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We provide a tool for data-driven modeling of motility, data being time-lapse recorded trajectories.
Several mathematical properties of a model-to-be-found can be gleaned from appropriate model-
independent experimental statistics, if one understands how such statistics are distorted by the
finite sampling frequency of time-lapse recording, by experimental errors on recorded positions,
and by conditional averaging. We give exact analytical expressions for these effects in the simplest
possible model for persistent random motion, the Ornstein-Uhlenbeck process. Then we describe
those aspects of these effects that are valid for any reasonable model for persistent random motion.
Our findings are illustrated with experimental data and Monte Carlo simulations.

The molecular mechano-chemistry of migration has
been studied and modeled in great detail [1–5]. This un-
derstanding of the molecular mechanisms of cell motility
does not explain observed migratory patterns, however;
not yet. They are studied phenomenologically [6–12],
with a few motility models for bacteria as sophisticated
exceptions [13–15].

For many years, Fürth’s simple formula [16] for the
mean squared displacement was the standard formula
with which experimental trajectory data were analyzed
phenomenologically [17–21]. More recently, interest in
new models and methods has surged [7, 10, 22–35], in
some cases [7, 27, 28] using conditional averaging [36, 37]
to determine model features directly from experimental
data.

This article has three main points. First, fitted model
parameters obviously should not depend on details of the
experimental protocol. Specifically, when one fits a motil-
ity model that is formulated in continuous time, to ex-
perimental trajectory data that were time-lapse recorded,
the fitted values of the model’s parameters should not de-
pend on the duration of the time-lapse [38, 39], nor on
localization errors, nor on the duration of the recorded
trajetory/trajectories. So it is not a viable strategy to
fit a continuous-time model directly to data. One must
know how to connect discrete-time data with continuous-
time models. Anything less may lead to wrong conclu-
sions [40].

The second point of this article is that several differ-
ent models have identical expressions for simple statistics
such as the much-used mean-squared displacement and
the too-little-used power spectrum. Consequently, agree-
ment between model and experiment as regards these
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statistics is a necessary, but insufficient demonstration
of agreement in the process of finding the correct motil-
ity model for an organism. Additional properties of the
model must be checked as well in order to show that
data are consistent with a model, or to select a candi-
date model among several. Specifically, if one’s model
is a stochastic differential equation, one can check with
conditional averaging that each term in this equation is
consistent with data. Conversely, if one is searching for
a stochastic differential equation that will describe given
trajectory data, conditional averaging of data will reveal
which terms are needed.

As third point we stress the importance of reporting
reliable error bars on fitted model parameters in order
to facilitate comparison of results from different exper-
iments. Reliable error bars are most easily obtained
by fitting the model to uncorrelated representations of
data, if available. For models that are linear stochas-
tic differential equations with constant coefficients, the
power spectrum of time-lapse recorded displacements is
a highly relevant example of an uncorrelated representa-
tion of data. A theory should be fitted to this statistics
instead of highly correlated representations of data such
as the the mean-squared displacement and the velocity
auto-covariance.

We use cell motility data to illustrate our findings,
but our results are relevant also for other types of
tracking experiments and models, such as models in
ecology for animal movement or foraging processes
(see, e.g., [41, 42]), and for studies of systems showing
anomalous diffusion [43].

The rest of this article is organized as follows:

• Section I presents a seven-step protocol for how to
analyze cell motility data in a data-driven manner.

• Section II explains and demonstrates this protocol
by applying it to experimental data.

• Section III describes the trade-off between low and
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high sampling rates (large and small time-lapses).

• Section IV presents the simplest possible model for
persistent random motion, the Ornstein-Uhlenbeck
(OU) process. The physical meaning of its terms is
explained using conditional averaging.

• Section V explains known results for the Ornstein-
Uhlenbeck (OU) process.

• Section VI describes how these results must be
amended in order to agree with time-lapse recorded
data. We give algorithms for how to Monte Carlo
simulate time-lapse recorded positions, true veloci-
ties, and “secant velocities,” by which we mean the
approximation to the true velocity based on the fi-
nite difference between two consecutive positions in
a time-lapse-recorded trajectory.

• Section VII further amends known results to ac-
count for the effect of localization errors, and we de-
scribe how to fit the power spectrum of the secant-
approximated velocities with Maximum Likelihood
estimation.

• Section VIII discusses the effects of a finite mea-
surement time.

• Section IX concludes and discusses results.

Some known results that our new results build on
are repeated in order to make the text reasonably self-
contained and because they are benchmarks. Details of
calculations have been relegated to appendices. Supple-
mental Materials (Tables I and II) summarize our nota-
tion [44].

I. STEP-BY-STEP DATA ANALYSIS

We recommend that the seven steps listed below are
followed in order to compare a candidate theory with
experimental cell trajectories. We illustrate each step
in Fig. 1, using experimental data. The remainder of
this article motivates our recommendations in detail with
mathematical analysis. This analysis can be skipped. Its
results can still be explored through Monte Carlo simula-
tion. We illustrate that. This is of practical importance
in the lab: Consequences of various assumptions about
data and noise are easily explored by numerical simula-
tions.

The experimental data explored in Fig. 1 are time-
lapse recorded trajectories of individual mouse fibrob-
lasts from cell line NIH3T3 on an isotropic silicon sur-
face [45]. We choose the OU-process as candidate model
for the continuous-time process that produced the contin-
uous cell trajectory from which these data were sampled.
The OU-process is explained in detail in Sec. IV.
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FIG. 1. (Color online). First of seven steps comparing the-
ory with experimental motility data. (a) Trajectory start-
ing at the origin and sampled with time-lapses ∆t = 4 min
(alternating black and red (light gray) dots). The number
of time-lapses is N + 1 = 257. (b) Scatter plot of secant-
approximated velocities (ux, uy) [see Eq. (1)] from Panel (a)
for sample time ∆t = 8 min [red (light gray) dots in Panel (a)].
(c) The distribution of the squared secant-approximated ve-
locities u2 = u2

x + u2
y for sample time ∆t = 8 min. The inset

shows the same histogram with lin-log axes. The red (light
gray) straight line is the graph of the exponential distribution
given in Eq. (66), with parameters resulting from the fit to the
power spectrum shown in Fig. 2(e). Pearson’s χ2 goodness-
of-fit test gives p-value 0.20 for this exponential distribution.
So this aspect of these trajectory data is consistent with an
exponential distribution and hence with the OU-theory.
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A. Seven steps

1. Plot the time-lapse recorded trajectory [Fig. 1(a)],
and derive its secant-approximated velocities.
Check that these velocity data are consistent
with the assumption (if made) that velocities are
isotropic in distribution [Fig. 1(b)]. They are in
the OU-model. The velocity data should be con-
sistent with an isotropic distribution, if the cell en-
vironment is isotropic. When data are isotropic,
only rotation-invariant quantities are of interest,
and their statistics is much improved by averaging
over directions, as illustrated in Fig. 1(c).

2. If many trajectories are recorded across a surface,
check also that velocities do not depend on posi-
tions, if independence of positions is assumed—it
is in the OU-model. It should be assumed for data,
if the surface and the environment were prepared
to be translation invariant (Fig. 3 in [7]; Fig. S4
and S5 in [28]).

3. Compute and plot both the mean squared dis-
placement and the velocity auto-covariance—there
is nothing wrong in doing that, it is conventional
and useful [Fig. 2(a–d)]. Just do not fit a theory
to these quantities, because both are correlated in
time, and your fitting routine probably does not
take that into account. So it will return unreliable
results. This is vividly demonstrated for the sim-
pler, less correlated case of free diffusion in [46, 47].
We recommend fitting to the power spectrum of the
secant-approximated velocities [Fig. 2(e,f)].

4. Make a goodness-of-fit test to ensure that the fit to
this power spectrum is indeed consistent with data
[Fig. 2(e), inset]. If that is not the case, the model is
rejected, unless an explanation can be found and a
new test demonstrates consistency between theory
and data.

5. Test statistical properties of the model that go be-
yond the properties of the second moment (mean
squared displacement, velocity auto-covariance,
and velocity power spectrum are all second mo-
ments; they are all bi-linear in the velocity). Test
statistics should take into account the finite sam-
pling time and the influence of localization errors
[Fig. 3].

6. Ensure that the values extracted for the param-
eters of the continuum model are independent of
the sampling time [Fig. 4].

7. Calculate error bars on fitted parameters from sim-
ulated data with fitted parameters as input [Fig. 4].

The results in Figs. 2–4 illustrate our recommendations
and our main results. Below, we give details.

II. SIMPLE PLOTS OF EXPERIMENTAL DATA

The experimental data are presented in Fig. 1. Fig-
ure 1(a) shows the cell trajectory as alternating black
and red (light gray) points. The trajectory was recorded
with time-lapse ∆t = 4 min. The red (light gray) points
mark the subset of points that time-lapse recording with
∆t = 8 min would result in, if started at the same
time. Figure 1(b) shows a scatter plot of the secant-
approximated velocities

~uj = (~ri − ~ri−1)/∆t (1)

for the trajectory with time-lapse ∆t = 8 min and illus-
trates the isotropy of the motion. Here ~rj = ~r(tj) is
the experimentally recorded position at time tj . Finally,
Fig. 1(c) shows a histogram of the squared secant-speed
u2 = |~uj |2. If the data are consistent with an OU process
then u2 is exponentially distributed (see Sec. VII A). The
red (light gray) straight line in the inset shows the expo-
nential distribution defined in Eq. (66) with parameters
from the fit to the power spectrum in Fig. 2(e). A Pear-
son’s χ2 goodness-of-fit test gives a p-value equal to 0.20.
That is, the data are consistent with an exponentially
distributed squared speed.

