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Understanding the dynamics of fluid-driven sediment transport remains challenging, as it occurs
at the interface between a granular material and a fluid flow. Boyer, Guazzelli, and Pouliquen
[Phys. Rev. Lett. 107, 188301 (2011)] proposed a local rheology unifying dense dry-granular and
viscous-suspension flows, but it has been validated only for neutrally-buoyant particles in a confined
and homogeneous system. Here we generalize the Boyer, Guazzelli and Pouliquen model to account
for the weight of a particle by addition of a pressure P0, and test the ability of this model to describe
sediment transport in an idealized laboratory river. We subject a bed of settling plastic particles to
a laminar-shear flow from above, and use Refractive-Index-Matching to track particles’ motion and
determine local rheology — from the fluid-granular interface to deep in the granular bed. Data from
all experiments collapse onto a single curve of friction µ as a function of the viscous number Iv over
the range 3× 10−5 ≤ Iv ≤ 2, validating the local rheology model. For Iv < 3× 10−5, however, data
do not collapse. Instead of undergoing a jamming transition with µ → µs as expected, particles
transition to a creeping regime where we observe a continuous decay of the friction coefficient µ ≤ µs

as Iv decreases. The rheology of this creep regime cannot be described by the local model, and more
work is needed to determine whether a non-local rheology model can be modified to account for our
findings.

I. INTRODUCTION

Sediment transport involves the entrainment and
movement of a granular material by a shearing fluid flow.
Although natural fluid flows are turbulent, experiments
have shown that laminar flows can produce similar be-
havior in terms of sediment transport and morphody-
namics [1–4]. Until recently, researchers have emphasized
the role of hydrodynamics: a fluid flow over a rough static
bed develops a characteristic shear stress τ , which trig-
gers the entrainment of grains at the bed surface above a
critical value τc. Numerous experimental, analytical and
field studies have shown that the value of τc depends on
the particle Reynolds number and the bed-surface parti-
cle size distribution [5–9]. This work has been integral to
the development of equations for predicting rates of sed-
iment transport. Much research has focused on bed-load
transport [10–12] — the movement of grains by rolling,
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sliding and hopping along the sediment bed — because of
its importance for shaping ripples and dunes [1, 13], and
for determining stream channel geometry [14–16]. We
identify, however, three major shortcomings to this ap-
proach. First, the processes of river bed-load and suspen-
sion transport, landslides and debris flows, and hillslope-
soil creep are considered and studied separately. Yet,
all of them involve the same components: movement of
grains due to a tangential stress composed of gravity and
flow shear. Second, the threshold of sediment transport
has been observed to vary through time in experimental
[1] and natural rivers [17, 18], violating the classical pre-
diction of a unique τc value for a given system. Third, em-
pirical sediment-transport laws notoriously break down
as the shear stress enters the vicinity of the critical value
τc [19].

Researchers have begun to recognize the importance of
accounting for particle-particle interactions to correctly
predict sediment entrainment by fluid flows [20–26]. In
particular, analytical and experimental results from Aus-
sillous et al. [23] stressed the need to incorporate gran-
ular rheology in two-phase modeling of sediment trans-
port. Our previous work also suggested that the bed-load
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FIG. 1. Schematic representation of sediment transport. a) 2D sketch of sediment transport above the critical shear stress,
τ > τc. From left to right (black, red and blue online) curves, respectively, show vertical trends of the packing fraction φ, the
shear stress due to particles τp, and the shear stress associated with the fluid τf . τf∞ is the constant fluid-shear stress far from
the particles. b) Schematic of entrainment of a single grain at the threshold of motion, on an idealized bed surface. In that
case, by definition the friction coefficient is the static value µs, strictly equal to the ratio of the tangential force F// to the
normal force F⊥ applied to the particle.

transport regime behaves as a dense granular flow [27].
These studies provide evidence that explicit considera-
tion of the mechanics of granular materials may address
the limitations of the classical sediment transport frame-
work. In this paper, we test the ability of a local, sub-
merged granular rheology model to describe the effective
friction of fluid-driven particle motion – from very dense
and slow to very dilute and fast.

Here, we consider the rheology of a granular medium
under steady simple shear flow[28] satisfying ∇ · τ = 0,
where the shear stress is τ = ηeffγ̇ where ηeff is the effec-
tive viscosity and γ̇ is the local shear rate. Granular flows
exhibit a nonlinear rheology: for dry systems, it has been
established experimentally that the effective viscosity de-
creases as the local shear rate increases relative to the
local confinement pressure Pp [29]. The rheology can be
equivalently described using the effective viscosity or the
effective friction coefficient µ = τ

Pp
as the material prop-

erty controlling the stress[30], because τ = µPp = ηeff γ̇.

