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Bacteria communicate using external chemical signals called autoinducers (AI) in a process known
as quorum sensing (QS). QS efficiency is reduced by both limitations of AI diffusion and potential
interference from neighboring strains. There is thus a need for predictive theories of how spatial
community structure shapes information processing in complex microbial ecosystems. As a step
in this direction, we apply a reaction-diffusion model to study autoinducer signaling dynamics
in a single-species community as a function of the spatial distribution of colonies in the system.
We predict a dynamical transition between a local quorum sensing (LQS) regime, with the AI
signaling dynamics primarily controlled by the local population densities of individual colonies, and
a global quorum sensing (GQS) regime, with the dynamics being dependent on collective inter-
colony diffusive interactions. The crossover between LQS to GQS is intimately connected to a
tradeoff between the signaling network’s latency, or speed of activation, and its throughput, or the
total spatial range over which all the components of the system communicate.

Multicellular communities, such as colonies of bacte-
ria, communicate with each other to coordinate changes
in their collective group behavior. This communication
usually takes the form of the production and secretion
of extracellular signaling molecules called autoinducers
(AI), as illustrated in Figure 1. Released autoinducers
diffuse through the environment, and each cell senses the
local concentration of signal to inform changes in gene
regulation. This intercellular signaling network, known
as quorum sensing (QS), is crucial for a wide array of im-
portant microbial processes, including biofilm formation,
regulation of virulence and horizontal gene transfer [1–3].

Decades of research have advanced our knowledge of
QS, but several subtleties remain unresolved. In par-
ticular, AI signals may convey information about many
aspects of the cellular network and local environment
beyond simply the total number of cells in the system
[4]. Far from being reducible to homogeneous, uniform
density populations, microbial communities are typically
characterized by high spatial heterogeneity [5]. As a re-
sult, several new phenomena emerge due to crosstalk be-
tween spatially segregated populations [6]. Consequently,
it appears that AI molecules can be an indicator of in-
creased local population density, and can also be proxies
of other variables, such as population dispersal [7–11].

In recent years, advances in the ability to experimen-
tally probe the properties of cellular populations at the
single-cell level [12] have resulted in a growing commu-
nity of theoretical physicists working to catalogue the
different classes of collective behavior found in interact-
ing communities of organisms [13–17]. This approach
has already successfully yielded insight into a wide vari-
ety of ecological problems, with notable recent examples
including the effects of invasion in cooperative popula-
tions [18], optimal foraging strategies in sheep herds [19],
and the properties of microbial signal transduction net-

FIG. 1: The paradigmatic quorum sensing regulatory circuit
consists of a synthase that produces autoinducer signals and
a receptor that senses the local concentration of the same
autoinducer. In the absence of a high density of bacteria, the
synthase genes are expressed at a low basal level, secreting a
small amount of autoinducer into the environment. Once the
colonies have grown to beyond a critical population density,
the collective concentration of autoinducer secreted is enough
to activate quorum sensing.

works [20–22] and their relationship to long-range spatial
pattern formation [23, 24]. However, to our knowledge,
there have been few, if any, such studies on the specific
question of exactly how spatiotemporal autoinducer pro-
files are influenced by the underlying heterogeneity of the
microbial community that produces them.

Accordingly, in this Letter, using a reaction-diffusion
model, we identify how emergent spatiotemporal AI sig-
naling patterns depend on community spatial structure.
Via numerical simulations, we show that for a commu-
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FIG. 2: In this study, we divide an initial population of n0

cells into Ncolonies equally sized colonies, coexisting within a
square region of length Lconfinement. These two parameters,
Ncolonies and Lconfinement, serve as control parameters of our
model. The number of colonies Ncolonies tunes the local prop-
erties of individual colonies, while the confinement tunes the
strength of global inter-colony communication through molec-
ular diffusion.

nity of single-species bacteria, there is a transition in the
activation dynamics as a function of community disper-
sal, or equivalently, the spatial heterogeneity of the cell
density. At low dispersal, corresponding to a situation
in which the cells aggregate into a few large colonies, the
activation is triggered by the local size and density of
the individual colonies, and therefore, can be described
as local QS (LQS). At high dispersal, corresponding to
a situation in which the cells are spread thinly among
many small colonies, activation is instead a collective,
global effect, mediated by mutual interactions between
spatially disconnected colonies, and thus, this state is
best described as one of global QS (GQS).