Below, the trajectory of red (light gray) points,
recorded with ∆t = 8 min, is analyzed. As we go through
the rest of the steps outlined above, we argue that the
data are indeed consistent with an OU-process. We
demonstrate that this validation requires that we model
the effects of finite sampling time and localization er-
rors. Finally, we demonstrate that better time resolution
in the same experiment, ∆t = 4 min, reveals structure
in the trajectory that is not captured well by the OU-
process, while sampling with ∆t = 16 min is, and with
the same result for fitted parameter values. This illus-
trates that the agreement between the continuous-time
model and the time-lapse recorded data is independent
of the duration of the time-lapse down to a lower limit.

This independence above the lower limit is necessary
for the modeling to be meaningful, while the lower limit
reminds us that all modeling is approximate: More in-
formation requires more detailed models and will result
in a nested hierarchy of models in which the OU-process
is just the first model after the simplest possible, which
is simple diffusion.

A. Simple initial tests of data and goodness-of-fit

test

As initial test, we analyze the data with three differ-
ent methods: (i) the mean-squared displacement (MSD)〈
[~r(t) − ~r(0)]2

〉
using Fürth’s formula [Eqs. (84)], (ii)

the auto-covariance of the secant-approximated veloc-
ities [Eq. (81)], and (iii) the power spectrum of the
secant-approximated velocities [Eq. (76)]. These quan-
tities are shown in the left column in Fig. 2. The param-
eters of the OU-model—see Eq. (9)—are obtained from
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(f)

FIG. 2. (Color online). Comparison of experimental data and three model simulations done with parameter values determined
from experimental data. N + 1 = 129 consecutive positions were recorded with time-lapse ∆t = 8 min. Left column: ex-
perimental data compared to theory. Theoretical curves have parameter values obtained from a fit to the power spectrum in
Panel (e). Fitted parameters are persistence time P = 17.8 min, diffusion constant D = 1.1 (µm)2/min, and localization error
σpos = 1.1µm. Right column: data from three Monte Carlo simulations of OU-model. Model parameters used in simulations
were those estimated from experimental data in Panel (e). Data of same color are generated from the same simulated trajectory.
Blue (full) curves are the theoretical curves, while dashed lines connect simulated points. Panels (a)-(b) show the mean-squared
displacements (MSD) calculated with Eq. (A1) and the theoretical curves from Fürth’s formula [Eq. (84)]. Panels (c-d) show
the auto-covariance of the secant-approximated velocities calculated with Eq. (A2) and with theoretical curves from Eqs. (81–
83). The simulated data in Panels (b) and (d) are correlated between panels for pairs of same color (gray scale), because
they were obtained from the same trajectory and because the mean-squared displacement essentially is a double integral of the
velocity auto-covariance. Panels (e)-(f) show the power spectrum Pu(fk) of the secant-approximated velocities and the fit using
Eq. (76) and Maximum Likelihood Estimation [see Sec. VII C]. Inset in Panel (e): Power spectral data are uncorrelated by
construction for the OU-process. That makes a goodness-of-fit test straightforward when the distribution of the power spectral
values around the expected value is known [Eqs. (77,79)]. Red (light gray) points indicate the expected number of counts in
each bin. A χ2-goodness-of-fit test gives a p-value equal to 0.91, which, by being larger than 5%, shows that theory and data
are consistent with each other according to the highest level of significance in common use.
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(e)

FIG. 3. (Color online). Test of the OU model. Statistics of the acceleration of secant-approximated velocities. Panels (a) and

(b) show as black dots the acceleration of secant-approximated velocities in the directions parallel a‖ and orthogonal a⊥ to the
velocity, respectively, for the experimental trajectory shown in Fig. 1(a) sampled with ∆t = 8 min. (Red (light gray) dots in
Fig. 1(a) show the N + 1 = 129 sampled positions.) The blue (full) lines show the theoretical expected values [Eq. (69)] for
parameter values obtained by fitting to the power spectrum in Fig. 2(e), resulting in persistence time P = 17.8 min, diffusion
constant D = 1.1 (µm)2/min, and localization error σpos = 1.1µm. Panels (c)–(e) show the elements of the variance-covariance
matrix with the expected values obtained from Eq. (73). Red (light gray) data points with error bars were obtained by binning
data shown as black data points in bins on the u-axis of secant speeds.
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FIG. 4. (Color online). Goodness-of-fit and fitted val-
ues for model parameters for experimental trajectory in
Fig. 1(a) recorded with three diffrent values of the time-lapse
∆t. (a) Resulting p-values from χ2-goodness-of-fit tests of
the ratio of experimental and fitted power spectral values,

2|~̂uk|
2/Pu(fk)tmsr (see Sec. VII D). (b)–(d) Mean and stan-

dard deviation of the fitted parameters for the diffusion coef-
ficient D, the persistence time P , and the localization error
σpos, respectively, versus time-lapse ∆t. The values shown
for the standard deviations were obtained from fits to power
spectra generated from trajectories simulated with Eq. (32)
plus a localization error with standard deviation σpos. The
number of point in the trajectories are N + 1 = 257, 129 and
65, respectively. Notice how the fitted parameter values do
depend significantly on the duration ∆t of the time-lapse for
∆t ≥ 8 min, but also that the values obtained for different
values of N are not independent, as they stem from the same
experimental trajectory sampled with different values for ∆t.

a fit to the power spectrum in Fig. 2(e) and gives the
persistence time P = 17.8 min., the diffusion coefficient
D = 1

2σ
2P 2 = 1.1 (µm)2/s, and the standard deviation of

the localization error σpos = 1.1µm. Here, σ is the ampli-
tude of the random component of the acceleration. The
curves in Figs. 2(a) and (c) are the theoretical curves ob-
tained from these values. They are not fits to the experi-
mental values for the mean-squared displacement, nor to
the auto-covariance function of the secant-approximated
velocities.

At first glance all three properties look reasonable, but
the mean-squared displacements and the auto-covariance
of the secant-approximated velocities are problematic.
First, fits to these quantities are highly sensitive to the
chosen range of times in which one fits to these quanti-
ties. To the best of our knowledge, no rigorous criterion
exists for how to choose this range [47]. This introduces

an arbitrary component into results of such fits. Sec-
ondly, the data are correlated. This is clearly seen in
Fig. 2(b) and (d). They show simulated data with param-
eter values for P and D taken from the fit to the power
spectrum in Fig. 2(e). The blue (full) lines are the the-
oretically expected values for the same parameters. The
simulated data of a given color (gray scale)—i.e., from a
given simulation—fall mainly on the same side of the the-
oretical curve which represents their expected value, i.e.,
the simulated data are highly correlated. This has the
consequence that the error bars on fitted parameters are
unreliable for fits done as if the data were uncorrelated.
Finally, the distributions of the scatter of the data points
around their theoretical expected values are unknown,
which makes a fit to the theory nontrivial [48] and ob-
scures a goodness-of-fit test. A fit to the power spectrum
does not have these problems. The power spectral values
are uncorrelated by construction for any linear stochastic
differential equation driven by additive noise and hence
for the OU-process. That is illustrated in Fig. 2(f). Here
the data points for the three different simulations fluc-
tuate around the theoretical curve. For the OU-process,
the distribution of the scatter around the theoretical ex-
pected values is known (see Sec. VII D). These two prop-
erties allow for a straight-forward goodness-of-fit test, see
the inset in Fig. 2(e). The goodness-of-fit test is impor-
tant as fitted values for the model parameters only can
be trusted if the data are consistent with the theory.

B. Additional model properties and associated

tests

One of the main points of this article is that even if a
fit to the power spectrum is consistent with data, it does
not prove that the data are consistent with the model. As
discussed below, several theories can give rise to the same
power spectrum. A rigorous test examines the extent to
which the model itself, term by term, is consistent with
data. For the OU-process in Eq. (9), e.g., the expected
value of the acceleration ~av is, for given velocity ~v,

〈~av〉~v =

〈
d~v

dt

〉

~v

= −P−1 ~v, (2)

i.e., the acceleration is proportional to the velocity. Also,
the auto-covariance matrix of the acceleration, given a
velocity ~v, is

〈(~av(t1) − 〈~av〉~v) ⊗ (~av(t2) − 〈~av〉~v)〉

= σ2
(

1 0
0 1

)

δ(t1 − t2),
(3)

where δ(t) is Dirac’s delta function and ⊗ denotes the
outer product. Naively, one might expect that the equiv-
alent relations for the acceleration calculated from the
secant-approximated velocities ~uj = (~ri−~ri−1)/∆t would
be similar. That is not the case, not even in the limit
of vanishing time-lapse ∆t/P → 0, as demonstrated in
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Sec. VI D and VII B. In Fig. 3 we plot the measured
secant acceleration—specifically, its components parallel
and orthogonal to the measured secant velocity ~uj [Pan-
els (a) and (b)]—as well as the elements of the equal-time
variance-covariance matrix for these components [Pan-
els (c)-(d)]. The blue (full) straight lines shown were not
fitted to the data shown. Instead, the parameter values
obtained from the fit of the theory to the power spectrum
[Fig. 2(e)] were used as input parameters to the theoreti-
cal expressions for the expected values for the quantities
shown [Eqs. (69,73)]. Figure 3 shows that the experi-
mental data are indeed consistent with the OU model
when, as here, the effects of finite sampling time and lo-
calization errors are accounted for. This point is also
illustrated with simulations in Figs. 7 and 9.