It is also possible to equivalently write either ηeff or µ in
terms of the solids packing fraction φ or a dimensionless
timescale I[30]. Values for µ observed in sheared granular
experiments collapse to a single function of a time-scale
ratio I = tmicro

tmacro
(refs. 29, 31–33). Here tmacro ≡ 1/γ̇

is the average macroscopic timescale of system deforma-
tion, and tmicro is the microscopic timescale for particle
rearrangement in the pack due to the confinement pres-
sure. The dominant timescales in I depend on the prop-
erties of the grains and surrounding fluid, and have been
shown to depend principally on two other parameters:
the ratio of particle and fluid densities ρp/ρf , and the
Stokes number St [34, 35]. For the case of a granular
material submerged in a fluid of viscosity ηf , in the limit
ρp/ρf ' 1 and St < 1, tmicro is driven by viscous drag;
therefore dimensional analysis leads to tmicro = ηf/Pp.

The appropriate time scale ratio I in this limit has been
defined as the viscous number Iv [34, 35]:

Iv =
ηf |γ̇|
Pp

. (1)

In the submerged case under simple shear, the shear
stress τ is carried by fluid and particle motion, τ =
τp + τf , but the exchange of stress between the two
phases occurs within a particle diameter of encounter-
ing the bed, (see schematic in Fig. 1). It is then possi-
ble to define a total effective friction coefficient µ result-
ing from the sum of the particle-particle and particle-
fluid interactions. Boyer et al. [30] conducted a novel
set of simple shear experiments which determined the
relationship µ(Iv) for the case of neutrally-buoyant par-
ticles (ρp/ρf = 1) immersed in a viscous fluid. By con-
trolling the shear stress and also the confining pressure
on the particles, this study connected the rheological
frameworks of both dense dry-granular and suspension
flows. Their measurements of bulk parameters remark-
ably showed that friction could be described as a smooth
transition from the dry-granular rheology to the dilute
suspension rheology (where particle-particle contacts are
completely neglected):

µ(Iv) = µdry(Iv) + µsusp(Iv)

= µs + (µd − µs)/(I0/Iv + 1) + Iv +
5

2
φcI

1/2
v ,

(2)

where I0 = 0.005, µs = 0.32, and µd = 0.7. The values
for µs and µd are in the classical range observed for dry
granular flows [29, 32], while I0 appears to depend on the
definition of tmicro. The term φc is the packing fraction
at which viscosity diverges in suspension experiments,
found equal to 0.585 by Boyer et al.[30]. The associated
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relationship of the bulk packing fraction φ with the vis-
cous number was found to be:

φ =
φc

1 + I
1/2
v

. (3)

This formalism has been validated by Boyer et al.[30]
for a uniformly confined, sheared system. However, it
has not yet been validated for conditions that are more
relevant to river flows; i.e., settling particles (ρp/ρf >
1) where the pressure and shear-rate vary vertically.
In particular, the implementation of this rheology in
a two-phase model by Aussillous et al. [23] was not
able to reproduce their experimental results. It is un-
clear, however, what is the source of the disagreement
between µ(Iv) rheology and sediment-transport experi-
ments. Previous studies lacked accurate measurements
of, and therefore had to make assumptions about: (1)
the packing fraction, and therefore pressure conditions,
at the fluid-sediment interface; and (2) the movement of
very slow particles deep in the bed, which were assumed
to be immobile [21, 23]. Resolving the mismatch between
model and data requires improved measurements of par-
ticle motion in the vicinity of the surface and deep inside
the bed.

Our recent experiments showed that settling particles
entrained by a laminar fluid flow exhibit three different
regimes of motion as a function of depth into the bed[27]:
(I) a dilute regime where particle motion is mostly driven
by fluid-flow stress; (II) a denser particle flow, similar
to a dry-granular flow, that we identified as bed-load;
and (III) a creep regime associated with exceedingly slow
and intermittent particle motion (see Fig. 1a). Particle
velocity and concentration changed continuously across
these regimes; however, the transition to creep seems to
occur at a fixed viscous number, regardless of the applied
fluid stress. Drawing on these observations, in this paper
we determine the rheology of laminar sediment transport
across all three regimes, and confront these results with
the local rheology proposed by Boyer et al.[30].

