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The permeation and trapping of soft colloidal particles in the confined space of porous media is of
critical importance in cell migration studies, design of drug delivery vehicles and colloid separation
devices. Our current understanding of these processes is however limited by the lack of quantitative
models that can relate how the elasticity, size and adhesion properties of the vesicle/pore complex
affects colloid transport. We address this shortcoming by introducing a semi-analytical model that
predicts the equilibrium shapes of a soft vesicle driven by pressure in a narrow pore. Using this
approach, the problem is recast in terms of pressure and energy diagrams that characterize the vesicle
stability and permeation pressures in different conditions. We particularly show that the critical
permeation pressure for a vesicle arises from a compromise between the critical entry pressure and
exit pressure, both of which are sensitive to geometrical features, mechanics and adhesion. We
further find that these results can be leveraged to rationally design micro-fluidic devices and diodes
that can help characterize, select and separate colloids based on physical properties.
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I. INTRODUCTION

The separation and trapping of micron and nano-sized
colloidal particles by porous media has been and still is
the object of a number of studies with important out-
comes in a variety of disciplines. In chemical engineering
and the food industry [1], efficient filtration processes
heavily depend on both the design of membranes tar-
geting colloidal particles [2], and their treatment on the
formation of cakes [3, 4]. In medicine, effective strate-
gies to capture circulating tumor cells (CTC’s) in the
blood stream could enable the detection of certain forms
of cancer at an early stage and improve treatment with
patient specific therapies [5, 6]. To address those needs,
researchers and engineers have developed a large spec-
trum of microfluidics [7], membranes [8] and experimen-
tal techniques [9] aimed to capture and separate colloidal
particles, most of them using particle size as the segre-
gation criterion.

Separation based on the physical properties of par-
ticles, such as deformability and adhesion/wetting are
however less common. In spite of our limited under-
standing of these processes, recent techniques have been
devised based on the apparent correlation between col-
loid properties (surface tension, particle elasticity) and
their ability to permeate through narrow pores. These
techniques could indeed be critical in the separation and
trapping of particles with similar sizes but different prop-
erties, which include for instance, CTC’s and leucocytes
[10]. In this context, efforts have focused on microfluidic
devices that possess gradual variations in pore size [11]
such that particles of distinct mechanical properties can
be separated [12] or trapped [13] depending on their posi-
tion in the device. Recently, studies by Sarioglu [14] and
McFaul [15] have further shown that pore shape can be
used as a design criterion for particle separation. These
studied indeed showed that anisotropic pores, or ”mi-
crofluidic diodes” [16] could act as valves allowing de-

formable particles to travel in only one direction. One
key lesson from these studies is that deformability, in ad-
dition to size, should be considered in the design of filtra-
tion membranes and micro-fluidic devices. But particle
separation is not the sole application of these new tech-
nologies; the critical pressure and deformation of a parti-
cle in a nano-pore (or channel) may also be used to learn
about its mechanical response. For instance, as early as
1989, Evans et al. [17] proposed to use a micropipette
aspiration test to determine the surface tension, mem-
brane elasticity, and/or viscosity of soft colloids. This
technique is now considered as a standard [18] for quan-
tifying the mechanics of a variety of particles including
cells [19] and vesicles [20]. Variations of this strategies
have also been proposed, including for instance, the use
of conical microchannels to determine the elastic proper-
ties of bacteria based on their equilibrium position under
a pressure gradient [21].

A number of theoretical studies have been proposed to
understand and guide experimental efforts, but to date,
have exclusively targeted the critical pressure that is nec-
essary for a particle to enter a pore. These include the
derivation of analytical expressions relating surface ten-
sion and elasticity to the entry of a vesicle in a cylindrical
channels mimicking a micropipette [18] or anopore mem-
branes [22]. Extension to non-circular openings were also
proposed analytically by Bruus et al. [23] for more com-
plex pore shapes. However, when more complex pore
or vesicle shapes are considered, solutions must be de-
rived numerically as discussed by Leong et al. [24] in
the context of vesicle properties and Zhang et al. [25]
in the context of pore shapes. Besides deformability, the
physical interactions between a pore and a particle, and
particularly their mutual adhesion, are also known to be
an important factor to the permeation problem [26] but
surprisingly, studies on this topic are scarce in the liter-
ature. Indeed, while the physics of adhesion between a
vesicle and a substrate is widely known, it was not until
the work of Fournier et al. [27] that it was applied to
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the permeation of a vesicle through axisymmetric pores
of varying cross-sections (both cylindrical and conical).
Using an enhanced version of the Laplace law account-
ing for both the bending stiffness and the adhesion of
a lipid membrane, the authors derived relationships be-
tween the pressure applied along the channel and the
shape acquired by a vesicle. The relationship between
entry pressure, permeation pressure and the deformabil-
ity, size and adhesion energy of a colloidal particle in an
arbitrary pore is however still poorly understood.

In this work, we propose to fill this gap by adopting a
theoretical/numerical approach that considers the inter-
actions of a vesicle characterized by its surface tension,
size and adhesion energy with an axisymmetric pore of
arbitrary cross-section. We particularly aim to under-
stand the interplay between pore geometry and particle
adhesion on the physics of vesicle permeation, which in-
cludes the phenomena of entry, exit and trapping within
pores. Results are presented in terms of pressure and en-
ergy diagrams that enable the visualization of the various
mechanical instabilities undergone by a vesicle traveling
through a pore and how they are affected by pore aper-
ture, curvature, and asymmetry. We further show that
the exit pressure, in addition to entry pressure, is a key
feature for the permeation of moderately adhesive parti-
cles.