C. Values of model parameters should not depend

on sampling frequency

Another main point of this article is that when fitting
the data to a given model formulated in continuos
time, the model should fit the data within a range
of sampling times ∆t, and the fitted values for the
continuum parameters should be independent of ∆t. In
Fig. 4 we show the p-values and the fitted parameters
for the fit to the power spectra for the trajectory shown
in Fig. 1(a) at three different sampling times, ∆t = 4,
8, and 12 minutes, respectively. Figure 4(a) shows
p-values from the goodness-of-fit tests (see Sec. VII D).
The p-values are larger than 0.05 for all three sampling
times, i.e., for all three sampling times are the data
consistent with the OU-model. Figure 4(b)–(d) show
the values for the fitted parameters, i.e., the persistence
time P , the diffusion constant D, and the standard
deviation of the localization error σpos, respectively.
The error bars on the fitted parameters are the standard
deviations estimated from 10,000 simulated trajectories
calculated with the parameters from the fits [49]. This
demonstrates that the extracted continuum parameters
are consistent within error bars, at least for ∆t ≥ 8 min.
That is, they do not depend critically on the sampling
time.

In the remainder of this article, we elaborate on the
conclusions presented in this paragraph. After discussing
the implication of localization vs. discretization errors,
we further describe the OU model. Then we present re-
sults for the continuous model, and in subsequent sec-
tions we add the effects of discretization, localization
errors, and, finally, the effect of finite sampling time.
Although we strongly recommend fitting to the power
spectrum of the secant-approximated velocities, we in-
clude for completeness the results for the mean-squared
displacement and the velocity auto-covariance function.

III. RECORDING TRAJECTORIES BETWEEN

SCYLLA AND CHARYBDIS – LOCALIZATION

ERRORS VS. DISCRETIZATION ERRORS

There is a trade-off between low and high sampling
rates: Lower sampling rates cause larger discretization
effects, while higher sampling rates result in smaller dis-
placements per time-lapse. For localization errors of a
given size, the relative errors on single-time-lapse dis-
placements consequently increase with the sampling rate.
This section details the math needed to handle this trade-
off.

A cell that propagates itself on a surface, moves
smoothly in continuous time, so the point on such a cell
that we track, does the same: Its (true) position ~r(true)(t)
is a differentiable function of time t, we imagine, with
continuous velocity [50]

~v(t) =
d~r(true)

dt
(t) . (4)

It is the dynamics of this velocity that we want to model
in data-driven modeling. We specifically choose to model
the velocity, and not the position, because all positions
look the same to a cell in a homogeneous environment,
and consequently the dynamics of the cell cannot depend
on its position. Moreover, there is a decisive statistical
advantages in working with a bounded process like the
velocity, as opposed to an unbounded process like the po-
sition: Time-averages converge with increasing duration
of measurement, if the motile cell is in a steady state.
This one typically can assume for a while; for how long
depends on the organism and circumstances.

We cannot record ~r(true)(t) continuously in time, how-
ever. Experimental data necessarily consist of a time se-

ries of discrete positions (~r
(true)
j )j=0,1,2,...,N , recorded at

consecutive times tj , typically with constant time-lapse
∆t so tj = j∆t.

With ~r
(true)
j = ~r(true)(tj) and a small value for ∆t,

we can in principle get close to continuous recording of
velocity by using

~u
(true)
j =

~r
(true)
j − ~r

(true)
j−1

∆t
(5)

as approximation to ~v(t). This “secant approximation”
to the real, “tangential” velocity ~v(t) can also be written

~u
(true)
j =

1

∆t

∫ tj

tj−1

~v(t′) dt′ , (6)

i.e., ~u
(true)
j is the time-average of ~v(t) in the interval

[tj−1, tj ]. With a sufficiently small value for ∆t, ~v(t′) is
essentially constant in this integral, and hence essentially

equal to ~u
(true)
j , and vice versa.

In practice, however, localization errors place a lower
limit on meaningful values for ∆t. Experimentally
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recorded positions ~rj will typically contain a noise com-
ponent due to localization error, e.g. due to finite pixel
size,

~rj = ~r
(true)
j + ~ξj , (7)

so if the cell does not move much in a time-lapse ∆t,

as compared to typical values of ~ξ, then the numerator

~rj − ~rj−1 in Eq. (5) consists mainly of ~ξj − ~ξj−1. That
makes the experimental velocity ~uj unrelated to the true
velocity

~v(t) =
d~r(true)

dt
(tj) . (8)

This interferes with our desire to model ~v(t) based on our
record of ~uj.

The solution is, obviously, to choose a larger value for
∆t, the larger, the better—except ~uj is only a good ap-
proximation for ~v if the latter is nearly constant for the
duration ∆t of the interval [tj−1, tj ], and this is more
likely to be the case for smaller values of ∆t.

Thus we must navigate between the Scylla and Charyb-

dis of localization errors and discretization errors, re-
spectively. This is the usual issue of navigating between
stochastic and systematic errors. It is done by modeling
discretization effects and localization errors for a given
motility model, and by testing these extra model com-
ponents against data. We illustrate how here, using the
simplest possible motility model for the purpose.

IV. SIMPLEST POSSIBLE MODEL FOR

PERSISTENT RANDOM MOTION

Cell trajectories are continuous functions of time, so we
want to model them that way. Even if our experimental
information were noise-free, continuously recorded tra-
jectories, this information would probably not suffice to
predict future motion from past motion in a deterministic
manner. This is obvious, if the cell responds to texture
in the surface it moves on: Then the future trajectory is
unknown to the extent that it is defined by this response,
no matter how well we record the past.

Even without such a response, however, we believe that
the biochemistry and physics of cell locomotion is way too
complex to reveal itself in a cell’s trajectory to the point
of making that trajectory fully predictable. Our ambition
is to model a trajectory as somewhat predictable based
on its past, with a stochastic component on top. That
is, we model a trajectory as the solution to a stochastic
differential equation.

Such models are advanced math. One can cover most
of our needs by discussing them as if they were not, how-
ever. A knowledge of the simplest ordinary differential
equations is sufficient, when it is supplemented with a
working knowledge of random variables. This is a com-
mon approach and ours, too.

At a pertinent point, this approach invites to cheating,
however: Up front and center, one encounters a general-

ized Gaussian white noise. In the literature, it is com-
monly referred to simply as a Gaussian white noise—
which it definitely is not—and its only properties given
are Eq. (11). It takes more to define this object, but since
Eq. (11) commonly is its only property needed, and it is
simple to apply, one needs no deeper understanding of
this object. The present article also does not require a
deep understanding of this object.

We nevertheless spell out its definition in Appendix B,
because ignorance of its true nature will cause confusion,
if one manipulates this object confidently for a while, and
only then realizes that what one thought of as a stochas-
tic variable, has neither a probability distribution nor a
probability density function. Apart from Appendix B,
we use no advanced math, and calculations have been
relegated to appendices.

A. Definition of the Ornstein-Uhlenbeck process

As a mathematical model of persistent random motion,
the OU-process is the simplest possible of its kind, like
the harmonic oscillator in mechanics, the hydrogen atom
in atomic theory, and the Ising model in magnetism [51].
So we use it in that manner for illustrations here, and
mention how results may change if a different model is
used.

We write the OU-process as the Langevin equation

d~v

dt
= −P−1 ~v + σ ~η , (9)

where P is the so-called persistence time, and σ param-
eterizes the amplitude of the random component of the
acceleration, σ~η. P−1 is the rate of deceleration in the ab-
sence of the last term on the right-hand side: For σ = 0,

~v(t) = e−t/P~v(0) . (10)

Thus, P−1 is the rate with which a velocity is forgotten

by the motile cell, or, equivalently, P is the characteristic
time that a given velocity is “remembered.” Since Eq. (9)
is linear, this remains true also in the presence of its last,
random term, as seen explicitly in Eq. (16) below.

That last term, σ~η, is a two-component generalized

Gaussian white noise; see App. B for definition. For most
purposes, one only needs to know that each component
of ~η is uncorrelated with the other component, and its
auto-covariance is a delta-function,

〈 ~η(t) 〉 = ~0 ; 〈 ~η(t′)⊗~η(t′′) 〉 =

(

1 0
0 1

)

δ(t′−t′′) . (11)

Here ⊗ denotes the outer, or exterior, vector product.
It is a convenient notation, if one is at ease with it. If
not, written out it states that 〈 ηa(t′)ηb(t′′) 〉 = δa,bδ(t′ −
t′′), where δa,b is Kronecker’s delta-function and δ(t) is
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Dirac’s delta-function. The generalized white-noise pro-
cess ~η(t) is assumed uncorrelated with ~v(t′) for t ≥ t′.
This is one of the defining properties of the model and
is called Itō calculus. Other formulations are possible,
notably Stratonovich calculus, but will not be used here.

Note that the dimension of Dirac’s δ(t) is (time)−1,
since its integral over time equals 1. Consequently the
dimension of ~η is (time)−1/2. It follows then from the
dimension of the terms in Eq. (9) that the dimension of
the parameter σ is (length)×(time)−3/2. In Sec. V B we
will see that the OU-model’s diffusion coefficient is

D = 1
2
σ2P 2 , (12)

and we will be back among integer dimensions. For now,
we tolerate the fractional dimensions of ~η and σ, as an
unavoidable part of an otherwise attractive package deal:
~η is a mathematically convenient entity, and σ, which in-
herits its fractional dimension from ~η, is convenient no-
tation, handier than its substitute

√
2D/P [52].