II. EXPERIMENTAL SETUP AND METHODS

A. Experiment setup

Technical details of the experiments performed were
presented in Houssais et al. [27], so we only briefly review
them here. The setup consists of a closed annular flume of
radius R = 17 cm, in which we submerge a layer of spher-
ical acrylic particles of diameter d = 1.5 mm and density
ρp = 1190 kg/m3 in an oil of viscosity ηf = 68.6 ηwater
and density ρf = 1050 kg/m3 (see Fig. 2). The system
has width W = 17d, depth H = 14d, and is sheared by
rotating the top of the flume at a constant rate Ω (from
0.8 to 4 rpm) which corresponds to a top plate velocity,
U = 2πRΩ (from 14 and 48 mm/s). Below the plate
is a fluid gap with a flow depth hf , which is measured

and ranges from 3.8 to 5.6 mm. The low Reynolds num-
bers (Re = ρfhfU/ηf ≤ 3) and low aspect ratio hf/W
act to suppress turbulence and secondary flows [1]. The
bottom and side walls are smooth, which allows parti-
cle slip at the boundaries (visible on movie 1 of Hous-
sais et al. [27] Supplementary Information). Some slip
is inevitable in granular flow experiments [36]; we be-
lieve this slip is a feature for our experiments, that limits
the influence of the bottom boundary on particle motion
in the pack. To visualize granular dynamics, we index-
match the PMMA particles with a viscous oil (85% of
PM550 and 15% of PM556 from Dow Corning, as previ-
ously used[37]), and record fluorescence of a dye (Exci-
ton, pyrromethene 597) dispersed in the fluid and excited
with a green laser sheet (517 nm, 50 mW) of thickness
' d/10 (ref. [38]) aligned with the middle of the channel
width (see Fig. 2b). Therefore, we image a vertical plane
that is farthest from the influence of the side walls.

The granular bed is prepared for each experiment with
the following protocol: for 5 minutes the flume top is ro-
tated at 3 rpm, applying a shear stress strong enough
to suspend all particles, except the two bottom layers at
the bottom which crystallize. The rotation then slowly
returns to zero, and the particles settle for 5 minutes,
building a random packed bed of approximately 11d.
Then, a constant rotation Ω of the top plate drives the
system during the entire experiment. The duration of
the experiment is not fixed; each lasts long enough (10
hours to several days) that all particles present in the
recorded frames exhibit detectable displacement during
the run. With a single camera two different records are
acquired: 20-min long movies with a frame rate of 30 Hz,
able to capture particle flights at the surface, and hours-
long time-lapse at 0.067 Hz, able to capture slow creeping
motion deep inside the bed.

B. Analysis

To compute particle positions and apparent size, each
recorded image is processed in the following manner.
First, a convolution with a disk of a radius close to that
of a particle filters most of the image noise. Second, a
radial symmetry analysis is made at each pixel, to reveal
particle center positions as the most symmetrical objects.
Finally, for each of these positions the average distance
to the particle boundary (obtained from a binary version
of the raw image) is taken as the apparent radius of the
particle (see result example Fig. 2d).

Vertical profiles of particle concentration are computed
from the image of the detected particle areas, by averag-
ing pixels in the x direction (see profile example Fig. 2c).
We assume the particle concentration measured in a two-
dimensional (2D) plane is a good proxy for the packing
fraction φ(z), as our measured saturation values deep in-
side the bed are close to classical values found for random
packing fraction (0.58 to 0.6), and close to the value of
φc in equations (2) and (3). Even in the time-averaged
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FIG. 2. Experimental setup and particle detection. a) Picture of the experiment with camera, laser and an illuminated 2D
plane of particles. b) Sketch of the experimental setup, with dimensions indicated. Inset: Top view. c) Image showing 2D
plane of particles. Green curve is the depth-varying packing fraction, computed at each elevation as the fraction of the image
in the x-direction that is occupied by particles. The trajectories of particles highlighted here in yellow are shown in Fig. 4 d)
Typical particle detection result. Experimental results correspond to a run performed at U = 48 mm/s.

profile, vertical oscillations of the packing fraction are
present. This is related to the tendency for particles to
settle in layers, and produces fluctuations with a wave-
length comparable to the particle diameter that are es-
pecially notable at the bottom and the surface. Each
experiment exhibits an initial phase of fast compaction,
which drives a temporal evolution of φ. Fig. 3 presents
the typical time evolution of the bed surface elevation.
To study the steady-state rheology, we begin collecting
data after most of the compaction has occurred (orange
area on Fig. 3).