The dynamics of the autoinducer concentration cAI are
governed by the spatiotemporal cell density profile ccell
via the reaction-diffusion equation

(
∂

∂t
−D∇2 + γ)cAI = r(cAI)ccell(~x, t) , (1)

where D and γ are respectively the AI signal diffusivity
and decay, and r is the local, AI-concentration-dependent
signal production rate of the cells. In this work, we re-
strict ourselves to a regime where the timescale of sig-
moidal quorum sensing activation is taken to be much
faster than the timescale for signal production and diffu-
sion, which implies that in the limit of coarse-grained,
long-time integrations, the activation can be approxi-
mated by an instantaneous all-or-none step function (for
a specific recent study analyzing the range of validity of
this approximation in quorum sensing systems, we refer
the reader to [30], and for further validation data com-

TABLE I: The representative set of parameters used in this
work. Although these quantities possess substantial statisti-
cal uncertainty and condition-dependent variability, reported
values in the literature typically fall within the same charac-
teristic orders-of-magnitude.

Quantity Units Value
Colony Cell Density (c̄colony) cells/µm3 1a

Fold Change (f) Unitless 6b

Signal Diffusivity (D) µm2/sec 160c

Signal Decay Rate (γ) molecules/hr 0.01d

Activation Threshold (cAIcrit) molecules/µm3 100e

Basal Production Rate (rb) molecules/hr/cell 500f

Doubling Time mins 30g

Initial No. of Cells (n0) 103 cells 7
Max. No. of Cells (nmax) 103 cells 7000

aTaken directly from [8].
bSelected as a lower limit from the reported range of 5-fold to

300-fold change in [25], for numerical convenience.
cTaken, with slight alteration for computational convenience,

from [25].
dTaken directly from [26].
eTaken as a computationally convenient number corresponding

to 160 nM concentration, an intermediate between the 10-70 nM
reported in [27] and the 450 nM reported in [28].
fAdapted from information in [28]. In particular, point produc-

tion intensity is (0.43 nM/hr) × l, where l is the luminescence,
ranging between 0 to 3000 (normalized), thus corresponding to an
intensity range from about 0 to 1300 nM/hr. For a 1 µm3 cell, this
corresponds to approximately 0 to 1000 molecules per hour per cell,
with the midpoint value of 500 thus being a reasonable estimate of
a typical rate.
gRounded up from mean values reported in [29].

paring results of the Heaviside activation to a more real-
istic Hill curve, we refer to Figure 5(a) in the Appendix).
Thus, we can approximate the activation to be instanta-
neous, modeling it via the Heaviside theta function θ:

r(cAI) = rb(1 + fθ(cAI(~x, t)− cAIcrit)) . (2)

Here, rb is the basal AI production rate of the cells in
the absence of any activation, while cAIcrit is the thresh-
old AI concentration for cells to transition to an activated
state, with a fold change f ratio increase in synthase gene
expression, and thus AI production rate.

Additionally, we take the cell density ccell to be a
Boolean function, adopting either a constant average
c̄colony for points occupied by a colony, or 0 otherwise.
With this setup, the spatiotemporal density of the cellu-
lar community ccell can be interpreted as an input driving
signal that generates the spatiotemporal AI profile cAI as
an output response signal.

We design and perform a series of computational ex-
periments to isolate the effects of spatial dispersal on AI
signaling. At time t = 0, we instantaneously colonize
a quasi-2D region of space with an initial population of
n0 cells, and have the cells exponentially grow until they
have multiplied to a final total carrying capacity value
nmax, at which point the growth is saturated.
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FIG. 3: (a) The average coverage, or area of space with above-
threshold signal concentration, at a representative time point
of ten hours, plotted as a function of the dimension of confine-
ment Lconfinement for varying numbers of colonies Ncolonies.
Residuals represent standard errors over five simulation repli-
cates each. (b) Asymptotic coverage level as a function of
Ncolonies in the limit of deconfined, or infinitely separated
colonies. There is a clear transition from non-zero to zero
levels between Ncolonies = 17 and 18, illustrating a crossover
from local quorum sensing (LQS) to global quorum sensing
(GQS).

We perform several replicates of this simulation. In
the first replicate, the cells are perfectly localized into a
circular colony at the center of the quasi-2D region, cor-
responding to a situation of minimal dispersal, with only
one homogeneous colony and no spatially distributed
subpopulations. The cells produce, sense, and activate
AI signals undergoing diffusion and decay according to
equations (20)-(21), with the representative parameter
values shown in Table I. The system is numerically in-
tegrated to yield a discretized output spatiotemporal AI
signaling profile cAI(~x, t). Calculations are performed
with the aid of the BSIM software package [31]; for ad-
ditional details on the setup of the simulation, we refer
the reader to the Appendix.