Note also that there is only one OU-process, essen-
tially: If time is measured in units of P and distance
in units of

√
2DP = σP 3/2, P and σ do not occur ex-

plicitly in Eq. (9) any more. So there is only one pro-
cess, with no adjustable parameters, and all other OU-
processes can be mapped onto this one process. We
do this in the rest of this article when we simulate
data. Consequently velocities are measured in units of√

2D/P = σ
√
P and acceleration in σ/

√
P . As the fit to

the power spectrum in Fig. 2(e) gave a persistence time
P = 17.8 min, a diffusion constant D = 1.1 (µm)2/min,
and a localization error σpos = 1.1µm for the sampling
time ∆t = 8 min., it corresponds to ∆t/P = 0.45, and

σpos/
√

2DP = σpos/(σP 3/2) = 0.18. Consequently, in
the Monte Carlo simulations of the OU-process we use
∆t = P/2 and σpos = 0.2σP 3/2, see Figs. 7–10.

B. The physical meaning of each term in the

equation defining the OU-process

Equation (9) states that the acceleration is a linear
combination of the velocity and ~η. The acceleration is
consequently also not a proper stochastic variable, but an
advanced-math object similar to ~η. On the other hand,
we shall soon see that ~v(t) is an ordinary Gaussian ran-
dom variable for any value of t, so for any given value of
the velocity ~v(t), we can refer to the “expected value” of
the acceleration

~av(t) ≡ d~v

dt
(t) (13)

in the same generalized sense that we used in Eq. (11)
for the expected value of ~η(t). Then we find that the
conditional average is

〈~av(t)〉~v(t) = −~v(t)/P (14)

at any time t, i.e., “on the average” the OU-process decel-
erates at a rate proportional to its instantaneous speed.

Motile micro-organisms described by this model drive
with a foot on the brake, so to speak; the speed can
increase due to the noise-term, only. This is OK. The
noise-term does not describe an external influence, but is
as much a part of the organism’s active motile behavior,
as the expected value of its acceleration is. It is just the
part which we cannot predict and consequently model as
uncorrelated noise.

One should not confuse the interpretation of terms here
with the interpretation that the same terms have in the
same model, when it is used to model Brownian motion
of inert matter. In the latter case, the random noise-term
models random thermal forces from the environment act-
ing on a colloidal particle. Here, the same term models
the manner that the organism’s acceleration differs from
its average acceleration at a given velocity. Equation (9)
states that these fluctuations in the acceleration are mod-
eled as a generalized Gaussian white noise with the same
speed-independent amplitude σ in both directions, par-
allel and orthogonal to the velocity,

~av − 〈~av〉~v =
d~v

dt
+ ~v/P = σ~η , (15)

i.e., these fluctuations are uncorrelated with themselves
on any time-scale. This is necessarily wrong from a bi-
ological point of view, because the biological processes
causing motility must have finite correlation times. How-
ever, if we cannot observe any effects of such correla-
tion times in the time-lapse recorded data that we are
about to model, then it is the correct model from a
modeling point of view: Occam’s razor states that the
correct model is the simplest model that is consistent
with the data, and the simplest such model has no auto-
correlations, whatsoever, in the fluctuations of the accel-
eration, when such correlations are absent in the data.

Even without such correlations, the amplitude of the
fluctuations could depend on the velocity, both its speed
and its direction. This was indeed found to be the case
for HaCaT cells (speed-dependence) and NHDF-cells (ve-
locity dependence) in Selmeczi et al. [7]. Here, however,
we consider the simplest possible model, hence the sim-
plest possible noise term: with constant and isotropic
amplitude.

V. ANALYTICAL RESULTS FOR THE

OU-PROCESS

This section gives analytic results for the auto-
covariance, the mean-squared displacement, and the
power spectrum for the continuous OU-model. These
are known results [53], but included for completeness. In
the sections below these quantities are compared with the
same statistics in presence of discrete sampling (Sec. VI)
and localization errors (Sec. VII).
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A. Auto-covariance of the OU-process

Despite the mathematical peculiarity of the noise-term
in Eq. (9), we can treat this equation as just another
linear differential equation with constant coefficients and
an inhomogeneous term, so undergraduate calculus gives
its solution in terms of the noise,

~v(t) = σ

∫ t

−∞
e−(t−t′)/P ~η(t′) dt′ . (16)

Here, one may think of σ~η(t′) dt′ as an increment to the
velocity, which was added at time t′ and then reduced
by a factor exp(−(t− t′)/P ) (= “forgotten” at rate 1/P )
in the intervening time interval of duration t− t′. Equa-
tion (16) then states that the velocity at time t is the
“sum” (integral) over all such increments.

Since the real function g(t′) = θ(t−t′)e−(t−t′)/P , where
θ(t) is Heaviside’s θ-function [54], has (g, g) = P/2, the
two components of ~v(t) are independent Gaussian ran-
dom variables with zero mean and variance σ2P/2. Con-
sequently,

〈
~v2(t)

〉
= σ2P =

2D

P
, (17)

with the diffusion coefficient D from Eq. (12).
Solved with an initial condition ~v = ~v(t0) at t = t0,

Eq. (9) gives

~v(t) = e−(t−t0)/P ~v(t0) + σ

∫ t

t0

e−(t−t′)/P ~η(t′) dt′ , (18)

from which follows the auto-covariance matrix

〈~v(t) ⊗ ~v(t′) 〉 =

(

1 0
0 1

)

φ(t − t′)/2 , (19)

with trace

φ(t1 − t2) = 〈~v(t1) · ~v(t2) 〉

= e−|t1−t2|/P 〈~v2 〉 =
2D

P
e−|t1−t2|/P .

(20)

This result for the continuous model is shown in
Fig. 5 (full line) and compared with the velocity auto-
covariance function with discretization effects derived in
Sec. VI H.

B. Mean squared displacement and Fürth’s

formula

Since

~r(true)(t) − ~r(true)(0) =

∫ t

0

~v(t′) dt′ , (21)

the mean squared displacement is (‘Fürth’s formula’)

〈 (~r(true)(t) − ~r(true)(0))2 〉 =

∫ t

0

∫ t

0

φ(t′ − t′′) dt′ dt′′

= 4D[t− P (1 − e−t/P )] .

(22)
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FIG. 5. (Color online). Velocity auto-covariance function
with and without discretization effects for the OU-process.

Open, red (light gray) circles: φ
(true)
j =

〈

~u
(true)
j · ~u

(true)
0

〉

[Eqs. (61),(65)]. Full line: φ(t) for the OU-process [Eq. (20)].
Filled, black circles: φ(tj) for velocities ~vj = ~v(tj) recorded
instantaneously with time-lapse ∆t/P = 0.5. The filled, black
circles fall exactly on the full line by definition of what they
represent.
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FIG. 6. Fürth’s formula for the mean squared displacement of
persistent random motion described by the OU-process. Full
line: Mean squared displacement in Eq. (22). Dotted line:
The asymptotic behavior of Fürth’s formula, the function t 7→
4D(t− P ). The dotted line intersects the time axis at t = P .

Note that this mean squared displacement approaches
4D(t−P ) exponentially fast for t → ∞. This asymptote
differs from the asymptote 4Dt of Einstein’s model of
Brownian motion. Einstein’s model is the OU-process for
P = 0. The relative difference between the two asymp-
totes is P/t, so it is negligible much later than exp(−t/P )
is; see Fig. 6. It is this ultimate asymptotic proportion-
ality with time that defines D and establishes Eq. (12).
For t → 0, on the other hand, Eq. (22) describes ballistic
motion: the mean squared displacement is proportional
to t2 for t → 0; see Fig. 6.

Equation (22) is not unique to the OU-process, but
shared by all processes that have a simple exponential
as auto-covariance. The Kratky-Porod worm-like chain
model is another such process. For the purpose of motil-
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ity modeling, Eq. (22) was first derived by Fürth, who
modeled motility data for infusoria [16].

The mean squared displacement has the appealing fea-
ture that it it as fairly smooth function of time even for
rather noisy data. So graphically it looks like one has a
reliable result, even when this is dubious. This is because
the mean squared displacement is an integrated quantity,
so stochastic fluctuations tend to cancel each other in it.

The nice looks come at a steep price: The values of the
mean squared displacement are highly correlated in time
[see Fig. 2(b)]. So a least-squares fit of Fürth’s formula
to such data does not return reliable estimates of errors
on fitted values, if the fitting routine assumes statisti-
cally independent data point, as practically all software-
implementations of the least-squares method do [55].

C. Power spectrum of OU-process

As we have just seen, the information that is con-
tained in the mean squared displacement, is also con-
tained in the auto-covariance φ(t): the mean square dis-
placement is just φ(t−t′) integrated with respect to t and
t′ [Eq. (22)]. Consequently, a fit of φ(t) given in Eq. (20)
to experimental values for the velocity auto-covariance
would be less correlated and a more direct test of the
theory. Experimental values for φ(t) are also correlated,
however, if P > 0. Consequently, a fit of Eq. (20) will
also not return reliable error bars on the values it returns
for P and σ, if the fitting routine assumes that the fit is
done to statistically uncorrelated experimental values.

