that	leading	to	elastic	dipolar	chains	in	nematic	LCs	(Fig.	8).	When	particles	

are	placed	at	 the	same	depth	 level	of	 the	LC	cell,	so	that	their	center-to-center	separation	

vector	 is	 orthogonal	 to	  χ ,	 the	 anti-parallel	 elastic	 colloidal	 dipoles	 form	 side-by-side	

assemblies	shown	in	Fig.	8(a-d)	while	the	parallel	elastic	dipoles	form	the	end-to-end	chain-

like	assembles	following	the	local	orientation	of	the	director	within	the	helicoidal	structure	

(Fig.	8e-h).	The	center-to	center	inter-particle	distances	in	this	case	are	comparable	to	those	

observed	for	nematic	colloidal	dipoles	[1]	and	much	smaller	relative	to	particle	dimensions	

as	compared	 to	what	we	demonstrated	 in	Fig.	6.	This	behavior	 is	consistent	with	 the	 fact	

that	the	particle	diameter	is	d<p/2,	making	the	colloidal	behavior	reminiscent	to	that	of	the	

nematic	 colloids	 [1].	 Interestingly,	 unlike	 the	 colloidal	 particles	 in	 a	 shorter-pitch	

cholesteric	LCs	that	we	studied	above	(Figs.	6	and	7),	these	particles	always	attract	to	find	

the	 equilibrium	 structures	 with	 the	 final	 orientation	 of	 the	 center-to	 center	 separation	

vector	perpendicular	to	χ 	and	always	in	one	of	the	two	types	of	assemblies	shown	in	Fig.	8,	

even	when	released	 from	laser	 traps	at	different	depths	of	 the	cell	and	 initially	separated	

along	the	cholesteric	helical	axis.	

	



	
Fig.	 8.	 Defect-bound	 particle	 assemblies	 of	 10	 μm	 diameter	 particles	 in	 a	 p=25μm	
cholesteric	LC.	(a-d)	An	in-plane	colloidal	assembly	is	shown	with	the	help	of	transmission	
brightfield	micrograph	(a),	polarizing	optical	micrograph	(b),	3PEF-PM	in-plane	image	(c),	
and	3PEF-PM	vertical	 cross-section	 (d).	 (e-h)	Similar	 set	of	 images	 for	 a	different	 type	of	
colloidal	particle	assembly	 formed	by	parallel	elastic	dipoles.	This	configuration	 is	similar	
to	the	linear	chains	formed	by	elastic	dipolar	colloidal	particles	in	nematic	LCs.	
	

The	multiple	kinds	of	structures	that	we	demonstrated	above	(both	within	the	same	

cholesteric	 LC	 pseudo-layer	 and	 across	 the	 helicoidal	 structure)	 can	 be	 used	 as	 building	

blocks	 to	 form	much	 larger	 and	more	 complex	 pre-designed	 3D	 colloidal	 structures.	We	

demonstrate	 this	 designed	 colloidal	 assembly	 in	 Fig.	 9,	 illustrating	 how	 colloidal	

organization	can	be	mediated	by	LC	elasticity	and	guided	by	 laser	 tweezers.	Figure	9(a,b)	

shows	 three-	 and	 four-particle	 assemblies	 configured	 in	 3D	 into	 nonlinear	 structures,	

utilizing	 different	 kinds	 of	 defect-entangled	 and	 elastically	 bound	 assemblies	 of	 the	

constituent	particles.	In	Fig.	9(c),	we	demonstrate	a	sequence	of	images	illustrating	step-by-

step	formation	of	a	large	colloidal	structure	spanning	both	along	the	helical	axis	and	in	the	

lateral	plane	orthogonal	to	it.	This	structure	is	formed	using	laser	tweezers	by	bringing	in	

and	“beading”	new	particles	to	the	assembly,	one	particle	at	a	time,	with	the	several	stages	

of	 its	 formation	 illustrated	 in	Fig.	9(c).	Furthermore,	 these	structures	can	be	reconfigured	



by	locally	melting	the	LC	and	adjusting	orientations	of	the	“bonds”	between	the	individual	

colloidal	inclusions.	

	
	

Fig.	9.	3D	defect-bound	multi-particle	assemblies	formed	using	d=4	μm	particles	dispersed	
in	a	p=5	μm	cholesteric	LC.	(a)	Optical	micrographs	of	colloidal	assemblies	formed	by	three	
(a),	 and	 four	 particles	 (b).	 (c)	 A	 large	 3D	 assembly	 formed	 by	 eight	 particles,	 created	 by	
bringing	in	one	particle	at	a	time,	as	shown	with	the	help	of	selected	frames	at	the	end	of	
the	 intermediate	 steps.	 The	 metastability	 of	 many	 different	 states	 within	 the	 assembly	
allows	 for	 reconfiguring	 it	with	 the	 laser	 tweezers,	 so	 that	 the	shape	of	 the	assembly	can	
change	continuously	by	shifting	the	particles	up	and	down	along	the	helix.	
	

6.	Conclusions	

To	conclude,	we	have	demonstrated	that	the	cholesteric	LC	hosts	provide	a	richness	

of	 particle-induced	 topological	 defect	 structures	 (Figs.	 1-5)	 and	 ensuing	 interactions	

between	the	colloidal	inclusions	(Figs.	6-9).	This	can	be	exploited	to	form	a	complex	variety	

of	 two-	 and	 three-dimensional	 assemblies	 of	 colloidal	 particles	 with	 the	 help	 of	 optical	

guiding	by	laser	tweezers	(Fig.	9).	The	elastic	potential	landscape	for	these	interactions	can	

be	tuned	by	varying	the	ratio	of	particle	size	to	the	pitch	of	the	cholesteric	LC	(Figs.	6-8)	and	

potentially	 can	 be	 further	 enriched	 by	 using	 particles	with	 non-spherical	 shapes	 [7]	 and	

different	 types	 of	 surface	 anchoring	 conditions	 [21].	 Our	 experimental	 and	 numerical	



studies	 demonstrate	 a	 large	 variety	 of	 defect	 structures	 around	 spherical	 inclusions	 in	

cholesteric	 LCs	 and	 interactions	 between	 them,	 mediated	 by	 sharing	 defects	 and	 elastic	

deformations	surrounding	the	particles.	The	type	of	desired	assembly	can	be	selected	and	

guided	 optically	 with	 the	 help	 of	 laser	 tweezers.	 Since	 nanoparticles	 are	 known	 to	 get	

elastically	 trapped	 inside	 the	 hedgehog	 point	 defect	 and	 other	 singularities	 [12,18]	 in	 a	

nematic	LC,	the	chiral	dipolar	particles	and	their	assemblies	can	act	as	templates	for	3D	self-

assembly	 of	 nanoparticles	 inside	 the	 matrix	 created	 by	 the	 micrometer-sized	 colloidal	

particles	and	the	cholesteric	LC	host.	
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