For subsequent replicates of the simulation, we keep
these details the same, except that we divide the origi-
nal single colony into various discrete numbers of colonies
Ncolonies, and confine the colonies to occupy a specified
square area with side-length Lconfinement. Then, differ-
ent sized confinement squares tune the packing density of

the colonies, or the ratio of the total area of all colonies
to the area in which they are confined. This setup is
displayed in Figure 2. In all cases, the initial number
of cells n0 and final number of cells at full growth nmax

are the same as in the single-colony simulation. Con-
sequently, increasing values of Ncolonies gradually tune
the system from a state of a few large colonies, to one
of many smaller colonies, with a corresponding increase
in the concentration of interacting patches of spatially
extended subpopulations. Additionally, increasing areas
of confinement gauges the importance of inter-colony in-
teractions, because as the packing density decreases, so
does the average inter-colony spacing, and thus, the mag-
nitude of diffusive crosstalk between spatially separated
colonies.

We define a region of space as being activated if its
concentration of AI signal is above the quorum sensing
threshold cAIcrit . Figure 3(a) illustrates the fraction of
space that gets activated, at a sample intermediate time
of ten hours, for the different spatial geometries stud-
ied. At low colony number Ncolonies, corresponding to a
small number of highly clustered colonies, the system is
in a regime of local quorum sensing (LQS), where regions
near the individual colonies receive enough locally pro-
duced signal to enable rapid activation, in a manner that
is robust to the activity of neighboring colonies. This
robustness can be seen by observing how the activation
of the system changing as Lconfinement increases, cor-
responding to further separation between colonies. We
see that for Ncolonies < Nc = 18, the activation does
not vanish but approaches a finite limiting value. Mean-
while, for Ncolonies > Nc, the system is in a regime of
global quorum sensing (GQS), where activation is nec-
essarily communal in nature, triggered by the collec-
tive sharing of AI signal between all colonies. Here, as
Lconfinement increases, the activation level vanishes be-
cause individual colonies are too small to self-activate
without crosstalk from neighboring colonies. These ar-
guments are further corroborated in Figure 3(b), which
shows asymptotic long-time coverage in the deconfined
limit, Lconfinement → ∞, where the colonies are com-
pletely non-interacting. In this regime, it is even more
apparent that there is a discontinuous transition in ac-
tivation at Nc. In the Appendix, our numerical results
are compared to an analytical mean-field model which
captures the essential physics governing the transition.

Furthermore, working in non-dimensionalized units
(see Appendix for more details; for the purposes of conti-
nuity, we stick to conventional units throughout the main
manuscript) demonstrates that, despite the significant
number of input quantities in the model, the qualitative
behavior of the system is invariant to most of the detailed
parameter values, and instead, only depends on the basal
activity level of colonies, as determined by rb, the fold
change f upon activation, and the maximal cell number
nmax. The existence of a critical threshold Nc separat-
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FIG. 4: (a) A Pareto optimal curve of control parameters
(Noptimal(λ), Loptimal(λ)), parameterized by an affine param-
eter λ ranging from 0 to 1. Each value of λ maps on to an as-
sociated Pareto point in (Ncolonies, Lconfinement) parameter
space, such that, for a given waiting time from the moment
of initial colonization τ(λ) the overall coverage C (defined
in Figure 3) at τ is maximized (within the resolution of the
numerical simulations) - quantitatively, Cmax(λ) = C(τ(λ),
Noptimal(λ), Loptimal(λ)) ≥ C(τ(λ), Ncolonies, Lconfinement)
for all Ncolonies and Lconfinement. The red dots correspond
to the observed discrete values of (Ncolonies, Lconfinement),
while the black dotted line is a resulting best-fit interpola-
tion curve. Displayed below this optimal curve (Noptimal(λ),
Loptimal(λ)) is (b) a plot of the corresponding maximal cov-
erage Cmax(λ) vs. the waiting time τ(λ). The green lines
indicate a crossing from an LQS to GQS regime of quorum
sensing, resulting in a rapid onset of ‘diminishing returns’ in
throughput, relative to the latency cost.

ing these two regimes is independent of the fold-change
f , as activation of an isolated colony depends only on its
own basal activity and geometry, and is not influenced by
any possible activated neighboring colonies. In addition,
variations in the total cell number nmax and basal activ-
ity level rb simply shift Nc. In particular, increasing the

value of nmax simply increases Nc by increasing the num-
ber of divisions required to fine-grain individual colonies
to a size below the self-activation limit. Meanwhile de-
creasing rb simply decreases Nc by decreasing the basal
intensity per unit area, and thus the total basal intensity
for a given colony radius.