Because of the simple specific form of φ(t) in Eq. (20),
lnφ(t) depends linearly on its effective parameters
ln(2D/P ) and 1/P . Consequently, the method of gen-

eralized least-squares will fit this particular theoretical
function lnφ(t) correctly (i.e., without bias, effectively
and efficiently) to correlated data for lnφ(t), provided
that the covariance matrix for the data is known. We
prefer to use a method that works for any dynamic the-
ory that is linear in the dynamic variable and driven by
a white noise—as Eq. (9) is—while the theory’s depen-
dence on its parameters is allowed to be non-linear—the
case for most theories.

Correlations between experimental values of φ at dif-
ferent times are due to correlations in experimental val-
ues for ~v at different times, and the latter are due to
the very fact that we have a dynamic equation, Eq. (9),
which will correlate the future with the present, thereby
making predictions of the future based on the present.
This equation’s coupling of ~v’s values at different times
can be removed by a simple change of variable. Fourier
transformation, from a dependence on time to frequency,
does this.

Suppose we could measure ~v(t) continuously in time
and had done so for a time span tmsr. Then we could
rewrite the OU-process in Eq. (9) in terms of Fourier

transforms on the interval [0, tmsr]. Define

~̃v(fk) ≡
∫ tmsr

0

ei2πfkt ~v(t) dt (23)

and similarly for ~̃η(fk), with the frequency fk belonging
to the discrete set of values fk = k∆f , k integer and
∆f = 1/tmsr. Application of this Fourier transformation
on both sides of Eq. (9), followed by partial integration
w.r.t. time on the left-hand side, gives

[~v(tmsr) − ~v(0)] − i2πfk ~̃v(fk) = −~̃v(fk)/P + σ ~̃η(fk) ,
(24)

hence

~̃v(fk) =
σ ~̃η(fk) − [~v(tmsr) + ~v(0)]

1/P − i2πfk
. (25)

Here ~̃η(fk) = O
(√

tmsr

)
, while ~v(tmsr)−~v(0) = O

(√
P
)

,

so for tmsr ≫ P , the second and third term in the nu-
merator can be ignored compared to the first term; see
Sec. VIII for details. In this approximation we then have
a Lorentzian velocity power spectrum,

Pv(fk) = 〈|~̃v(fk)|2〉/tmsr =
4D

1 + (2πPfk)2
, (26)

where neglected terms are of order (P/tmsr)
2 with coef-

ficient numerically smaller than one.
If we could record ~v(t) continuously in time, this

formula could be fitted to the experimental result for
|~̃v(fk)|2/tmsr and the model-parameters σ and P could
be determined in that manner. This fit would have a
huge advantage over a fit of Eq. (20) to the experimental
result for the auto-covariance, because, according to our
theory, the experimental result for |~̃v(fk)|2/tmsr is dis-
tributed according to the statistics of the right-hand side
in

|~̃v(fk)|2/tmsr =
2D |~̃η(fk)|2/tmsr

1 + (2πPfk)2
. (27)

Here |η̃x(fk)|2/tmsr and |η̃y(fk)|2/tmsr both are exponen-
tially distributed positive random numbers with expected
value one. They are statistically independent of each
other and of the same expressions for different frequen-
cies fk′ 6= fk [56]. Because of this absence of correlations
between experimental spectral values, a fit to this spec-
trum yields reliable error bars on fitted parameter values.

We cannot measure ~v(t), however, but only ~uj . In the
next sections we will account for how finite sampling-
rate and finite localization-error modify the theoretical
spectrum to one that actually can be fitted to real data.
For now, we point out/remind the reader that the ve-
locity power spectrum defined above is essentially the
Fourier transform of φ(t) (Wiener-Khinchin theorem).
Since several different dynamical models have the same
auto-covariance φ(t), the same is true for the power spec-
trum: The fact that a model fits the experimental power
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spectrum, does not mean that it is the only theory possi-
ble. A good fit is a necessary, but insufficient condition

on a candidate model.

Specific classes of candidate models can be suggested
by the power spectrum, however: Consider the asymp-
totic frequency dependence of the Lorentzian spectrum
in Eq. (26). It goes like 2σ2/(2πfk)2 at large frequen-
cies. Any linear first-order integro-differential equation
driven by a white noise will have this characteristic 1/f2

k -
behavior at large frequencies. Similarly, a second-order
integro-differential equation driven by a white noise has a
power spectrum with 1/f4

k -behavior at large frequencies.
So classes of theories are suggested by the asymptotic
behavior. They are not proven, however: 1/f2

k -behavior
would also result from a second-order integro-differential
equation driven by appropriately chosen colored noise,
though it takes a strange noise spectrum. With physi-
cal/biological reasoning, symmetry arguments, and use of
Occam’s Razor, the simplest plausible class of candidate
theories is unambiguously singled out. Their details must
subsequently be determined by using also other statistics,
such as the average acceleration for given velocity, and
the properties of fluctuations in the acceleration, as sug-
gested in Subsec. IV B and done in [7, 28].

VI. CONSEQUENCES OF BEING DISCRETE

The previous sections stated results for the auto-
covariance of the velocity, the mean squared displace-
ment and the power spectrum for the continuous OU-
model. In this section we approach the heart of the mat-
ter: how these statistics are altered by the finite sampling
time. Especially Sec. VI D demonstrates the price of be-
ing naive, as fitting the continuous-time model to discrete
data can lead to wrong interpretations of the fitted pa-
rameters.

A cell trajectory is the results of a stochastic process,
as we model it, and we demonstrate how to Monte Carlo
simulate time-lapse recorded trajectories. Simulation is a
very practical tool: It is a quick way to validate analytic
predictions, and it is a quick way to repeat a motility ex-
periment many times in silico, once it has been modeled,
in order to illustrate the stochastic nature of the pro-
cess, e.g., in order to calculate correct stochastic errors
on various statistics, such as the mean squared displace-
ment as function of time and the velocity auto-covariance
function. Below, we also present results for the statistics
of the acceleration of secant-approximated velocities and
the power spectrum of the secant-approximated veloci-
ties.

A. Monte Carlo simulation of time-lapse

recordings: tangent velocity and position

One can Monte Carlo simulate time-lapse recorded tra-

jectories of the true positions
(
~r
(true)
j

)
j=0,1,2,...,N

with

the exact algorithm derived as follows: From Eq. (18) we
have

~vj+1 = c~vj + ∆~vj , (28)

where we have introduced the constant

c ≡ exp(−∆t/P ) , (29)

and a series of pairs of statistically independent random
Gaussian variables with origin in the generalized Gaus-
sian noise ~η(t),

∆~vj ≡ σ

∫ tj+1

tj

e−(tj+1−t)/P ~η(t)dt . (30)

These new Gaussian random variables have zero mean
and their variance-covariance is

〈∆~vi ⊗ ∆~vj〉 = (1 − c2)
D

P
δi,j

(

1 0
0 1

)

. (31)

Equation (28) is easily iterated numerically to produce a

time series (~vj)j=0,1,2,...,N , by starting, e.g., with ~v0 = ~0.
In parallel, we iterate the following dependent series

for
(
~r
(true)
j

)
j=0,1,2,...,N

,

~r
(true)
j+1 = ~r

(true)
j + σ

∫ tj+1

tj

~v(t)dt

= ~r
(true)
j + (1 − c)P~vj + ∆~rj . (32)

Here we have introduced another series of pairs of sta-
tistically independent random Gaussian variables with
origin in the generalized Gaussian noise ~η(t),

∆~rj ≡ (2D)1/2
∫ tj+1

tj

(1 − e−(tj+1−t)/P )~η(t)dt , (33)

which has zero mean as well, and variance-covariance

〈∆~ri ⊗ ∆~rj 〉 = [2∆t− (3 − c)(1 − c)P ]Dδi,j

(

1 0
0 1

)

,

(34)
but is correlated with ∆~vj , since both are defined in terms
of the same generalized noise ~η(t) on the same interval
[tj , tj+1],

〈∆~ri ⊗ ∆~vj 〉 = (1 − c)2Dδi,j

(

1 0
0 1

)

. (35)

We consequently generate (∆~vj ,∆~rj) by first generating
∆~vj , and then generating ∆~rj as

∆~rj =
1 − c

1 + c
P ∆~vj + ∆~r

(2)
j (36)
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where ∆~r
(2)
j are pairs of random Gaussian variables of

zero mean and variance-covariance

〈∆~r
(2)
i ⊗ ∆~r

(2)
j 〉 = 2D

(
∆t− 2

1 − c

1 + c
P

)
δi,j

(

1 0
0 1

)

,

(37)
which are independent of ∆~vj . By construction, the com-
ponents of this random variable ∆~rj are Gaussian dis-
tributed, have zero mean, the variance-covariance given
in Eq. (34), and the covariance with ∆~vj demanded by
Eq. (35).

B. Monte Carlo simulation of time-lapse

recordings: secant velocity

If only the time-series for secant-approximated veloc-

ity ~u
(true)
j is needed, it can be generated by iterating the

stochastic recursion relation that results from reading
Eq. (32) as

~u
(true)
j+1 = (1 − c)P/∆t ~vj + ∆~rj/∆t , (38)

and subtraction from this equation c times the same

equation with j − 1 replacing j. In the result, ~u
(true)
j+1 −

c~u
(true)
j = (1− c)P/∆t(~vj − c~vj−1) + (∆~rj − c∆~rj−1)/∆t,

one can eliminate ~vj − c~vj−1 by using Eq. (28), which

gives a stochastic recursion relation for ~u
(true)
j ,

~u
(true)
j+1 = c~u

(true)
j +

1 − c

1 + c

P

∆t
(∆~vj + ∆~vj−1)

+
∆~r

(2)
j − c∆~r

(2)
j−1

∆t
.