Even after the compaction stage, we observe signifi-
cant fluctuations in the concentration profile from image
to image due to a finite sampling window, in particular
at the bed surface. Peak values for the packing fraction
exceed 0.6 significantly in the vicinity of the bed sur-
face, and are particularly high at low shear stress. We
interpret this to be a consequence of the ability of the
granular bed to densify at the surface under the action
of gentle particle rearrangement, producing packing frac-
tion values commonly found for 2D systems. Neverthe-
less, below the surficial particle layer, the concentration
profile always saturates at a constant value. We com-
pute this saturation value (for 1 < z/d < 9), 〈φsat〉k for
each experiment k (k = 1, 5), from time-averaged profiles
made from hundreds to thousands of images. We find the
mean value 〈φsat〉m = 0.589, with slight variations (0.5
to 3% of 〈φsat〉m) from experiment to experiment. In
order to ensure that packing fraction profiles for all ex-
periments converge with each other at depth, we present
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k-experiment profiles normalized by 〈φsat〉k/〈φsat〉m.

To compute mean particle velocity, as in Houssais et al.
[27] we use Lagrangian particle tracking[39]. From the
particle tracks, we then compute individual velocities by
measuring the time difference over which particle dis-
placements exceed a fixed probing distance δx = 3 d/100.
Profiles of horizontal velocity are computed by averaging
elevation strips in the x direction over hours of records
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(see more details in Supplementary Information of Hous-
sais et al. [27]).

The sediment bed is driven by a fluid and therefore
there is no imposed confinement pressure; instead, there
is a free-surface condition. As a consequence, the lo-
cal pressure Pp increases with depth due to the increas-
ing overburden of particles, an effect described by mul-
tiple researchers, see e.g. Jenkins and Mancini [40], as

Pp(z) = (ρp − ρf )g
∫ +∞
z
〈φ〉dz where g is gravity and 〈φ〉

is the time-averaged and horizontally ensemble-averaged
packing fraction. Note that this expression implies that
the confining pressure is zero at the fluid-granular inter-
face. Several researchers [41–43] have pointed out, how-
ever, that there must exist a finite pressure acting on
grains at the interface. Andreotti [44] argued that a non-
zero shear-rate at the free surface of granular flows im-
plies a non-zero confining pressure, and suggested that
this could be related to the friction associated with a
grain interacting with the bed. This is consistent with
the notion of Johnson [42] that there is a constant (time-
averaged) pressure P0 associated with the forces acting
on an individual particle at the free surface. For our
experiments with sedimenting spheres driven by steady
fluid shear, we expect that P0 is a constant pressure term
associated with the weight of an individual grain.

P0 = (ρp − ρf )g
Vg
Ag

= α (ρp − ρf )gd , (4)

where Vg is the typical grain volume Ag is the typical
grain surface area in contact with the bed, and α is the
exact constant of integration. As gravity is exerted on
all particles, we propose a modified confining pressure
profile:

Pp(z) = P0 + (ρp − ρf )g

∫ +∞

z

〈φ〉dz . (5)

The bed depth (' 11 d) is smaller than the channel width
(17 d), so we do not expect the confinement pressure to
saturate with depth. Therefore, we do not account for
the Janssen effect associated with the presence of side
walls [45].

The time-averaged granular pressure (5) we propose
is novel in that it includes an explicit term for single-
particle force (P0) and it incorporates the time-averaged
particle pressure from suspended grains flowing above the
granular bed (region I). As a consequence, this definition
does not depend on whether or how the interface between
the granular bed (region II) and the suspension (region
I) is delineated. Below we explore the consequences of
the P0 term for modeling the local rheology of sediment
transport.

III. RESULTS

A. Phenomenology and shear stress measurement

For each experiment driven at a different rotation rate,
we observe the same phenomenology: the particles at the
bed surface are entrained by the fluid, and present clas-
sical features of rolling and saltation, with significant ve-
locity oscillations [1, 11, 46] (see Fig. 4a). Particles just
below the surface are also transported, due to grain and
fluid motion above, but their trajectories remain confined
as in a granular flow (see Fig. 4b). Finally, particles
deep inside the bed experience slow and sporadic mo-
tion that we identify as creep. Most of the time these
particles appear to be caged [47], but occasionally they
make a fast but small displacement (see Fig. 4c). The
range of stresses for our experiments were all low enough
that entrained particles never touched the rotating top
plate, which means that the concentration of particles al-
ways drops to zero at some height above the bed [27] (see
Fig. 2c). Figure 5 shows the long-time averaged profiles
of packing fraction 〈φ〉 and streamwise velocity 〈V 〉 ob-
tained for 5 experiments performed at U = 14, 16, 21, 37
and 48 mm/s. Velocity error bars were computed us-
ing a classical error propagation method (see details in
Houssais et al. [27]), and packing fraction error bars
represent the standard errors from time averaging; due
to long time averaging, error bars on 〈V 〉 and 〈Φ〉 are
significantly smaller than the symbols. The concentra-
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tion profiles all attain the saturation value 〈φsat〉m in
the lowest part of the bed, and all drop to zero mov-
ing up across the grain-fluid interface — a distance of
2 to 3 particle diameters. The inset of Figure 5a shows
that these packing fraction profiles are particularly pre-
cise and well resolved for 10−4 < φ < 1. Consequently,
using equation (5) we obtain high-precision pressure pro-
files (see examples Fig. 6), which allows us to investigate
the regime where φ → 0. The term P0 has a significant
influence on the computed pressure near the bed surface,
and becomes negligible below a certain depth (typically
z/d ' 9 for our experiments; Fig. 6). For all stresses, one
can observe that the velocity is smallest at the bottom,
increases continuously with increasing z, and exhibits a
significant kink at 〈V 〉/d ' 10−5 s−1; the depth associ-
ated with this kink varies with the flow speed. The two
highest-flow velocity experiments present a second kink
in the vicinity of the surface (z/d ' 11). The fluid depth
hf is measured from 〈φ〉 profiles hf = H − zs, where H
is the total depth of the flume and zs is the elevation
at which 〈φ〉|z=zs = 〈φsat〉m/2, an indicator of the bed
surface[22]. Therefore we compute the mean fluid shear
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stress in the region zs ≤ z < H at steady state, and as-
sume it to be a close estimate of the total shear stress τ
applied on the system:

τ = ηf
U − 〈V 〉|z=zs

hf
(6)

where 〈V 〉|z=zs is the mean particle velocity mea-
sured at zs. Our calculation of τ differs from previous
studies[1, 21, 25] in that we define the bed surface from
the concentration profile, and that we take into account
the slip velocity of particles at the surface. Although hf
can vary ±1 d depending on the choice of 〈φ〉 that defines
the bed surface, we note that 〈V 〉|z=zs also varies with
〈φ〉 in a manner that partially compensates. We explic-
itly compute this sensitivity of τ on how we define zs and
find the dependence is mild; for two extreme bed surface
definitions, determined at 〈φ〉 = 0.55 and 〈φ〉 = 0.05, the
computed stresses are respectively 20 % smaller and 20 %
larger for the highest shear stress experiment. We em-
phasize these are strict upper limits on the uncertainty
of τ . This difference drops to 5 % for the lowest shear
stress experiment.

For sediment transport studies it is common to normal-
ize the shear stress by a normal stress due to the particle
weight, to compute the Shields number:

τ∗ =
τ

(ρp − ρf )gd
. (7)

As we increase τ∗ and the sediment transport rate in-
creases, the width of the transition from the quasi-static
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bed to the fluid — where the particle concentration drops
— becomes broader (see Fig. 5a).

B. Rheology using P0 = 0

As discussed in the Introduction, a major difference
between the local rheology model developed and applied
in the experimental system of Boyer et al.[30], and a
sediment transport system with a free surface, is the
treatment of the pressure. Instead of a constant con-
fining pressure applied from the container, there is a
depth-varying pressure that results from the weight of the
grains. Previous experimental sediment-transport stud-
ies have employed the local rheology model with depth-
varying pressure [23, 48], but they did not include the
pressure term P0 proposed here. To understand the sig-
nificance of this additional term, we examine granular
rheology first by assuming P0 = 0, the simplest hypothe-
sis. In the next subsection we compare these findings to
results that include a non-zero P0 value. Fig. 7a shows
the profiles of viscous number Iv, computed from the
packing fraction and velocity profiles. Interestingly, on
one hand, as already showed by Houssais et al. [27], the

velocity kink deep in the bed corresponds to a viscous
number kink at Iv ' 10−7. But on the other hand,
all the profiles appear to converge to Iv ' 1 close to
the surface. This observation is consistent with the ex-
pectation that a dynamical transition from the granular
regime to the suspension regime occurs as Iv approaches
1[30]. This is supported by the behavior of the effective
viscosity ηeff, which saturates at high packing fraction
at a value ' 107ηf ; in the other limit, all profiles con-
verge to ηeff ' 3ηf at the surface as the concentration
decreases toward zero (Fig. 7b). Notably, for the two
highest stresses ηeff profiles continue to decay toward ηf ;
i.e, the effective viscosity is determined only by the fluid.
Taken together, data show the appropriate limits and
indicate that sediment transport undergoes a transition
from a dense granular material to a suspension.