II. EQUILIBRIUM MECHANICS OF A
VESICLE IN A PORE

We concentrate here on a class of deformable particles,
or vesicles, whose structure can be represented by an in-
ner fluid surrounded by a thin viscous membrane with
surface tension γ. Such a system constitutes a generic
model for a variety of living and non-living particles in-
cluding cells, liposomes, droplets or microbubbles. Note
that although this approach is exact for immiscible fluid
droplets, it is usually not the case for particles coated by
a thin shell (lipids for instance). In this case, areal exten-
sion can arise from two different phenomena: (a) a stretch
of thermal fluctuations associated with a rise in surface
tension [28] as seen in liposomes [29]. (b) The unfold-
ing of excess area stored in the membrane in the form of
wrinkles [17]. This has been observed in the deformation
of neutrophils wherein the change in tension was negligi-
ble [30]. We further note that in the case where a vesicle
is not spherical, the approach should incorporate the ef-
fect of the lipid shell bending rigidity κ [31, 32]. Thus, in
general Helfrich et al. [33] have shown that a vesicle at
equilibrium possesses a pressure drop across its interface
∆PI which depends on the membrane properties as:

∆PI = 2γH − 2κ
(
2H(H2 −K)−∆sH

)
(1)

where H and K are the mean and gaussian curvatures on
the membrane respectively, and ∆s is the surface Lapla-
cian operator. To fully solve the immersed membrane
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FIG. 1. Scheme of a vesicle in equilibrium due to a pressure
difference P1 − P2 in an axisymmetric pore with minimum
aperture radius s. The vesicle is divided in three parts by the
two contact lines x1 = [r1, z1] and x2 = [r2, z2]: two spherical
caps with radii R1 and R2 and the contact region in between.
The spherical caps meet the pore at the contact line i with
an angle of θ, which is defined by the tangent at the pore tp,
and the vesicle tv. The volume of each cap is defined by their
radii inner angle αi between the horizontal and the radius at
the detachment point. These magnitudes are all related by
the angle that the pore tangent makes with the vertical βi,
defined positive counterclockwise in the top cap and clockwise
in the bottom one.

problem usually requires a sophisticated numerical ap-
proach such as that proposed by Foucard et al. [34]. For
simplicity, the present approach considers the case of ap-
parently spherical vesicles that possess small surface fluc-
tuations that can stretch under force. In this case, as
pointed out by Fournier and Galatola [27], Eq. (1) degen-
erates to the classical Laplace law ∆PI = 2γH when the
minimum radius of curvature verifies R�

√
κ/γ. Thus,

for a majority of apparently spherical vesicles whose sur-
face tension is on the order of 10−3N/m [35] and bending
resistance κ ≈ 10−19Nm [36] Laplace law holds for radii
larger than a critical value Rc = 0.1µm. For microbub-
bles however, the surface tension and bending modulus
are on the order of 10−2N/m [37] and 10−19Nm [38] re-
spectively, and the Laplace approximation is restricted to
smaller critical radii, near Rc = 0.01µm. The case of cells
is however more complex since the presence of the cortex
gives them a viscoelastic behavior [39] both in stretch
and bending. Hence, this approach is only valid in cases
where the deformation is purely due to the membrane
unfolding as observed in the micropipette aspiration of
neutrophils [40].

Let us consider an incompressible vesicle of radius
R > Rc trapped in an axisymmetric pore whose smallest
aperture is s < R (Fig. 1). At equilibrium, the deforma-
tion of this vesicle depends on the pressure drop across
the pore ∆P = P2 − P1, the surface tension of the vesi-
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cle γ and its contact angle with the pore θ (π2 < θ < π
for partially wetting vesicles [41]). Contact angles be-
low π/2 would imply a preference for the vesicle to wet
the pore by splitting, and/or sticking to the side of the
pore surface [42]. This situation is fundamentally dif-
ferent from the objective of our study and is therefore
not considered. For small capillary numbers [18] and in
the absence of body forces, the morphology of the vesicle
can be divided into three sections: two free spherical caps
whose curvatures ρ1 and ρ2 are determined by Laplace
law ρi = (Pi−Pin)/2γ with Pin the internal vesicle pres-
sure, and a confined section (shaded in Fig. 1) whose
geometry is restricted by the pore shape. Mathemati-
cally, these regions are characterized by the coordinates
of two contact lines x1 = [r1, z1] and x2 = [r2, z2] and
the pore shape parametrization x = (r(z), z), where (r, z)
are cylindrical coordinates about a system whose origin
is at the center of the pore. The global equilibrium of
the vesicle can be easily derived by taking the difference
between ρ2 and ρ1 in order to obtain:

∆P = 2γ (ρ2 − ρ1) . (2)

Note that this expression is only valid for equilibrium
or quasistatic systems in which the inner vesicle pres-
sure is homogeneous and there is no fluid flow around
the pore. A dynamic approach would require to solve the
Navier-Stokes equations coupled with the membrane gov-
erning equations [43]. By simple geometrical relations,
one can show that the cap curvatures can be related to
the pore geometry by ρi = − cos(θ+ βi)/ri where ri and
βi = arctan(r′(zi)) are the radii and the signed tangent
angle (with r′ = dr/dz) of each contact lines (Fig. 1).
Using the Young-Dupre relation [41], the contact angle
can further be related to the adhesion energy Γ between
the vesicle and the pore by cos(θ) = −Γ/γ − 1, allowing
us to express the cap curvatures in terms of the surface
energy as:

ρi =
1

γri

[
γ cosβi + Γ

(
cosβi + sinβi

√
−1− 2

γ

Γ

)]
(3)

This relation, together with Eq. 2 can be used to com-
pute the pressure drop across a vesicle in a pore, as long
as one knows the position of the contact lines x1 and
x2. It can be useful, for instance, to characterize the
tendency of a vesicle to enter a pore by measuring its
sudden pressure drop ∆P as it first makes contact with
the pore surface. At this point, the two contact lines are
confounded (i.e. r1 = r2 and β1 = −β2) and we are left
with the term ∆P = 4 sin(β1) Γ

r1

√
−1− 2 γΓ which mea-

sures the suction pressure that drives a vesicle into the
pore. A simple observation of this equation show that
this pressure increases with adhesion energy Γ and pore
orientation angle β1 but decreases with the contact line
radius r1.