(39)

The four independent Gaussian vector variables that oc-
cur on the right-hand side of this relation cannot be com-
bined into fewer independent Gaussian variables, because
two of them are used again, but in a different linear com-

bination, to generate ~u
(true)
j+2 from ~u

(true)
j+1 . Thus, in Monte

Carlo simulations it is as easy just to simulate the pairs

(~u
(true)
j , ~vj). The real value of Eq. (39) is the ease with

which it allows us to find the power spectrum of ~u
(true)
j

below.

C. Distribution of squared secant-approximated

velocities

For later use, we here observe that the squared mod-

ulus of the secant velocity
∣∣∣~u(true)

j

∣∣∣
2

is exponentially dis-

tributed. This exponential distribution results from both

components of ~u
(true)
j being Gaussian random variables

with zero mean and identical standard deviations. The

latter follows from ~u
(true)
j =

(
~r
(true)
j − ~r

(true)
j−1

)
/∆t, and

each component of ~r
(true)
j being a Gaussian random vari-

able in consequence of Eq. (32). Thus, the square of each

component of ~u
(true)
j is Γ-distributed with shape param-

eter k = 1/2, and the Γ-distributions of each squared
component have identical scale parameters. This implies

that the sum of the squared components,
∣∣∣~u(true)

j

∣∣∣
2

, is ex-

ponentially distributed. The expected value

〈∣∣∣~u(true)
j

∣∣∣
2
〉

is given in Eq. (65). The distribution of the squared
secant-approximated velocities including localization er-
rors is derived in Sec. VII A, and compared with experi-
mental data in Fig. 1(c).

D. Statistics of the acceleration of secant velocities

The Langevin equation, Eq. (9), states that, on aver-
age, the instantaneous acceleration is opposite and pro-
portional to the instantaneous velocity; see Eq. (14). The
closest we can get to checking whether this statement is
satisfied by our experimental data, is to plot the two
components of the “secant acceleration” [57]

~a
(true)
j ≡

~u
(true)
j+1 − ~u

(true)
j

∆t
(40)

against the secant speed |~u(true)
j |, one plot for the com-

ponent of ~a
(true)
j along ~u

(true)
j ,

a
(true),‖
j = ~a

(true)
j ·

~u
(true)
j∣∣∣~u(true)
j

∣∣∣
(41)

and another plot for its orthogonal component,

a
(true),⊥
j = z⊥

∣∣∣∣∣∣
~a
(true)
j − a

(true),‖
j

~u
(true)
j∣∣∣~u(true)
j

∣∣∣

∣∣∣∣∣∣
. (42)

Here z⊥ = 1 (-1) if ~a
(true)
j points to the right (left) of

~u
(true)
j . Such plots are shown in Fig. 7(b,c).
In order to compare these plots with the theoretical

relationship in Eq. (14), we must know the effect of the
finite time-lapse on this relationship. It is found by cal-
culating the discrete equivalent to Eq. (14)—details are
given in App. D. Equations (D3) and (D4) lead directly
to the result [58]

~a
(true)
j = −1 − γ

∆t
~u
(true)
j + ~ζj/∆t , (43)

〈
~a
(true)
j

〉
~u
(true)
j

= −1 − γ

∆t
~u
(true)
j (44)

∼ − 2

3P
~u
(true)
j for ∆t/P → 0 , (45)

with the definitions

~ζj = ~u
(true)
j+1 − γ~u

(true)
j , (46)

γ =
(1 − c)2

2(c− 1 + ∆t/P )
∼ 1 − 2∆t

3P
for∆t/P → 0.(47)
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FIG. 7. (Color online). Statistics of the two components of the secant acceleration defined in Eq. (40), parallel and orthogonal
to ~uj , respectively. Panel (a) shows a simulated trajectory, generated by iterating Eqs. (28, 32) using Eq. (38) with ∆t/P = 0.5
and the number of points N = 10, 000. The inset shows the first 129 points of the trajectory, corresponding to the length
of the experimental trajectory in Fig. 1(a). Red (light gray) dots mark the sampled positions. Panels (b) and (c) show the
acceleration of secant-approximated velocities for the parallel and orthogonal directions relative to the velocity, respectively.
Panels (d)–(f) show the elements of the variance-covariance matrix of these accelerations. The full lines in Panels (b)–(f) are
the exact expressions for the expected values for the two directions given in Eq. (44,48). Dashed lines in Panels (b), (d), and
(e) are the results for infinitesimal sampling time ∆t/P → 0 from Eqs. (45,49), and dotted lines are the expected value for
the continuous model [Eqs. (2,3)]. The error bars are standard errors on the mean calculated as if all values falling in a given
bin on the first axis are uncorrelated. Thus the error bars shown underestimate the true error bars. Not by much, however,
judging from the scatter around the fitted curves.
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This is an important result: Since ~u
(true)
j → ~v(tj), and

~a
(true)
j → ~av(tj) for ∆t/P → 0, one might naively be-

lieve that expected values of the accelerations for given
velocities also approaches its continuum value in that
limit, contrary to what we now know: compare −1/P
in Eq. (14) with −2/(3P ) in Eq. (45).

The result in Eq. (44) is illustrated by Monte Carlo
simulated data in Fig. 7(b,c). Full lines are calculated
from Eq. (44), while the full-dotted lines are the same
statistical measures calculated from the continuum the-
ory [Eq. (2)]. Dashed lines are the results for infinitesimal
sampling time ∆t/P → 0 [Eq. (45)]. The difference be-
tween the dashed and dotted lines emphasize the need
to account for discretization when comparing discretely
sampled experimental data with theory: Some discretiza-
tion effects remain finite irrespective of how small one
chooses ∆t.

Similarly, for the fluctuations in the acceleration about
its expected value at a given velocity, we find the
variance-covariance matrix for the parallel and orthog-
onal components of the acceleration

〈(
~a
(true)
j −

〈
~a
(true)
j

〉
~u
(true)
j

)

⊗
(
~a
(true)
j −

〈
~a
(true)
j

〉
~u
(true)
j

)〉
~u
(true)
j

=
〈
~ζj ⊗ ~ζj

〉
/(∆t)2

=

(

1 0
0 1

)

4(c− 1 + ∆t/P )2 − (1 − c)4

4P (c− 1 + ∆t/P )(∆t/P )2

(
σP

∆t

)2

(48)

∼
(

1 0
0 1

)

2σ2

3∆t
for ∆t/P → 0 . (49)

In Eq. (48) one might naively expect that for ∆t/P → 0
the variance-covariance matrix of the secant-acceleration
approaches the variance-covariance matrix of the tangent
velocity’s acceleration, which is Iσ2δ(0). But it does not,
and when we compare the ill-defined “infinite” quantity
δ(0) in the last expression with the divergence as ∆t−1

of the result in Eq. (49), we are warned that the lim-
its we compare here, are singular. Fig. 7(d-f) illustrate
the results of Eqs. (48,49) with the same symbols as in
Fig. 7(b,c).

The method of conditional averaging [36] has been
used also in other contexts than cell motility. For exam-
ple for analyzing electronic and physiological data [37],
and for modelling molecular dynamics simulation data of
biomolecules with both first- [59] and second-order [60]
Langevin equations. Corrections for finite time-lapse in
parameter estimation were also discussed for the case of
the Langevin equation describing the observed quantity
(see [61] including ‘Comment’ and ‘Reply’). In these
cases, no spurious scale factor persisting for ∆t → 0 was
observed.

However, the results in Eqs. (44,48,49) demonstrate
that caution is required when conditional averaging is
used. To this end, the exact analytical treatment that we

gave the OU-model here is not possible for more compli-
cated models. But an approximate treatment to leading
order in ∆t may be sufficient in such cases, and much
less is needed for a health-test of one’s protocol: If a dy-
namical model, say a Langevin equation, has been pro-
posed, and one’s estimators for this model’s parameters
cannot recover the correct parameter values from data
taken from a Monte Carlo simulation of this model, one’s
estimators are not healthy. An approximate treatment
to leading order in ∆t of discretization effects may re-
store their health. If not, discretization effects can always
be handled with the computationally laborious fitting of
one’s Monte Carlo simulated model [7, 28].

E. Power spectrum of time-lapse sampled

“tangent”-velocity incl. aliasing

We cannot time-lapse-sample the “tangent”-velocity of
motile cells because of noise on positions, as discussed
below. But its power spectrum is a useful benchmark
in the following, easily derived, and a good place to ex-
plain aliasing. So we do that now, and return to the
power spectrum of the secant-approximated velocities in
Sec. VI F.

We define the discrete Fourier transform as

~̂vk = ∆t

N∑

j=1

ei2πfktj~vj = ∆t

N∑

j=1

ei2πkj/N~vj , (50)

where fk = k∆f , ∆f = 1/tmsr, tmsr = N∆t. Then the
dynamics described by Eq. (28) Fourier transforms to

ei2πk/N ~̂vk = c ~̂vk + ∆̂~vk , (51)

where we have assumed N large enough that we can ne-
glect contributions from the ends of the sum over j on the
left-hand side in Eq. (50). By solving this equation for

~̂vk, we determine the power spectrum of the time series
~vj to be

P (aliased)
v (fk) ≡ 〈 |~̂vk|2 〉

tmsr

=
P∆v

1 + c2 − 2c cos(πfk/fNyq)

=
(1 − c2)2D∆t/P

1 + c2 − 2c cos(πfk/fNyq)
.