In Figures 8 and 9 we compare our dimensionless lo-
cal measurements of φ, Iv, ηeff and µ with the extended
local granular rheology proposed by Boyer et al. [30].
One can see that the data are broadly consistent with
the model (Fig. 8), as they cluster around the relations
from equations (2) and (3). The data, however, deviate
from model predictions as φ decreases, and also appear
to exhibit different φ values at the deviation for different
Shields stresses (from φ ' 0.57 for τ∗ = 0.115 to φ ' 0.32
for τ∗ = 0.42). As our packing fraction profiles are well
resolved for φ > 10−4, these deviations from the model
are not due to measurement error and are therefore sig-
nificant. The deviation is similarly apparent for the local
effective friction coefficient µ = τ/Pp(Iv) (Fig. 9). For
values Iv > 3× 10−5, the deviation of µ from the rheol-
ogy model becomes more severe as the Shields number
decreases. Moreover, µ grows to unphysically large val-
ues, especially considering that as τ∗ → τ∗c the behavior
should approach a quasi-static limit. We interpret this
effect to be the result of a systematic bias, that arises
due to the lack of the constant pressure P0, which carries
more and more of the normal stress as particles reach the
interface with the clear fluid.

C. Rheology using P0 = α (ρp − ρf )gd

The assumption of P0 = 0, or α = 0, results in un-
physical behavior at the surface, and does not produce
a collapse of our experimental data. Potential errors in
our estimation of shear stress are not sufficient to explain
the deviation of µ from model predictions. In particular,
the deviation of µ data from equation 2 near the sur-
face increases as shear stress decreases, i.e., where errors
in estimates of the shear stress τ are minimal. Because
particles are settling, there exists a finite elevation where
the packing fraction drops to zero (Fig. 1a). Accord-
ingly, if P0 = 0, the viscous number diverges to infinity
in the dilute region (〈φ〉 << 1). We tested different P0

values, and found a reasonably good collapse for plots of
µ vs Iv for 0.16 Pa ≤ P0 ≤ 0.23 Pa. The data presented
in subsequent figures are computed with P0 = 0.19 Pa,
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FIG. 8. a) Long-time averaged particle concentration as a function of the viscous number (computed using the confining pressure
Pp). Black line represents equation (3). b) Long-time averaged effective viscosity ηeff as a function of the concentration. Black
line represents the effective viscosity relationship with packing fraction resulting from equations (2) and (3). Both plots
computed using P0 = 0.

or α = 0.1. Including the pressure term P0 has several
important consequences. First, local measurements from
all our experiments collapse onto a single µ(Iv) curve for
Iv ≥ 3×10−5 (Fig. 10). In other words, the rheology be-
comes independent of Shields stress. Second, these data
cluster very close to the local rheology model prediction
over the range of collapse. Third, the friction coefficient
does not diverge indefinitely in the high Iv limit. Instead,
the effective friction coefficient µ converges toward a fi-
nite value of µ = τ/P0 associated with the clear-fluid
limit φ = 0. Fourth, the value of P0 is physically mean-
ingful as it is of the same order of magnitude as the nor-
mal stress due to the weight of a single spherical particle
(' (ρp−ρf )gd/3), which confirms the validity of equation
(5). The effect of P0 on the computed pressure profile is
negligible deep in the bed, but becomes more significant
on approach to the surface (Fig. 6).

Importantly, the existence of the positive term P0 is
consistent with the existence of a critical stress τc for
onset of particle entrainment and the asymptotic behav-
ior of static friction. Indeed, as τ approaches τc, µ ap-
proaches µs at the bed surface[5, 6]. Therefore, the criti-
cal stress to entrain a particle resting on the bed surface
is naturally set as τc = µsP0 (see Fig. 1b). As our exper-
iments have been performed with PMMA spherical par-
ticles, similar to those used by Boyer et al. [30], we used
the same value for µs = 0.32 to compute τc. We found,
for the range of P0 cited above, 0.05 Pa ≤ τc ≤ 0.07 Pa,
which corresponds to a range of critical Shields number
0.025 ≤ τ∗c ≤ 0.035. Fig. 10 is made with τ∗c = 0.03.

Finally, a remarkable finding is that, for Iv < 3× 10−5,
the data do not show convergence of the friction coeffi-
cient with the static value (µ = µs). Instead, µ decays
continuously below µs with decreasing Iv, and the dif-
ferent experimental curves deviate from each other for
values µ < µs. We do not observe any saturation of
these trends.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10
1

:τ*= 0.115 : τ*= 0.124 
:τ*= 0.18 τ*= 0.31
: τ = 0.42

F
ri

ct
io

n 
co

ef
fi

ci
en

t μ

Viscous number I

μ

I

v

v

*

10-5 10-3 10-1 101

1

10
1

μs

10
-1

10-2

10-9 10-7

:

4

3

2

1

0

FIG. 9. Friction coefficient µ as function of Iv, computed us-
ing P0 = 0. Inset shows the logarithm of µ, where the dashed
(red online) and full (blue online) grey lines represent µdry(Iv)
and µsusp(Iv) respectively, and the black line represents equa-
tion (2).