It can also be seen that, taking β1 = π
2 , β2 = 0

and r2 = s, (3) directly yields the formula proposed by
Fournier and Galatola [27] for the pressure ∆P describ-
ing the entry of a vesicle in a cylindrical micropipette of

radius s:

∆P = 2γ

(
1

s
− 1

R1
+

Γ

γs

)
. (4)

Again, we clearly see here how the adhesion energy trig-
gers a suction pressure via the term Γ/γs, that was ne-
glected in the original work of Evans et al. [17]. While
Eq. 3 is useful for a variety of theoretical investiga-
tions, it is not sufficient to compute the positions of the
contact lines x1 and x2. To close our formulation, we
need to enforce the volume conservation of the vesicle
during the permeation process. Considering a spherical
vesicle of radius R, this implies 4πR3/3 =

∑
V ci + V t

where V ci is the volume of the spherical caps (i = 1, 2)
and V t is the volume of the section of the vesicle con-
fined in the pore throat. The former can conveniently
be expressed in terms of angles αi made between the
radius of the vesicle at the point of contact and the
horizontal axis (Fig. 1) as V ci = πr(zi)

3h(αi)/3 with
h(αi) = (2 + 3 sin(αi)− sin3(αi))/ cos3 αi. Further notic-
ing that ρiri = cosαi, the complete system of equations
describing the equilibrium of an incompressible vesicle
confined in a pore is comprised of Eq. 2 and the volume
conservation equation in the form:

2γ

(
cosα2

r(z2)
− cosα1

r(z2)

)
= ∆P (5)

π

3

2∑
i=1

[
r(zi)

3h(αi)
]

+

∫
Vc

dV =
4

3
πR3

v (6)

with αi = θ + arctan(r′(zi))− π. This nonlinear system
admits the coordinates zi of the two contact lines as so-
lution (when this solution exists), given a pressure drop
∆P across the pore.

For convenience and ease of analysis, it is prefer-
able to non-dimensionalize the above equations. For
this, note that the above system has the general form
g = ∆P − f (γ, s, θ, R,x) = 0 where the parameters
in f describe the physical properties of the vesicle-pore
complex. Scaling forces and lengths by γ and s (the
pore aperture), respectively, the Buckingham π theo-
rem states that our problem can be cast in the form
∆P ∗ = ∆P ·s

2γ = f̃
(
θ, Rs ,

x
s

)
. In other words, we define

a normalized vesicle radius R∗ = R/s and pore coordi-
nate z∗ = z/s such that:

∆P =
2γ

s
f (θ,R∗, z∗) . (7)

Implicitly, this relation states that the permeation pres-
sure depends on vesicle deformability, which we measure
here as the pressure difference across its surface. Indeed,
a larger surface tension will increase this pressure differ-
ence, making vesicles appear less deformable and exhibit
more resistance to pore permeation. On the contrary, a
larger pore size reduces the permeation pressure by in-
creasing the length scale of the system. A larger curva-
ture indeed yield a lower pressure within the vesicle, and
hence a lower resistance to deformation.
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FIG. 2. 3D representation of the axisymmetric pore. On the
top three figures, the value of m is kept constant at 0 while
we vary the sharpness parameter n. On the bottom figure n
is constant and equal to 5 while m is varied.

III. ANALYSIS OF VESICLE INSTABILITY
AND CRITICAL PERMEATION PRESSURE

Numerous experimental observations show that vesicle
deformation and permeation across a pore are largely de-
pendent on both pore geometry [44] and vesicle adhesion
[4]. We aim here to closely investigate these relationships
by concentrating on a restricted, yet ubiquitous, set of
pore morphologies found in microfluidic devices [45], mi-
cropipette aspiration studies [46], filtration membranes
[47] and particle trapping devices [15]. The generic ax-
isymmetric pore is described by a tapered hyperelliptical
profile with semi-major and semi-minor axes of length a
and b, a shape factor n that controls the pore curvature
and a slope factor m that controls its asymmetry. The
parametrization is written:

r(z) = a
(

1 +
m

b
z
)((

1−
∣∣∣z
b

∣∣∣)n) 1
n

− rL, (8)

where 2rL is the exterior diameter of the pore (Fig. 1).
As shown in Fig. 2, the shape of the pore ranges from a
cylindrical channel of height 2b for n→∞, to a toroidal
pore with an ellipsoidal section of axis a, b when n =
2. The slope factor further introduces an asymmetry to
the pore such that m = 0 exhibits a symmetrical top-
bottom shape, while more pronounced conical shapes are
obtained as the magnitude of m increases. (8) can be
used into the system of (5)-(6) to obtain an explicit form
of the governing equations and a numerical solution for
a variety of pore-vesicle system (details are provided in
appendix A).

Equilibrium diagrams. The equilibrium states of a
soft vesicle confined in a pore can be visualized by the
pressure diagram, showing the position of the center of
mass of the vesicle in terms of the pressure drop ∆P
across the pore. Fig. 3a-b shows such diagrams for a
normalized radius R∗ = 1.5, adhesion energy Γ = 0 and
toroidal and cylindrical pore geometries. It can be seen