(52)

The last identity follows from P∆v being a white-noise
spectrum, a constant functions of frequency,

P∆v =
〈 |∆̂~vk|2 〉

tmsr
= (1 − c2)

2D∆t

P
, (53)

in consequence of Eq. (31), and we have introduced
the Nyquist frequency, defined as half the sampling fre-
quency,

fNyq ≡ 1

2∆t
, (54)
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which is the highest frequency that we can measure for
a given sampling frequency.

This power spectrum is normalized such that it has a
finite limit for N → ∞. It is well known from optical
trapping [62], where it appears as the power spectrum
of positions, when these are recorded with a quadrant
photo diode, hence very fast compared to the duration
∆t of the time-lapse.

If the limit N → ∞ is taken with fixed ∆t, we have
an infinitely long time series recorded with fixed sam-
pling frequency. Since the power spectrum is defined on
all integer multiples of ∆f = 1/tmsr, and this measure
of discreteness vanishes compared to fNyq = 1/(2∆t),
which defines the range of frequencies the spectrum is
defined on (up to periodic repetition and mirror symme-

try), P
(aliased)
v is defined for all real values of f in the

limit tmsr → ∞.

The reason P
(aliased)
v (f) is referred to as “aliased,” is

because it is the sum of the distribution Pv(f), the power
spectrum of the OU-process given in Eq. (26), and all
those “copies” or “aliases” of it that can be made by
shifting it an integer multiple of fsample = 1/∆t along
the frequency axis [62],

P (aliased)
v (f) =

∞∑

n=−∞
Pv(f + nfsample) . (55)

At finite sampling frequency fsample, Fourier compo-
nents in the trajectory, which differ by integer multi-
ples of fsample, cannot be distinguished, hence appear
“under alias” as additional power at the frequencies low
enough to be resolved [63]. This is the reason for hav-
ing the sum on the right-hand side in Eq. (55). In the
limit ∆t → 0 with fk kept fixed, fNyq → ∞, mean-
ing fk/fNyq = 2∆t fk → 0, and the Lorentzian Pv(f) in
Eq. (26) is recovered from Eq. (52). A more formal way of
seeing this is by observing that fsample → ∞ for ∆t → 0,
so for fixed f , only the term with n = 0 contributes in
Eq. (55).

F. Power spectrum of secant-approximated velocity

To derive the power spectrum of secant-approximated

velocities ~u
(true)
j , we Fourier transform both sides of

Eq. (39) using Eq. (50), which gives

(e−i2πk/N − c) ~̂u
(true)
k =

1 − c

1 + c

P

∆t
(1 + ei2πk/N ) ∆̂~vk

+ (1 − cei2πk/N )
∆̂~r

(2)

k

∆t
,

(56)

where ∆̂~vk and ∆̂~r
(2)

ℓ are independent stochastic vari-

ables for all k, ℓ, because ∆~vi and ∆~r
(2)
j are for all i, j.

Here it is again implicitly assumed that the contributions
from the ends of the sum in the Fourier transformation
are negligible (see Sec. VIII B for details).
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FIG. 8. (Color online). Comparison of power spectra of

secant-approximated-velocity P
(true)
u (fk) (full) and tangent

velocity P
(aliased)
v (fk) (dashed) for the the OU-process. Data

points are power spectral values from a trajectory consisting
of N = 10, 000 positions generated by iterating Eqs. (28,32)
using Eq. (38). The sampling time is ∆t/P = 0.5. The
frequency-axis is discrete because the measurement time is
finite, ∆f = 1/tmsr with tmsr = N∆t, making ∆f/fsample =
1/10, 000. Note that the time-averaging done in Eq. (6) makes

~u(true) a low-pass filtered version of ~v, as borne out by this
figure’s comparison of their power spectra.

With the power spectrum defined as

P (true)
u (fk) =

〈
|~̂u(true)

k |2
〉
/tmsr (57)

and similarly for P∆v and P∆r(2) , the statistical indepen-

dence of ∆̂~vk and ∆̂~r
(2)

ℓ simplifies calculations such that

∣∣∣e−i2πk/N − c
∣∣∣
2

P (true)
u (fk)

=

(
1 − c

1 + c

P

∆t

)2 ∣∣∣1 + ei2πk/N
∣∣∣
2

P∆v

+
∣∣∣1 − cei2πk/N

∣∣∣
2 P∆r(2)

∆t2
.

(58)

Here P∆v and P∆r(2) are white-noise spectra, constant
functions of frequency, with P∆v given in Eq. (53) and

P∆r(2) = 4D∆t

(
∆t− 2

1 − c

1 + c
P

)
, (59)
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so we have

P (true)
u (fk) =

(1 − c)2

c

(
P

∆t

)2
P∆v

1 + c2 − 2c cos(πfk/fNyq)

+
P∆r(2)

(∆t)2
− 1

c

(
1 − c

1 + c

P

∆t

)2

P∆v

=
(1 − c)2

c

(
P

∆t

)2

P (aliased)
v (fk)

+4D

(
1 − 1 − c2

2c

P

∆t

)
. (60)

Here the coefficient to P
(aliased)
v (fk) approaches 1 for van-

ishing ∆t/P , while the second and last term, an ad-
ditive constant, is positive, but vanishes for vanishing

∆t/P . Figure 8 shows a comparison of P
(aliased)
v (fk)

and P
(true)
u (fk) for ∆t = P/2 and the number of sam-

ple points N = 10, 000. Note that the time-averaging
done in Eq. (6) makes ~u(true) a low-pass filtered version
of ~v, as borne out by this figure’s comparison of their
power spectra.

G. Mean squared displacement, Fürth’s formula

The fact that positions are not recorded continuously,
does not affect Fürth’s formula in any way, except the
experimental data with which we compare it, are avail-
able only at points in time that are integer multiples of
∆t. Thus the mean squared displacement is a statistics
that is without discretization “errors.” This is a clear ad-
vantage of the mean squared displacement, but comes
with the cost that values of the mean squared displace-
ment are highly correlated in time, when calculated from
a single trajectory [46, 47]. So if discretization effects can
be modeled as we do here, then one can do better than
using the mean squared displacement.

H. Auto-covariance of secant-approximated

velocities

Finally, we show how the auto-covariance of secant-
approximated velocities is changed due to the discrete
sampling of position data. Direct calculation using
Eqs. (6) and (20) gives

φ
(true)
j−k ≡

〈
~u
(true)
j · ~u(true)

k

〉
(61)

=
2P 2(cosh(∆t/P ) − 1)

(∆t)2
φ(tj − tk) (62)

for j 6= k , (63)

φ
(true)
0 ≡

〈(
~u
(true)
j

)2〉
(64)

=
2P 2(e−∆t/P − 1 + ∆t/P )

(∆t)2
φ(0) . (65)

Note how discretization only causes a constant prefactor
2P 2(cosh(∆t/P ) − 1)/(∆t)2 = 1 + O((∆t/P )2) for j 6=
k, but a different, smaller prefactor 2P 2(exp(−∆t/P ) −
1 + ∆t/P )/(∆t)2 = 1 − O(∆t/P ) for j = k. On a lin-
log plot—see Fig. 5—the values of the auto-covariance

function φ
(true)
j−k fall on a straight line with slope −1/P ,

as they do for φ(t), and the only signature consequence of

discretization is the value φ
(true)
0 at j−k = 0, which falls

below the straight line defined by the other values, by
a factor (exp(−∆t/P ) − 1 + ∆t/P )/(cosh(∆t/P ) − 1) =
1 − ∆t/(3P ) + O((∆t/P )2). For how to handle models
more complicated than the OU-model, see App. C.

VII. CONSEQUENCES OF LOCALIZATION

ERRORS

In this section we finally make contact with real-
ity inasmuch as we assume that each experimentally
recorded position ~rj , j = 0, 1, . . . , N , is related to an

underlying true position ~r
(true)
j as described in Eq. (7),

i.e., by an additive random noise, ~ξj , with zero mean,
time-independent variance σ2

pos for each of its two com-

ponents, and independent of ~r
(true)
j as well as ~ξk with

k 6= j. Here we demonstrate how the statistics derived
in the previous section—the mean-squared displacement,
the auto-covariance of the secant-approximated velocity,
and the power spectrum—are affected by localization er-
rors. The resulting formulae are for direct “plug-and-
play” use: They can be compared directly to the corre-
sponding experimental statistics, once their parameters
have been determined by fitting the formula given for the
power spectrum to data.

A. Distribution of squared secant velocities in the

presence of localization errors

When adding a Gaussian distributed localization error
~ξj to each component of the true position ~r

(true)
j , both

components of ~uj = ~u
(true)
j +(~ξj−~ξj−1)/∆t are still Gaus-

sian distributed random numbers with expected values
equal to zero and identical standard deviations. As out-
lined in Sec. VI C, then ~u2

j is exponentially distributed

with expected value σ2
u =

〈
~u2
j

〉
,

p(~u2
j = u2) =

1〈
~u2
j

〉 exp

[
−u2

σ2
u

]
, (66)

with σ2
u defined in Eq. (72). In Fig. 1(c) this property was

used as an initial test to check if the data was consistent
with the OU-model.
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B. Statistics of the acceleration of secant velocities

including localization errors

In Sec. VI D we analyzed the discrete acceleration of
the secant velocity in absence of localization errors. Here
we show how the noise on the position changes the ex-
pressions in Eqs. (44,48). The details of the calculations
are rather lengthy and are kept in App. E 2.