IV. DISCUSSION

In the Boyer et al. [30] experiment, a single flow state
associated with a single bulk viscous number was ob-
served at a time, under an imposed confining pressure
and packing fraction, and for the range: 10−6 < Iv < 0.2.
For our system, the local shear rate and packing fraction
adjust dynamically to the imposed fluid stress because
of the free-surface condition. This results in a depth-
varying viscous number and, as a result, multiple flow
regimes coexist over the range: 10−9 < Iv < 2. De-
spite these differences, we find that the µ(Iv) rheology



9

proposed by Boyer et al.[30] can be extended to the case
of settling particles sheared from above by a fluid, with
the addition of a pressure term P0 ' 0.1(ρp− ρf )gd that
accounts for particle weight. Our data closely follow the
model for the range 3× 10−5 ≤ Iv ≤ 2. For indication, a
best fit (dashed line on Fig. 10) over that specific range
of the data gives the parameters : I0 = 0.0012 ± 0.0004
µs = 0.27 ± 0.01 and µd = 0.52 ± 0.02. This result
shows that a single rheology is capable of describing the
complex case of sediment transport from bed load to sus-
pension, as a transition from a slow and dense to a fast
and dilute granular flow. This sediment transport regime
is bounded by a fluid flow above where particle concen-
tration vanishes, and a creeping granular system below
where the local rheology model breaks down.

The success of the pressure term P0 in collapsing the
data and recovering the rheology prediction confirms
that this is a physically-meaningful term, and that the
sediment-fluid interface has to be treated specifically
as a pressure boundary condition. Also, the inferred
value for tmicro = 0.37 s from P0 is of the same order
as the particle free-fall timescale d/Vs = 1.2 s, where
Vs = g(ρp − ρf )d2/(18ηf ) is the Stokes velocity. Our
results moreover suggest a new method for assessing the
critical stress τc from dynamics, which is quite different
from the usual approach that extrapolates the flux-stress
relation to zero. Our inferred value τ∗c = 0.03 is low rel-
ative to previous studies in laminar flow, where reported
values are typically twice as large [1, 49]. Nonetheless,
it is compatible with the very sparse particle motion we
observed at the surface during an experiment performed
at τ∗ = 0.043 (see movie 3 in Supplementary informa-
tion of Houssais et al. [27]). It is also close to the value
reported by Charru et al. [1] at the start of their experi-
ments (τ∗ = 0.04) — before any compaction occurred —
where entrainment of loose surface particles may approx-
imate the situation of a single grain resting on the bed
(Fig. 1b).

It appears that the critical condition for motion of an
individual particle on the bed surface may be character-
ized by a static friction threshold through τ∗c . The µ(Iv)
rheology, however, indicates that τ∗c does not represent a
well-defined yield stress criterion for the granular surface,
instead µ = µs defines the interface with the quasi-static
dense bed. This is consistent with observations of creep
behavior in dry granular material in horizontal shear ex-
periments [50–52]. Our results generally support recent
studies calling for a modification to the classical bed-load
transport framework; in particular, that the friction co-
efficient cannot be considered constant [21, 22], and that
the “bed-load active layer” is not constant but instead ex-
pands vertically in both directions as the shear stress τ
increases [22]. Results also inform models for suspended-
sediment transport, supporting the idea of Boyer et al.
[30] that particle-particle frictional interactions should be
taken into account, even for smooth spheres suspended in
a viscous fluid. Interestingly, a similar reasoning has been
developed recently in order to understand shear thicken-
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FIG. 10. Friction coefficient µ as function of Iv, computed us-
ing the confining pressure P0 ' 0.1(ρp − ρf )gd that accounts
for particle weight. Inset shows the logarithm of µ. The
dashed (red online) and full (blue online) grey lines represent
µdry(Iv) and µsusp(Iv) respectively, and the black line repre-
sents equation (2). The black dash line represents a best fit
on the data over the range 3× 10−5 ≤ Iv ≤ 2, using equation
(2), where φc is the only fixed parameter.

ing in suspensions [53, 54]. This suggests that improve-
ments in our understanding of particle-scale interactions
may yield a local rheology model capable of describing
granular flows across a broad range of packing fraction
and shear stress conditions.

Some models have utilized a closure scheme in which
granular transport ceases at a critical packing fraction
[24, 55], however our experiments show that this is not
the case. This raises an important issue: the rheologi-
cal picture presented here is still incomplete, as there is
no prediction for the packing fraction profile itself. This
was measured rather than modeled in our study. How-
ever, our packing fraction data – validated by our finding
of the µ(Iv) relationship – show that these profiles devi-
ate from the classical rheology prediction (equation 3).
Suspension modeling studies have proposed that particle
diffusion due to internal pressure induces a flux normal
to the shear [30, 56], and that the competition between
diffusion and particle settling may be used to determine
the sediment concentration profile [24]. This, however,
remains to be fully validated. To be relevant for sediment
transport, we propose that any closure equation for the
concentration profile should also be consistent with the
condition of a quasi-static bed at τ∗ = τ∗c .