that for symmetric pores (m = 0) and non-wetting vesi-
cles (solid lines), the diagram possesses three distinct re-
gions (ascending-descending-ascending), delimited in or-
der by the maximum and the minimum values of the
pressure drop ∆P . The first region starts when the vesi-
cle is tangent to the pore in its underformed configuration
(pointA1), which corresponds to a zero pressure drop. As
the pressure increases, the vesicle enter the pore following
the branch A1−C1 until it reaches the maximum pressure
at C1. In a pressure controlled system, this point yields
to an instability where the vesicle, under an infinitesimal
pressure increment, would dramatically leave the pore
space by rapidly transforming its stored elastic energy
into kinetic energy (Forward motion in Fig. 3a). This
behavior is typically observed in the micropipette aspi-
ration of neutrophils and the values of the critical pres-
sure have been well estimated using a similar approach
[40, 48]. In a displacement driven system, however, the
motion of the vesicle towards the pore center A3 (region
2) would require a decrease in pressure until it reaches
point C2, and eventually A2 as it exists the pore. For
backward motion (the vesicle starts from the bootom of
the pore), the first contact occurs in A2 and the vesicle
encounters its instability at C2, both of which are anal-
ogous to A1 and C1. For a cylindrical pore, the pressure
diagram displays similar trends with two notable differ-
ences: (1) the branches (A1 − C1) and (A2 − C2) are
steeper owing to the fact that a sharper pore opening re-
quires a larger vesicle deformation, and (2) the flat region
around A3 corresponds to a situation where the vesicle is
free to slide along a cylindrical channel without pressure
variations.

The nature of the pressure curve is reminiscent of the
equilibrium diagram of “ball on a hill” that first requires
energy to reach the top, but that restitutes this potential
energy as it loses elevation. Following this analogy, we
take an energetic approach wherein the stored mechanical
energy in the vesicle is expressed as the difference ∆E
in surface energy between the deformed and undeformed
vesicle configurations. For an axisymmetric vesicle, this
is expressed by:

∆E = γ

(∑
Si − S0 − 2π

∫ z1

z2

r(z) cos θ(z)dz

)
, (9)

where S0 = 4πR2 is the initial surface area of the vesi-
cle and Si = 2πr(zi)

2(1 − sinαi)/ cos(αi)
2 are the sur-

face areas of top and bottom spherical caps. We observe
here that for non-wetting vesicles (θ = π), this energy is
proportional to an increase in the vesicle’s surface area
due to deformation. The normalized energy landscapes
(∆E∗ = ∆E/γS0) shown in Fig. 3c-d clearly show that
as the vesicle moves forward and deforms, energy must
be provided until it reaches the center point z = 0, while
energy is restituted afterwards. We also note that the
branch A1 − C1 is stable (concave region), the branch
(C1 − A3) is unstable (convex region) and the inflection
point C1 denotes the onset of instability. We finally ob-
serve that point A3 corresponds to a metastable equi-
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FIG. 3. Equilibrium and energy diagrams for two vesicles of radius R∗ = 1.5 and adhesion energies Γ = 0 (solid lines) and
Γ = −0.19 (dashed lines) in a toroidal (n = 2) and a cylindrical pore (n = 50) with m = 0 and a = b = 2s. (a) and (b)
show the variation of the equilibrium pressure with the relative position of the center of mass zCM/b for both vesicles in each
respective pore. Ai mark the locations of the points at 0 pressure, Ci the maximum entry pressure and Bi, Di the local and
absolute maximum suction pressure. The section of the most relevant positions is show in the top insets. The red lines show
the path followed by a pressure driven vesicle in both directions. Graphics (c) and (d) show the variation of the energy with
the relative position of the center of mass zCM/b and the corresponding position of each point.

librium with maximum mechanical energy (largest vesi-
cle deformation); any small deviation in pressure would
therefore push the vesicle towards A1 or A2. It can also
be seen that for a cylindrical pore (n = 50) the energy
is constant around A3 since no additional force has to
be provided to deform the vesicle in the cylindrical sec-
tion of the pore. Additionally, these energy diagrams
provide important information regarding the direction of
motion of the vesicle. In the absence of an external pres-
sure, a vesicle will move towards the closest minimum
energy point until it reaches an equilibrium position. The
dynamics of motion involves complex processes such as
internal fluid flow [18], or/and the appearance of a lubri-
cation layer [49] between the vesicle and the pore, whose
study is beyond the scope of this paper.

The role of adhesion. Adhesive pore-vesicle com-
plexes display very different pressure and energy land-
scapes compared to their non-wetting counterparts. This
effect, shown in Fig.3 with dashed-lines for an adhesion

energy Γ/γ = −0.19, is two-fold: (a) The pore exerts a
suction pressure ∆Psuct < 0 as the vesicle first touches
the pore (point D′1) and (b) the system displays sev-
eral equilibrium positions whose number and stability
strongly depend on the pore shape. In particular, for
both toroidal and cylindrical geometries, we find that
when a vesicle becomes in close proximity the entry point,
it will naturally enters the throat to reach the equilibrium
position A′1 (or A′2 for backward entry). If a positive pres-
sure is applied, the vesicle follows a stable branch until
it reaches the local pressure maximum at C ′1 similar to a
non-wetting vesicle studied above. By contrast, a pres-
sure increment at this point would not push the vesicle
out of the pore but rather move it to the next equilibrium
branch, C ′2 −A′2 for the toroid or A′3 −B′2 for the cylin-
der. A much larger pressure ∆Psuct needs to be applied
to completely remove the vesicle from the pore at D′2. It
can therefore be concluded that for a partially wetting
vesicle in a toroidal pore, the critical permeation pres-
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sure is the maximum of ∆P (C ′1) and ∆P (D′2). Interest-
ingly, when the pore changes from toroidal to cylindrical,
point A′3 changes from an unstable to a stable position.
In other words, during its permeation, the vesicle may
”jump” from one stable position to another (A′1- A′3 -
A′2) until it is allowed to leave the pore when the maxi-
mum pressure at D2 is applied. The permeation pressure
is now determined by the competition between ∆P (C ′1),
∆P (D′1) and ∆P (B′2).