This transition between LQS to GQS is related to
tradeoffs between the signaling network’s latency, or
speed of activation, and its throughput, or the total spa-
tial range over which all the components of the system
communicate [32]. Communities in the LQS regime have
a reduced time to activation, but are restricted to short-
range communication. The large colony size leads to pro-
duction of signal near the colony center beyond what is
needed for local activation. The slow rate of signal dif-
fusion coupled with larger intercolony distances does not
allow the signal to effectively communicate with neigh-
boring colonies. On the contrary, although communities
in the GQS regime take longer to initiate activity, the
broadly distributed colonies of smaller size enable long-
range communication throughout the network of cells.

These tradeoffs are illustrated in Figure 4 describing
a Pareto optimal contour in parameter space, with each
point on the contour corresponding to a choice of pa-
rameters that, for a given waiting time from the moment
of initial colonization τ , optimizes the overall coverage
at that time, which we denote C(τ). The results show
that if one is primarily interested in rapid initiation, it
is preferable to be in the LQS regime, but that if one
is interested in having the maximum possible fraction of
space receive the signal in a reasonable amount of time,
it is preferable to be near the GQS regime.

These characteristics of the optimal contour are, to a
large degree, independent of slight variations in param-
eter values. As has already been discussed, changes in
ncells and rb simply shift Nc, and thus, only show up
as smooth deformations of the optimal contour, with the
qualitative form of the peak, as well as its dynamic varia-
tion, still intact. Furthermore, slight variations in the re-
maining free parameter, the fold change f simply amount
to changes in the steepness of the contour, by stretch-
ing or compressing the magnitude of separation between
active and inactive coverage levels. However, the fact
remains that in the GQS regime, Ncolonies > Nc, there
comes a point of ‘diminishing returns’, where coverage
eventually decreases as Lconfinement increases, due to ac-
tivation depending on the distance between neighboring
colonies. For additional numerical evidence validating
these physical arguments, we refer the reader to Figures
5(b) and 5(c) of the Appendix.

In summary, the results of this work clearly point to
the prediction of an experimentally observable transi-
tion between LQS and GQS behavior. This transition
is observed to be intimately connected to a tradeoff be-
tween short-term latency, optimized in the LQS regime,
and long-term throughput, optimized in the GQS regime.
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The qualitative results are independent of specific pa-
rameter values, being primarily a consequence of how
coverage dynamics scale as colony number and confine-
ment are varied. A natural follow-up to this work would
be exploring how the behavior of the tradeoffs is influ-
enced by heterogeneity, for example, due to the presence
of multiple species and single-cell stochasticity.
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APPENDIX

Continuous Formulation of Reaction-Diffusion
Equations

The dynamics of our system are governed by the
reaction-diffusion equation

(
∂

∂t
−D∇2 + γ)cAI = r(cAI)ccell(~x, t) , (3)

where D and γ are respectively the AI signal diffusivity
and decay, and r is the local, AI-concentration-dependent
signal production rate of the cells, given by

r(cAI) = rb(1 + fθ(cAI(~x, t)− cAIcrit)) . (4)

Here, rb is the basal AI production rate of the cells in the
absence of any activation, while cAIcrit is the threshold AI
concentration for cells to transition to an activated state,
with a fold change f ratio increase in synthase gene ex-
pression, and thus AI production rate.. We take the acti-
vation to be instantaneous, modeling it via the Heaviside
theta function θ, which is a reasonable approximation to
the smoother Hill function as long as the timescale of the
activation reaction is much faster than that of diffusion or
signal production. With this setup, the time-dependent
cell density profile ccell(~x, t) serves as a tunable input
driving signal, generating an output cAI(~x, t).

As discussed in the text, the cell density is divided into
a discrete number of equally sized building-block pieces
centered at an equivalent number of colony center points,
with each building-block representing a separate colony.
The building-blocks are taken to have a given cell density
c̄colony, representing the number of cells per unit area in
a colony, and a time-dependent radius R(t), represent-
ing colony growth. Thus, a given building-block density
profile, for a colony centered at ~x0, is

ccolony(~x, t; ~x0, R(t)) =

{
c̄colony |~x− ~x0| ≤ R(t)

0 |~x− ~x0| > R(t).
(5)