Finally, our results identify two regime transitions
where the local rheology breaks down. As we mentioned
above, the first one corresponds to where the packing
fraction data deviate from the φ(Iv) relationship (see
Fig. 8). The second important transition occurs for
Iv < 3× 10−5, where data from different experiments
deviate from the model and each other. Based on obser-
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vations of particle motion [27], we interpret this deviation
as the signature of the creep regime. Creep is associated
with values µ < µs, where µ continues to decline with
decreasing Iv. The local rheology model predicts that µ
converges to µs for vanishing Iv, representing a jamming
transition [24, 29, 30]. Our experiments, which reach val-
ues for Iv more than three orders of magnitude smaller
than reported in Boyer et al. [30] study, do not show any
jamming transition.

It is important to note that creep is associated with
localized, intermittent particle motion such that the av-
erage particle velocity profile – and so µ versus Iv —
may be less directly related to the relevant dynamics.
It is likely that the assumption of strictly local particle
interactions is broken for creep, where collective parti-
cle motion may be expected to occur [57] and long-range
interactions due to force chains may be relevant. New ex-
periments dedicated to creep should be conducted, with
a focus on resolving the very long-time and large-space
scales required to determine particle trajectories. Al-
though our experiments are limited to a single type of
particle, fluid and boundary condition, we are able to
explore a very wide range of viscous number. It is possi-
ble that changes in the fluid, sediment or boundary pa-
rameters may cause deviations from our findings. More
exploration of these effects is needed, however the use
of refractive-index matching limits the possible combina-
tions of fluid and sediment. In addition, our channel ge-
ometry limits our ability to explore different grain sizes.
Nevertheless, previous studies with varied particle size
and fluid viscosity [11, 23, 30] lead us to believe that our
findings are robust for Iv > 3× 10−5. While the transi-
tion to creep occurs at a constant critical Iv value for our
experiments, further study is needed to determine if this
number is robust and to examine its physical meaning.
In particular, it may be useful to vary the channel geome-
try (flume curvature versus channel width) and boundary
conditions (roughness amplitude versus the particle size)
in laboratory experiments.

In term of analysis, future examination of dynamical
heterogeneities in the experimental data will help to ad-
dress the rheology break down. From the theoretical side,
the recent development of a non-local rheology frame-
work [58–60] is a promising approach for modeling creep
dynamics. Currently, predictions from non-local models
appear to be inconsistent with our observations [61], as
they predict deviation from the local rheology at large
viscous number. Results cannot be directly compared at
present, however, as the non-local models implement a
boundary condition of no particle motion very far from
the shear zone. The few experiments where creep has

been quantified [27, 50–52] used varying boundary con-
ditions (from smooth to rough), but some boundary slip
likely occurred for all conditions [36]. If creep is indeed
driven by non-local dynamics, varying boundary condi-
tions in non-local rheology models will allow for insightful
comparisons with different experimental results that will
enrich our understanding of the creep mechanism.

V. CONCLUSION

Performing a laminar-flow experiment with very-highly
resolved particle detection, we capture the rheology of
sediment transport across the full range of behavior —
from quasi-static creep, to the dense-granular flow asso-
ciated with bed load, to dilute suspension. Quantifying
the constant pressure term P0, which is a fraction of the
normal stress due to the weight of an individual parti-
cle, we can then link the classical definition of critical
shear stress τc to the local rheology of a granular flow
submerged in a viscous fluid. These results provide a
new perspective on the modeling of sediment transport
processes with continuum mechanics, and open the pos-
sibility that creeping to suspension regimes — which are
responsible for most of landscape dynamics — may be
described with a unified rheology. Our results emphasize
the importance of the pressure P0 near the bed surface.
The effect of this parameter may be relevant for transport
and segregation of mixed grain sizes in submerged gran-
ular flows. Finally, the transition to creep at low viscous
number challenges our understanding of local rheology
and the nature of the jamming transition. At present we
have an incomplete understanding of the packing frac-
tion near the free surface and the motion of particles in
the creep regime deserve; these deserve further investiga-
tions that may motivate new comparisons with non-local
rheology models. Many rivers and hillslopes are granu-
lar systems that self-organize such that they are in the
vicinity of the threshold of motion [62]. Thus, a better
understanding of creep dynamics will improve long-term
predictions of landscape evolution.
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