The critical permeation pressure (CPP). A number of
experimental and theoretical studies [18, 19, 22, 25, 50]
have focused on evaluating the maximum pressure drop
(CPP) for a vesicle to go through (i.e. enter and exit) a
pore. The distinction between pore entry pressure (EP)
and CPP is however not explicit in these studies, and the
effects of pore throat geometry (rather than opening) and
adhesion are often neglected. Here, we aim to show that
these effects are in fact critical to the physics of vesicle
permeation and/or trapping and that it is possible to
tune the pore geometry and chemistry to achieve desired
behaviors. We have seen in Fig. 3a-b that two quantities
become particularly important when studying the CPP:
the maximum entry pressure (EP) at C1 (or C2 for back-
ward motion), and the maximum exit pressure (XP) at
D2 (or B2) that typically increases with adhesion energy.
Generally, the CPP can therefore be defined as the max-
imum between the EP and the XP; Fig. 4a illustrates
this relation for a cylindrical pore (n = 50), where the
maximum of the equilibrium diagram (CPP) shifts from
the EP to XP as the contact angle is decreased from π
to π/2. Fig. 4b further shows that the relationship be-

tween CPP and adhesion is not trivial and it is dictated
by the pore-vesicle interactions either during the entry
or the exit of the pore. Four main regimes are observed,
each of them associated to one of the four types of equi-
librium diagrams depicted in Fig. 4a: for small adhesion
energies (contact angle near θ = π), the critical pressure
is dictated by the EP (Fig. 4 inset 1) which, for a per-
fectly cylindrical channel, can be expressed in terms of
the contact angle as [22]:

∆P ∗R1 = cos θ

[(
2− 3 cos θ + cos3 θ

sin θ + sin3 θ − 4R∗3 cos3 θ − 2

) 1
3

− 1

]
,

(10)
and which occurs at C1, highlighted with a square in
Fig. 4. As the adhesion energy increases, the equilib-
rium diagrams shift to the point where the pressure at
C1 coincides with D2 in Fig. 4a, the mechanism of vesicle
permeation becomes capillary driven, i.e. CPP = XP
(red triangles in Fig. 4). The next three regimes are
therefore dominated by XP, rather than the entry pres-
sure. In the second regime, for low to intermediate ad-
hesion energies, the model shows that the vesicle exits
the pore via a peculiar mechanism in which both contact
lines merge, yielding no room for pore-vesicle contact.
This corresponds to the maximum of an equilibrium di-
agram such as the one with θ = 0.9π in Fig. 4a, where
the vesicle shape is described by two coexistent spherical
caps of different radii that are barely in contact with the
pore as shown in Fig.4, inset 2. In this regime, the pres-
sure coincides with the expression previously calculated
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for the case when x1 = x2:

∆P ∗R2 = −2
sin(β) sin θ

r∗(z)
, (11)

until the mechanism drastically switches to regime 3. In-
deed, for intermediate values of the adhesion energy, the
model shows that the loss of vesicle equilibrium occurs
through a flattening of its upper cap while remaining in
contact with the lower portion of the pore (Fig.4, inset 3).
As the top curvature vanishes, the force balance (Eq. 2)
on the vesicle can no longer be satisfied, forcing the par-
ticle out of the pore space. In this situation, the critical
pressure can be analytically approximated by considering
a single spherical cap whose contact line radius is larger
than the pore aperture:

∆P ∗R3 =
1

R∗
(
(1− cos θ)(sin2 θ + 1− cos θ)/4

) 1
3 , (12)

This expression (derived in appendix B) agrees reason-
ably well with our numerical solution at n = 50. Note
that despite the fact that the associated equilibrium di-
agram in Fig 4a has its maximum in a very similar po-
sition, the CPP evolution is quite different due to a dif-
ferent exit mechanism. Finally, for a contact angle ap-
proaching π/2, yet another exit mechanism is predicted
by the model. Here, the adhesive interaction is so strong
that the pressure required to exit its stable position at
A′3 (Fig. 4a, point 4), becomes larger than the suction
pressure at D′2. This means that the vesicle is forced out
of the pore without settling in its stable position at A′2.
In this case, the CPP can be analytically approximated
by (derivation in appendix B):

∆P ∗R4 = sin(θ) + cos (θ) . (13)

We note here that the small discrepancy between this
expression and numerical results observed (region 4 in
Fig. 4) is due to the fact that the above solution is based
on an opening curvature (n → ∞) while the numerical
solution is based on a finite value of the curvature (n).

Asymmetric pores. Asymmetric pores can be de-
signed to enable easy vesicle permeation in one direction
but block their entry in the other [51]. For instance, Mc-
Faul et al. [52], showed that the critical pressure of cells
in conical pores depends their direction, and its value is
well estimated by the present model. In Fig. 5a, we show
the typical vesicle deformation and the associated pres-
sure diagram for a conical pore whose slope parameter is
m = 0.4 (other relevant parameters are n = 50, R∗ = 1.5
and Γ/γ = −0.05). A few key observations can be made
related to the pore asymmetry. (a) the equilibrium di-
agram is no longer symmetric since the entry and exit
mechanisms are different depending on whether a vesicle
moves forwards or backwards into the pore. (b) Since
vesicle entry is almost exclusively driven by the geome-
try of the pore mouth but not its throat, the pressure
diagram is almost unaffected by the pore asymmetry be-
fore EP is reached. A similar EP is therefore observed
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FIG. 5. (a) Equilibrium diagram of a vesicle with radius
R∗ = 1.5 and contact angle θ = 0.9π inside a pore with
m = 0.4, a = b = 2s and n = 50. The relevant positions of the
vesicle have been labeled, being A1, A2 and A3 the positions
at zero pressure, C1, C2 the entry pressure and D1, D2 the
exit pressure. (b) Equilibrium diagrams for the cases where
m = 0,m = 0.2 and m = 0.4 for the same contact angle to
illustrate the effect of pore asymmetry on the curves’ evolu-
tion