With this notation, if we confine our cells to a square
area Aconfinement = Lconfinement ×Lconfinement, then a
general cell density profile ccell can be written as a linear
superposition of all colonies in the system

ccell(~x, t) =

Ncolonies∑
i=1

ccolony(~x, t;R(t), ~x0i(Lconf.)) (6)

where Ncolonies is the total number of colonies, {~x0i} is
the set of colony centers and R(t) is the colony radii,
which is constant for all colonies. As shown in equa-
tion (6), the possible center positions are functionally
constrained by the confinement area. We will discuss
the choice of the {~x0i} momentarily, but first we ad-
dress determination of R(t). We proceed by noting that
the total number of cells ncells in the system starts at
a given initial number n0, then exponentially grows to
a given maximum level nmax, with a given time con-
stant t1/2, at which point the cells immediately stop di-
viding. The time tmax at which the population reaches
this maximum level can easily be calculated by setting
nmax = n0e

tmax/t1/2 , which gives

tmax = t1/2 ln(nmax/n0) . (7)

Thus, the explicit time-dependent profile for the total
number of cells is

ncells(t) =

{
n0e

t/t1/2 0 ≤ t ≤ tmax

nmax tmax < t .
(8)

To relate this to colony radii, we note that the total
cell density profile ncell, for all replicates, must satisfy
the normalization condition∫ L/2

−L/2

∫ L/2

−L/2

d2~x ccell(~x, t) = Ncells(t) . (9)

Thus, if the total number of cells is equally divided
between Ncolonies number of colonies, each with uniform
cell density c̄colonies, then it follows that the radius R(t)
of each colony must be equal to

R(t) =
1

Ncolonies

√
ncells(t)

πc̄colonies
. (10)

We note that it follows immediately from this result that
the radius of a single colony at full growth is given by

Rcolony =
1

Ncolonies

√
nmax

πc̄colonies
. (11)

With this information, we now proceed to identify a
range of possible colony centers - in particular, we would
like to calculate, for a given number of colonies Ncolonies,
each with radius at full growth Rcolony, and confined to
an Lconfinement × Lconfinement square, the probability
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distribution over the Ncolonies-dimensional random vec-
tor of colony centers ~X0 = (~x01, ~x02, ..., ~x0Ncolonies

). The
range of allowed center positions is set by two constraints:
1) no center can be closer than a distance Rcolony to
the edge of the square of confinement, to ensure that no
cells leave the confinement boundary, and 2) colony cen-
ters must be separated by a distance of at least 2Rcolony

in order to avoid overlap. Thus, the probability distri-
bution p( ~X0) is simply a uniform distribution over all
colony center combinations that remain within the pre-
scribed boundaries and which do not contain pairs of
points closer than the cutoff separation. While an ana-
lytical form of this distribution is, in general, untenable,
it is straightforward to implement numerically.

Non-Dimensionalization

We can reduce the total number of independent pa-
rameters by transforming to unitless dimensions of space,
time, molecular and cellular concentrations. We start
with our governing equation,

(
∂

∂t
−D∇2 + γ)cAI = r(cAI)ccell(~x, t) , (12)

with

r(cAI) = rb(1 + fθ(cAI(~x, t)− cAIcrit)). (13)

If we make a change of variables to unitless quantities,
via the prescription

(~̃x, t̃, c̃AI , c̃cell) = (

√
γ

D
~x, γt,

cAI

cAIcrit

,
ccell
c̄colony

) , (14)

then equation (20) adopts the non-dimensionalized form

(
∂

∂t̃
− ∇̃2 + 1)c̃AI = r̃(c̃AI)c̃cell(~̃x, t̃) . (15)

Thus, c̃cell is now a unitless source field that adopts dis-
crete Boolean values of either 0 (corresponding to no cells
present at a particular point in space and moment in
time) or 1 (corresponding to cells being present with den-
sity c̄colony). Furthermore, the activation function (13)
has been transformed into the rescaled, unitless form

r̃(c̃AI) = (
rbc̄colony
γcAIcrit

)(1 + fθ(c̃AI − 1)). (16)

The first set of parameters in parentheses on the right-
hand side is nothing more than the unitless steady-state
basal intensity of a point source of density c̄colony, as can
be seen by setting the rate of production equal to the
rate of decay, rbc̄colony = γcSS , from which it is easily
shown that

c̃SS =
cSS

cAIcrit

=
rbc̄colony
γcAIcrit

. (17)

Summarizing, we have shown that, through judicious
choice of units, the behavior of the system depends on
significantly fewer parameters than we started out with
- in particular, only the basal activity level c̃SS and the
fold change upon activation f tune the output autoin-
ducer response c̃AI(~̃x, t̃) for a given input cell source pro-

file c̃cell(~̃x, t̃).