for cylindrical and conical pores with the same entry ra-
dius (s) and curvature (or shape factor n) as shown in
Fig. 5b. (c) The exit pressure (XP) is strongly affected
by pore asymmetry. Indeed, for this system, the XP
(pressure at D2) is around 0.1 for a vesicle moving for-
ward, while it is on the order of 0.5 for a vesicle mov-
ing in the reverse direction. To understand the conse-
quences of these observations, consider a vesicle under-
going a forward-backward cycle into the pore (Fig. 5a).
On its way forward, the vesicle first reaches its equilib-
rium position at ∆P = 0 before it slowly moves into the
pore under increasing pore pressure. The entry instabil-
ity is reached at point C1, after which, any additional
increase in pressure forces the vesicle out of the pore,
since the XP < EP . In other words, the forward per-
meation pressure is CPP+ = EP ≈ 0.3 in this system.
On its way backwards, the vesicle first settles in its equi-
librium position at A2 before it is forced into the pore
under a negative pressure drop. After reaching the en-
trance instability at C2, the vesicle jumps into the next
equilibrium branch at B1. It will finally be forced out
of the pore if the pressure drop exceeds (in magnitude)
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the XP at D1. For backward motion, the critical perme-
ation pressure is therefore CPP− = XP ≈ 0.5 in this
system. Fig. 5b shows that the pressure diagram, and
particularly the region corresponding to the exit mech-
anism, is very sensitive to the slope of the conical pore.
This implies that the geometric design of the pore can be
harvested to tune the difference between the CPP for for-
ward and backward motion, a feature that, for instance,
is important for designing microfluidic diodes.

IV. VESICLE SEPARATION, TRAPPING AND
PROFILING

The design of pores that are capable of targeting spe-
cific particles for fractionation, separation and trapping is
key to a number of technological applications. We focus
here on three important problems in membrane science,
vesicle profiling and the design of microfluidic diodes for
complex fluids and colloids.

Vesicle separation. In membrane filtration or separa-
tion techniques [53], we aim to separate populations of
deformable particles using criteria such as size, deforma-
bility or adhesion properties. We ask here whether it
is possible to design pore geometries, characterized by
their aperture size s/R = 1/R∗ and curvature (or shape
parameter n) in order to achieve very distinct CPPs for
two vesicle populations. For this, we first investigate the
effect of curvature at a fixed relative vesicle size by vary-
ing the pore shape from a toroidal shape (n = 2) to
a cylindrical shape (n = 50) and determined the CPP
for a range of contact angles π/2 ≤ θ ≤ π as shown in
Fig. 7a. We find that smoother, more rounded pores
tend to (a) decrease the CPP for all ranges of adhesion
and (b) shift the transitions between different permeation
regimes to the left. This trend is particularly true for
toroidal pores (n = 2) where the mechanism associated
to (13) completely disappears. To understand the effect
of pore aperture, we performed a similar study by varying
R∗ at fixed pore curvature n = 2 (Fig. 7b). The model
shows that pore aperture and vesicle adhesion play two
competing roles during the permeation process. For low
adhesion, the process is dominated by the EP required
to deform the vesicle into the pore; this explains why
the CPP increases sharply with vesicle size in this re-
gion (right end side of Fig. 7b). By contrast, for larger
adhesion, the process becomes dominated by capillary
effects (i.e. XP). Interestingly, we find that this pres-
sure decreases with increasing vesicle size (or decreasing
aperture) and that this phenomenon yields an inversion
of the trends: small apertures yield a smaller CPP. This
observation can be understood by looking at the force
balance on the vesicle as shown in Fig 6. In the case of
high adhesion, the curvature of the inner cap is typically
small compared to that of the outer cap (see insets 2-4 in
Fig. 4). This implies that vertical forces pulling the vesi-
cle inwards mostly arise from the surface tension in the
outer cap. Since capillary forces are proportional to cur-

Pin-P1

T1

T2

Pin-P2

FIG. 6. Schematic of the forces acting on the vesicle. The re-
sultant from the tension on each cap Ti is directly proportional
to its curvature and tangent to the contact point. This surface
forces are balanced by the resultant of the pressure difference
across the interface Pin − Pi

vature, smaller vesicles (or increasing apertures) tend to
display a higher resistance to exit the pore. With these
competing mechanisms, we observe that for a toroidal
pore, the CPP curves for different vesicle sizes intersect
at a value close to θ ≈ 0.8π. In other words, two vesi-
cles with equal surface tension and adhesion but different
sizes can exhibit the same CPP.

Valuable insights can be gained from the above predic-
tions. For instance, two particles with the same surface
tension but different size and adhesion can be separated
by properly designing a pore that ensures a very distinct
CPP. This strategy can further be optimized by alter-
ing the wetting properties of pores with techniques such
as electrowetting [26]. In the context of deformability-
based particle separation [12, 13, 25], we note that our
predictions are for normalized pressure ∆P ∗ = ∆Ps/2γ,
implying that pore opening s and surface tension must
also be accounted for to distinguish between two parti-
cles with different mechanical properties. Dimensional
versions of the diagrams presented in Fig. 7 may there-
fore be preferable for design purposes.

Vesicle profiling. Quantitative observations of parti-
cle deformation in narrow pores [21] and micro-pipettes
[54] have traditionally been used as a method to indi-
rectly measure their physical properties. We here con-
centrate on micropipette aspiration for which standard
experiments and modeling efforts have focused on cylin-
drical pipettes with constant cross-sections. Using this
technique, a relation between vesicle shape and suction
pressure can be measured and used to estimate various
properties such as surface tension, elasticity or viscosity
[55]. A typical issue, however, is that not all vesicles’
equilibrium position entering a micropipette are stable
ones [19] and since the aspiration technique is pressure
driven, a vesicle only remains stable when the suction
pressure is below the EP. We have seen in Fig. 3b that for
a cylindrical pore with a sharp corner, the EP is reached
at very small vesicle deformation. In other words, this
classical design suffers from two major drawbacks: (a)
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FIG. 7. CPP variation with the contact angle (θ) in (a) three
different pore shapes (n = 2, 5, 50) with a = b = 2s, m = 0
and a vesicle of R∗ = 1.5, and (b) three different values of
the relative vesicle size (R∗ = 1.5, 2.0, 2.5) on a toroidal
pore (n = 2) with a = b = 2s and m = 0. For clarity, six
insets depict the shape of each pore with the respective vesicle
tangent to them. (c) Detail of the equilibrium diagram for
three different pores with a = 2s, b = 20s and n = 3, 5, 50,
for the same vesicle (R∗ = 1.5, Γ = 0) and its comparison by
the solution proposed by Fournier et al. for the equilibrium
pressure in a cylindrical pore. Three insets depict the position
of the vesicle at the moment when the EP is achieved. Note
that the volume of the axisymmetic vesicle remains constant
regardless of its configuration and despite the apparent change
in projected areas seen in the figures.