Discretization and Computation

Discretization of the continuous reaction-diffusion sys-
tem for numerical computation is fairly straightforward.
We perform calculations in a simulation box of dimen-
sions Lbox

x × Lbox
y × Lbox

z where Lbox
x and Lbox

y are set
to be ∆L = 5 cm greater than the confinement length
Lbox
x = Lbox

y = Lconfinement + ∆L, in order to reduce

finite-size numerical artifacts, and Lbox
z = 1 µm. Con-

tinuous functions are discretized into an Ngrid
x ×Ngrid

y ×
Ngrid

z mesh of rectangular units, each unit consequently

having dimensions
Lbox

x

Ngrid
x
× Lbox

y

Ngrid
y
× Lbox

z

Ngrid
z

. Mesh units

are chosen such that
Lbox

x

Ngrid
x

=
Lbox

y

Ngrid
y

= 500µm, with

Ngrid
z = 1. In addition, time is discretized into win-

dows of length δt = 60 minutes, which for a simula-
tion over a time period tsim = 30 days results in tsim/δt
evenly sampled time points. Thus, the continuous func-
tions cAI(~x, t) and ccell(~x, t) are each replaced by an
Ngrid

x × Ngrid
y × Ngrid

z × δt array of numbers in the x,
y, z and t coordinates, respectively. In the quasi-2d
limit studied in this work, where Ngrid

z = 1, and thus
we can refer to the discretized version of a function by
f(~x, t)→ f [ix, iy, it], where ix and iy represent the mesh
of points in the x and y directions, it represents a time
point, and it is implicitly understood that we are fixed
at the sole lattice point in the z direction.

The input cell density profile array is constructed as a
superposition of the corresponding colony building-block
arrays, as shown in Equation (6), with the colony centers
chosen at random to avoid overlap and remain within
confinement boundaries, as described previously. Five
different replicates were run for each value of Ncolonies

and Lconfinement, and the mean and standard error are
calculated (note that in the limit of either a single colony
or unconfined, infinitely separated colonies, there is no
variation between different replicates, so the standard er-
ror is trivially zero). For explanatory purposes, it suffices
to describe how to construct a single colony.

Each colony is discretely build up the density using
units such that at time t = 0, one point has been
added, at the mesh unit associated with the correspond-
ing colony center. Then, the colony will grow over the
time window 0 < t < tmax, via the sequential addition of
discrete points, until Nmax/N0 points have been added.

When building up a system consisting of Ncolonies to-
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tal colonies, in order to ensure a final total intensity of

cell number ncells(t)
Ncolonies

in each individual colony, we build
up any individual points in discrete intensity values of
n0

nmax

ncells(t)
Ncolonies

.
With this information, then, for a colony, centered at

a point (x0, y0), the coordinates of each successive point
(x, y) are parametrized by a discrete Archimedean spiral,

(x[n], y[n]) = (x0, y0) +
1

Ncolonies
×
√
n

× (Cos(2π
√
n),Sin(2π

√
n)) µm

(18)

where n = 1, 2, ..., nmax

n0
. This explicit form of the

parametrization guarantees that upon completion of
growth, the radius of the spiral disk is approximately
equal to the desired maximum radius Rmax. This com-
pletes the necessary information required to construct a
density profile for individual colonies, and by superposi-
tion, entire cellular communities.

Numerical Tests of Model and Parameter
Robustness

As discussed earlier, nondimensionalization reduces
the number of independent parameters to three: the
basal rate rb, the total number of cells nmax and the fold
change f . Additionally, the major assumption of our
model is approximation a smooth sigmoidal activation
function function with a Boolean Heaviside-step func-
tion. Specifically, a more realistic representation of the
activation is given by a Hill function with Hill coefficient
b:

rHill(cAI) = rb(1 +
f

1 + ( cAI(~x,t)
cAIcrit

)−b
) . (19)

In the limit that b → ∞, equation (19) reduces to the
numerically simpler approximation of equation (21).

A change of cell number nmax will simply shift
the number of colony divisions required for individual
colonies to reach the LQS/GQS threshold. In particular,
if with nmax cells, the critical colony number is Ncrit, cor-
responding to a point where each colony has nmax

Ncrit
cells

individually. Then, if we scale nmax by a factor a, in-
dividual colonies will now simply reach the critical cell
number per colony at a scaled aNcrit.