the deformation of the vesicle is highly sensitive to suc-
tion pressure, a feature that can affect measurements’ ac-
curacy and (b) the vesicle’s response can only be surveyed
within the range of small deformation, which strongly
restricts our ability to fully characterize its mechanical
response. A solution to these limitations is suggested
in Fig. 3(a) where we found that more rounded pore
tend to both postpone the EP and decrease the slope of
the pressure-displacement curve. Based on this idea, we
show in Fig. 7c the pressure diagram for a cylindrical

pipette whose mouth curvature is varied from n = 50
(very sharp) to n = 3 (very smooth). As expected, we
find that decreasing n postpones the onset of instabil-
ity, decreases the entry pressure and allows to probe the
vesicle for a larger range of deformation by making it less
sensitive to shape changes. In these regimes, however, we
note that the predictions of standard models, such as pro-
posed by Fournier et al. [27] are limited to the unstable
branch of the pressure diagram (shown by square sym-
bols on Fig. 7c) and becomes less accurate as n decreases.
Semi-analytical approaches, such as that discussed in this
paper, therefore would need to be used in combination
with new pipette designs (based on smooth mouth open-
ing) to better probe the properties of vesicles and other
soft colloidal particles. Note that certain colloidal par-
ticles (bacteria and cells for instance) may display more
complex mechanical behaviors and remain stable under
the classical pipette aspiration tests [48]. In these cases,
a more thorough analysis can be performed to identify
pipette designs that enable a better characterization of
their properties.

Microfluidic diodes The concept of a fluid diode has
been long used in microfluidics [16, 56, 57] with applica-
tions in biomedical engineering. The separation of parti-
cles that exhibit distinct mechanical properties from their
surroundings have motivated the design of asymmetric
microfluidic devices that can sort soft and rigid parti-
cles under oscillatory flow [14, 15, 52]. To examine the
role of pore geometry on particle trapping, we propose
here to define a measure of trapping efficiency as the dif-
ference [∆Pc] = |CPP+| − |CPP−| between the critical
permeation pressure (CPP) as a vesicle moves forward
(superscript +) and backwards (superscript −) through
the pore (8a). With this definition, it is clear that the
sign of [∆Pc] defines the trapping direction: if [∆Pc] > 0,
vesicles are trapped on the top side of the pore (forward
diode), while if [∆Pc] < 0, they are trapped on the bot-
tom (backward diode). Fig. 8a also illustrates the range
of pore pressures (CPP− ≤ ∆P ≤ CPP+) for such a
diode to operate efficiently; pressures above CPP+ allow
the permeation of vesicles in both directions, while val-
ues below CPP− do not allow particle permeation in any
direction. We finally note that symmetric pores studied
in the previous section are inefficient at trapping parti-
cles since the antisymmetry of the pressure-displacement
diagram implies [∆Pc] = 0.

To investigate the role of pore size, shape and asym-
metry on trapping efficiency, we performed a parametric
study which consisted of sweeping the space (m,n,R∗) in
order to obtain a three-dimensional graphical represen-
tation of the dependency [∆Pc] (m,n,R∗). Results for a
non-wetting (Γ = 0) and an adhering vesicle (Γ = −0.19)
are provided in Fig. 8b and Fig. 8c, respectively. For
convenience, we focused here on forward trapping, i.e.
our study was restricted to [∆Pc] ≥ 0. Trends in back-
ward trapping can then be deduced by symmetrically in-
verting the system. The following key observations can
be made regarding the trapping of non-wetting particles
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[ΔPc]

(CPP)+

(CPP)-

cb

a

Backward

Forward

FIG. 8. (a) Scheme of a pore with a funnel shape which has a different critical pressure depending on what direction it is
crossed, forward CPP+ or backward CPP−. The difference between these two is defined as the trapping efficiency [∆Pc] and
it indicates how probable is to trap a vesicle using these technique. 4D maps showing the variation on axisymmetric pressure
with the relative vesicle radius R∗, the slope m and the shape parameter n are shown for two different vesicles: (a) with Γ = 0
and (b) with Γ = −0.19 (θ = 0.8π). The red zones indicate where the axisymmetric pressure is positive and the pore traps
particles on top. As opposed to that, the blue zones have a negative pressure asymmetry and vesicles are trapped on the
bottom. An circled inset shows the optimal pore and corresponding vesicle in each case.

(Fig. 8b): (a) The relationship between pore design and
trapping efficiency is nonlinear and exhibits an optimum.
(b) The optimal design is a slightly tapered (moderate
n) conical shape. Indeed, we found that pronounced
conical shapes (large m) would lose their ”asymmetric
power” by providing an overly restrictive pore opening.
(c) Trapping efficiency is promoted by larger pore cur-
vatures, controlled by the shape parameter n. Figure 8c
further shows that the mechanics of asymmetric trapping
is strongly affected by adhesion. This observation can be
explained by the fact that the CPP is dominated by the
XP which involves very different mechanisms than those
associated with vesicle entry. In this case, the following
pattern emerges: (a) The optimal pore is still a cone, but
with a more pronounced slope. (b) The position of the
optimal cone is reversed (m < 0) and to catch a vesicle on
top we would need the opposite slope, which is not at all
intuitive. (c) The optimal pore aperture is smaller with
adhesion. This is a consequence of the different regimes
dominating the XP on each side of the pore. As seen
in Fig. 7, small vesicles indeed have larger values of XP
which clearly end up dominating the system.