To assess the robustness of our qualitative results to
changes in the remaining parameters and the Heaviside
approximation, we collect data for steady-state coverage
in the limit of unconfined, infinitely separated colonies
(Figure 3(b) in the main text). In Figure 5, we com-
pare the results generated with the default parameters
used in the main text with changes in basal rate, fold
change, and sharpness of the activation function. In all
cases, while parameter variations shift transition points

(a)

(b)

(c)

FIG. 5: Changes in the asymptotic coverage level curve as a
function of Ncolonies, in the limit of deconfined, or infinitely
separated colonies for variations in (a) sharpness of the ac-
tivation (relaxing the instantaneous Heaviside-step function
with a Hill curve with coefficient b = 20, (b) basal production
rate rb and (c) fold change f .

or sharpness of separation between activated and inac-
tivated coverage levels, the existence of these transition
points and separations remains intact, rendering the pre-
diction of an LQS/GQS boundary insensitive to model
parameter variations.
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Analytical Mean-Field Theory

In this section, we will derive an analytical mean field
theory to predict the LQS-GQS phase diagram, and com-
pare these analytical results with the numerical simula-
tions. Recall that, for long times, our time-independent,
steady state solutions will satisfy

(γ −D∇2)cAI − r(cAI)ccell(~x) = 0 , (20)

where D and γ are respectively the AI signal diffusivity
and decay, and r is the local, AI-concentration-dependent
signaling rate of the cells, given by

r(cAI) = rb + (ra − rb)θ(cAI(~x)− cAIcrit) . (21)

For the system to be completely activated, we require
that the concentration of cAI at any point with a nonzero
ccell density be above the threshold. Note that we are
keeping the total number of cells ntotcells fixed, but dividing
it out into ever more colonies Ncolonies, such that there
are ntotcells/Ncolonies cells per colony. And since we are
keeping cell density of colony, c̄colony fixed, the number of
colonies Ncolonies automatically sets the long-time radius
of each colony

Rcolony = (
ntotcells/Ncolonies

πc̄colony
)1/2. (22)

The remaining ambiguity concerns a choice of explicit
parameterization of the long-term form of the steady
state cell density ncell(~x). In this work, we characterize
ncell completely with the above mentioned parameters,
plus one other: Lconfinement, defined as the side-length
of a square region of space that the cells are allowed to
occupy. Then, for a given boundary size Lconfinement,
given colony radius Rcolony and given total number of
colonies Ncolonies, we consider the ensemble of all pos-
sible non-overlapping colony disk configurations that lie
completely within the Lconfinement square region.

Thus, a given system realization is characterized by
the following eight independent parameters: γ, D, rb,
cAIcrit , c̄colony, Rcolony, Ncolonies and Lconfinemenet. The
two related questions that I now pose are these: for given
values of the first five parameters γ, D, rb, cAIcrit , c̄colony,

1. What is the critical colony radius Rcrit
LQS beyond

which an individual colony, with Rcolony > Rcrit
LQS ,

will self-activate via LQS in the limit of no neigh-
boring influence?

2. For subcritical colony radii Rcolony < Rcrit
LQS , how

do the parameters Ncolonies and Lconfinement set
limits on the additional range of radii that allow
the entire system can group-activate via GQS?

LQS Threshold

We begin with setting a bound on the LQS regime by
calculating the steady-state concentration at the center
of an isolated colony with radius Rcolony and cell density
c̄colony. To start, let us just imagine that all cells are
only producing at the basal rate, so that the governing
equation becomes a simpler, linear equation

(γ −D∇2)cAI = rbccell(~x) , (23)

We assume that a single-cell point source at the origin
can be modeled as Dirac-Delta function,

cpointcell (~x) = δ(~x). (24)

Then, the exact solution in two dimensions is

cpointAI (~x) =
rb

2πD
K0(

|~x|√
D/γ

) (25)

where K0 is the zeroth-order Bessel function of the sec-
ond kind. Thus, by the superposition principle, for an
arbitrary cell density distribution ncell,

cAI(~x) =
rb

2πD

∫
d2~x

′
ccell(~x

′)K0(
|~x− ~x′ |√
D/γ

). (26)

Thus, for an isolated colony of uniform cell density
c̄colony, centered at the origin, with a radius Rcolony, the
AI concentration at the center in the absence of any ac-
tivation would be

cisolatedAI (0) = (
rbc̄colony

2πD
)(2π)

∫ Rcolony

0

dr rK0(
r√
D/γ

)

(27)
which evaluates to

cisolatedAI (0) =
rbc̄colony√

Dγ
(

√
D

γ
−RcolonyK1(

Rcolony√
D/γ

)).

(28)
Therefore, to identify the critical self-activation (via
LQS) radius Rcrit

LQS , we can set the above equation equal
to the critical AI concentration cAIcrit and solve for the
radius:

cAIcrit =
rbc̄colony√

Dγ
(

√
D

γ
−Rcrit

LQSK1(
Rcrit

LQS√
D/γ

)). (29)

More instructively, we can write this relation in the form

1− (
cAIcritγ

rbc̄colony
) =

Rcrit
LQS√
D/γ

K1(
Rcrit

LQS√
D/γ

). (30)

The parameters we used in this work were
cAIcrit = 100 molecules/µm3, γ = 0.01/hr,
rb = 500 molecules/cell/hr, c̄colony = 1 cell/µm3,
D = 160 µm2/s and ntotcells = 7000× 103 cells. Plugging
in, we find Rcrit

LQS ≈ 230 µm, which yields ncritLQS ≈ 40.
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FIG. 6: Mean Field Phase Diagram calculated as described in
this SI. The analytical results qualitatively reproduce the nu-
merical results on the LQS/GQS transition, while the quanti-
tative discrepancy may be attributed to the unrealistic treat-
ment of the ‘near-field’ source region, namely, approximation
it as a Dirac-Delta point source.

GQS Boundary

Now, we turn to the question of limits on GQS acti-
vation in the case where Rcolony < Rcrit

LQS . To answer
this, we must add to the AI concentration at the cen-
ter of an individual colony the contribution arising from
the Ncolonies − 1 neighboring colonies. This contribu-
tion is distributed over a range of all possible values that
arise from the ensemble of non-overlapping disk configu-
rations occupying the square region of size Lconfinement.
For simplicity, let us in this mean-field theory assume
that we can coarse grain any neighbors into a continuous
metapopulation cell density, equal to the average number
of cells in the confined square area,

c̄meta =
ntotcells

L2
confinement

. (31)

Let us also for simplicity assume that Lconfinement >>
Rcolony, and that the Bessel source function decays
rapidly enough such that we can effectively take
Lconfinement ≈ ∞ for the purposes of calculation.

Then, we must modify equation (33) to include not
just the single-colony contribution at the center cAI(0),
but also the neighbor contribution

cneighborsAI (0) ≈ (
rbc̄meta

2πD
)(2π)

∫ ∞
Rcolony

dr rK0(
r√
D/γ

)

(32)
which evaluates to

cneighborsAI (0) ≈ rbc̄meta√
Dγ

(RcolonyK1(
Rcolony√
D/γ

)). (33)

So now, if we modify our threshold condition, equation
(29), such that the sum cisolatedAI +cneighborsAI equals cAIcrit ,
we get a set of solutions (Rcrit, c̄metacrit) that satisfy

cAIcrit =
rbc̄colony√

Dγ
(

√
D

γ
−RcritK1(

Rcrit√
D/γ

)) (34)

+
rbc̄metacrit√

Dγ
(RcritK1(

Rcrit√
D/γ

)).

Solving for this critical set (Rcrit, c̄metacrit
), and

converting the results to the equivalent in (Ncrit,
Lconfinementcrit) parameter space, we get the ‘phase di-
agram’ shown in Figure 6.

Discussion

As seen in the phase diagram, the essential qualitative
results of the LQS/GQS transition are captured by the
analytical mean-field model. However, the quantitative
agreement between the analytical theory and numerical
simulations is not as strong - in particular, the mean-field
theory appears to overestimate the LQS boundary by a
factor of two, with the resulting GQS boundaries being
similarly distorted. The origin of this discrepancy can
be attributed to the simplifying approximation used in
equation (25), namely, treating a finite-radius cell as a
localized Dirac Delta function point source. In Figure 7,
we compare the actual numerical results for the steady-
state concentration due to a single cell with the analyt-
ical prediction of the point-source Green’s function. As
is seen, the two curves agree well at very long distances
from the source, or in the ‘far-field’ region. However, the
analytical approximation increasingly overestimates the
concentration closer to the source, or in the ‘near-field’
region. Thus, a tentative physical interpretation of our
results would be that the qualitative system behavior is
well described by a far-field analytical mean field theory,
with ‘effective’ phase boundaries arising from the effects
of near-field corrections. A natural future extension of
this research would be in developing more accurate ana-
lytical models that quantitatively expain how near-field
effects renormalize the phase diagram boundaries.
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FIG. 7: Here, we compare the actual numerical results for the
steady-state concentration due to a single cell with the the
results predicted from our analytical ‘point-source’ Green’s
function approximation. The unrealistic approximation of the
physics close to the cell (the ‘near-field’ region) explains the
quantitative discrepancy between the two curves, and by ex-
tension, the corresponding quantitative disagreement between
our analytically predicted and numerically observed phase di-
agrams.
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