The above analysis could have far reaching potential in
the design of membranes, micro-fluidic devices and flu-
idic diodes for complex fluids. The 3D maps shown in
Fig. 8 directly pinpoint the design that offers the highest
trapping efficiency for a given particle in order to devise

deformability-based systems aimed to separate particles
of similar size and adhesion. These maps however need
to be complemented by the knowledge of the actual di-
mensional values of CCP+, and CPP− in order to pre-
cisely determine the operating pressure corresponding to
the device. This can be achieved by reversing the non-
dimensional framework.

V. CONCLUSION

In conclusion, we derived a set of nonlinear equa-
tions that can describe the permeation of surface tension-
dominated adhering vesicles in arbitrary axisymmetric
pores. We found that this problem can be studied in
terms of pressure and energy landscape that exhibit var-
ious equilibrium positions and mechanical instabilities as
the vesicles penetrate, travel through and exit from the
pore. Interestingly, the maximum pressure for vesicle
permeation (CPP) is highly dependent on the mecha-
nisms by which the vesicle interacts with the pore and in
particular, their adhesion energy. In particular, model
predictions showed that capillary effects produced by
vesicle adhesion can play a significant role by creat-
ing an suction pressure (XP) that tends to retain the
vesicle within the pore. Eventually, vesicles with even
slightly different adhesion properties can display signifi-
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cant changes in their permeation abilities. Overall, the
results presented in this paper show that one can opti-
mize the design of microfluidic devices, diodes and mem-
branes to specifically target populations of colloids based
on their size, surface tension and adhesion properties.
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APPENDIX A: SOLUTION PROCEDURE

Let us consider the problem of a vesicle trapped in
an axisymmetric pore spanning in the z coordinate from
−b to b and whose geometry is given by (8). The so-
lution is found by solving the system of equations R
formed by (Eq. (5) and (6)). However, the solution
to this system is not trivial since (1) it is highly non-
linear and (2) each value of the pressure drop ∆P leads
to multiple solutions for the vesicle position. The lat-
ter issue can be simply addressed by enforcing the z-
coordinate of one of the contact lines zi and solve for
the corresponding pressure drop and the second detach-
ment point. This operation may be thought of as a
displacement-driven boundary condition, known to be
more stable than a force-driven condition for mechanical
systems displaying unstable behaviors. The solution of
the system is then expressed as the optimization problem
min (R(u),u ∈ F = {u : uLB ≤ u ≤ uUB}), where uLB
and uUB are the upper and lower bounds of the solu-
tion. The non-linearity of the system is primarily caused
by the arbitrary definition of the geometry r(z). This
implies that, in general, one can not find a closed form
expression for the enclosed volume of the vesicle, and
the term

∫
Vc
dV in (6) has to be computed numerically.

This has been done by dividing the central volume in N
horizontal slices and using a trapezoidal rule:

Vc =

∫ z2

z1

π (rL − r(z))2
dz (14)

=

N∑
k=1

(
π(rL − rm)2 |zk+1 − zk|

2

)
. (15)

where rm is the average between rk+1 and rk. Hence,
since finding a general analytical solution is not possible,

we used a trust-region-reflective algorithm with an initial
approximation u0 = {zi = b,∆P = 0} and a tolerance
of ||R|| = 10−12. This algorithm is widely implemented
in multiple platforms and one can for instance use the
function lsqnonlin built in MATLAB.

APPENDIX B: DERIVATION OF ANALYTICAL
SOLUTIONS ON A CYLINDRICAL CHANNEL

In a cylindrical pore, one can find analytical solutions
for the exit pressure similar to the ones that Nazzal de-
rived for the entry pressure. We derive here the corre-
sponding expressions for the exit pressure in regimes 3
and 4, which correspond to equations (5) and (6). Note
that these are approximate results that will match our
model when the pore has a sharp transition at the edge
n→∞.
Regime 3. The exit mechanism of the vesicle in this

regime occurs when the top cap becomes perfectly flat
(ρ1 = 0) so the force balance can not be satisfied beyond
this point. For a non-wetting vesicle and a cylindrical
pore, this can only happen when z1 is right at the edge of
the cylinder (the curvature is constant within its walls).
In that scenario, the vesicle is equivalent to a droplet in
a flat surface and we can find our solution by equaling
the original volume to a spherical cap resting on a flat
surface:

V0 = Vcap (16)

4

3
πR3

0 =
1

3
π

1

ρ3
2

(2− 3 cos θ + cos3 θ), (17)

so we obtain ρ3
2 = (1−cos θ)(sin2 θ+1−cos θ)/4R3

0. The
Laplace law in this particular case is simply ∆P ∗ = ρ2,
and by introducing the value of the curvature we directly
obtain equation (12).
Regime 4. This exit mechanism occurs when the con-

tact angle approaches π/2 and the value of the curvature
inside the cylinder tends to zero. In this situation, the
force opposing the external pressure arises from the bot-
tom cap and it will reach its maximum when its radius
is minimum. In a cylindrical pore the minimal radius
is equal to the pore radius s, and can only occur when
the lower detachment point is exactly at the pore edge
z2 = −b and R2 = s/ sin(θ). The top cap is then inside
the cylindrical channel and constrained by its walls, so
its radius is simply R1 = s/ cos(θ). By normalizing this
quantities and introducing them into Laplace law we ob-
tain the analytical expression for regime 4:

∆P ∗ = cos θ + sin θ. (18)
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