In the presence of localization errors, the measured
secant acceleration ~uj is [see Eqs. (5,7)]

~uj = ~u
(true)
j +

~ξj − ~ξj−1

∆t
= ~u

(true)
j + ∆~uj , (67)

with ~u
(true)
j being the true underlying secant velocity, and

∆~uj ≡
~ξj − ~ξj−1

∆t
. (68)

The task is to calculate the expected value and variance-
covariance matrix for the measured secant acceleration
~aj = (~uj+1 − ~uj)/∆t, given a measured secant velocity
~uj . As shown in App. E, the result for the expected
value for the acceleration of the secant velocity including
localization errors is

〈~aj〉~uj
= −1 − ε

∆t
~uj, (69)

with

ε =
γσ2

~u(true) − 2σ2
pos/(∆t)2

σ2
~u(true) + 4σ2

pos/(∆t)2
=

γσ2
~u(true) − 2σ2

pos/∆t2

σ2
u

.

(70)
Here

σ2
~u(true) ≡

〈(
~u
(true)
j

)2〉

= 4DP
exp (−∆t/P ) − 1 + ∆t/P

∆t2
for all j ,

(71)

which follows from Eqs. (20,65), and we introduced

σ2
u = σ2

~u(true) + 4σ2
pos/∆t2 (72)

as the variance of ~uj [see Eq. (67)]. Notice that in
the limit where localization errors are negligible, i.e.
γσ2

~u(true) ≫ σ2
pos/∆t2, we recover ε ≈ γ and, conse-

quently, Eq. (44) as expected. In the opposite limit,
where the localization errors dominate, ε ≈ − 1

2 , which

implies that 〈~aj〉~uj
= − 3∆t

2 ~uj .

The variance-covariance matrix for the acceleration of
the discrete secant velocity in presence of localization er-
rors is found in a similar manner. The result is (see

App. E 2)

〈(~aj − 〈~aj〉~uj
) ⊗ (~aj − 〈~aj〉~uj

)〉~uj
(73)

=

(

1 0
0 1

)

{
4(c− 1 + ∆t/P )2 − (1 − c)4

4P (c− 1 + ∆t/P )(∆t/P )2

(
σP

∆t

)2

+
2

(∆t)4
σ2
pos

σ2
u

×

[
3σ2

pos/(∆t)2 + σ2
~u(true)

(
1 + γ + γ2

)]
}
.

We notice that the first term is identical to Eq. (48);
the expression for the variance-covariance matrix in the
absence of localization errors, and that the last term van-
ishes in the limit σ2

pos → 0.

The value of σ2
~u(true) vanishes to lowest order in ∆t/P ,

so in the limit ∆t/P → 0, Eq. (73) becomes

〈(~aj − 〈~aj〉~uj
) ⊗ (~aj − 〈~aj〉~uj

)〉~uj

→
(

1 0
0 1

)

{
2σ2

3∆t
+

3σ2
pos

2(∆t)4

}
for ∆t/P → 0 .

(74)

Notice again that the factor in the first term differs from
unity even in the limit ∆t/P → 0 (see the discussion in
Sec. VI D).

An example with Monte Carlo simulated data is shown
in Fig. 9. Full lines are the full analytic results, while
the dashed and full-dotted lines are the results for the
limiting cases of no localization and dominant local-
ization error, respectively. The figures clearly demon-
strate how the statistics of the acceleration of the secant-
approximated velocity is distorted by localization errors.

C. Power spectrum of secant-approximated

velocities in the presence of localization errors

A discrete Fourier transformation of Eq. (67) gives

~̂uk = ~̂u
(true)
k +

1

∆t

(
1 − ei2πk/N

)
~̂ξk , (75)

where we have simplified the expression by once again
neglecting contributions from the ends of the time inter-
val on which Fourier transformation is done—Sec. VIII B
gives the result with these end-contributions included.

As 〈~̂ξ∗k ⊗ ~̂ξk′ 〉 = 2σ2
pos(∆t)2Iδk,k′ , and the localization

error is uncorrelated with the true secant velocity, the
power spectrum defined in Subsec. VI F becomes

Pu(fk) = P (true)
u (fk) +

4σ2
pos

∆t
[1 − cos(πfk/fNyq)] (76)

with P
(true)
u (fk) equal to the power spectrum in Eq. (60).

The localization errors give rise to an additive frequency-
dependent term that contributes the most, relatively, at
high frequencies, where the spectrum otherwise would
vanish, as shown in Fig. 10(a).
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FIG. 9. (Color online). The two components of the measured secant acceleration, i.e., parallel and orthogonal to the measured
secant velocity ~uj , including localization error. Panel (a) shows the same trajectory as Fig. 7(a), except a Gaussian distributed

localization error with standard deviation σpos = 0.2σP 3/2 was added to each position. The time increment is ∆t/P = 0.5, and
the number of data points is 10,000. Panels (b) and (c) show the acceleration of secant-approximated velocities for the parallel
and orthogonal directions relative to the velocity, respectively. Panels (d)–(f) show the elements of the variance-covariance
matrix for these accelerations. The full lines are the exact expressions for the expected values for the two directions found in
Eq. (69). Dashed line in Panel (b) is the expression in Eq. (44), valid in the absence of localization errors, while the dotted line
is the limiting case in which localization errors dominate and ε in Eqs. (69,70) tends to − 1

2
. Error bars are standard errors on

the mean.
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FIG. 10. (Color online). Comparison of Pu(fk) (full) with

P
(true)
u (fk) (dashed) for the OU-process. Data points in

Panel (a) are power spectral values from a trajectory con-
sisting of N = 10, 000 positions generated by iterating
Eqs. (28,32) using Eq. (38) and adding a Gaussian distributed
localization error with standard deviation σpos = 0.2σP 3/2
to each position. The frequency-axis is discrete because the
measurement time is finite, ∆f = 1/tmsr with tmsr = N∆t,
making ∆f/fsample = 1/10, 000. Pu(fk) is shifted up com-

pared to P
(true)
u (fk) by an amount growing from 0 at f = 0

to its maximum at f = fNyq; see Eq. (76). Panel (b) is a

histogram of the ratios 2|~̂uk|
2/Pu(fk)tmsr, which is supposed

to be Γ-distributed with shape parameter 2 and scale param-
eter 1 [Eq. 79]. The red (light gray) dots show the expected
number of counts in each bin. Error bars are the square-roots
of the expected number of counts.

D. Distribution of power spectral values and

parameter estimation with Maximum Likelihood

In Sec. II A we mentioned two distinct advantages of
fitting experimental data to the power spectrum rather
than to the mean-squared displacement or to the velocity
auto-covariance function: the power spectral values are
statistically independent for any linear dynamic theory
driven by an additive noise, and the statistical distribu-
tion of power-spectral values is known for any frequency
in the spectrum. We now derive this distribution for the

OU-model, and explain how it can be used for Maximum
Likelihood Estimation (MLE) of the parameters of the
model and for a goodness-of-fit test.

Equation (75) shows that the Fourier transformed

secant-velocity ~̂uk is the sum of Fourier transformed
Gaussian variables. Consequently, each component in

~̂uk is also a Gaussian variable because of the definition
of the Fourier transform in Eq. (50). When taking the

modulus-square of each component of ~̂uk, both are ex-
ponentially distributed with the same expected value.

Consequently, the power spectral values |~̂uk|2/tmsr are Γ-
distributed with shape parameter 2, and their expected

values are
〈
|~̂uk|2

〉
/tmsr = Pu(fk). So the power spec-

tral values are Γ-distributed with shape parameter 2, and
scale parameter Pu(fk)/2, i.e.

p

(
|~̂uk|2
tmsr

= y

)
=

(
2

Pu(fk)

)2

y exp

[
− 2y

Pu(fk)

]
. (77)

A standard procedure is to bin-average the power spec-
tral values along the frequency axis and fit the the-
ory to these averaged data points with (weighted) least-
squared fitting. The problem is that these averages are
not Gaussian distributed, while this is assumed in least-
squared fitting [64]. This is not optimal, and we can do
better, as we know the distribution of the power spec-
tral values, Eq. (77). The solution is Maximum Likeli-
hood Estimation: Given a set of power spectral values{
|~̂uk|2/tmsr

}
k=0,N−1

the log-likelihood function for the

distribution in Eq. (77) is

ℓ

(
θ

∣∣∣∣∣
{
|~̂uk|2/tmsr

}
k=1,N

)

= 2
N∑

k=1

log

(
2

Pu(fk)

)
+

N∑

k=1

log

(
|~̂uk|2
tmsr

)

−
N∑

i=1

2|~̂uk|2
Pu(fk)tmsr

,

(78)

where Pu(fk) depends on the parameters of the OU-
model, θ = {D,P, σpos} (the diffusion coefficient D, the
persistent time P , and the localization error σpos). This
log-likelihood is now maximized with respect to these pa-
rameters taking the experimental power spectral values

|~̂uk|2/tmsr as input. A fit to the power spectral values of
our experimental data is shown in Fig. 2(e).

It is not sufficient to fit the power spectral values to
their expected values Pu(fk). We also have to check if
the data are consistent with the theory. Again, we take
advantage of our knowledge of the distribution of the
power spectral values [Eq. (77)]: After a fit to the power
spectrum, we get for each frequency fk a fitted expected
value Pu(fk). Dividing for each frequency the experimen-

tal power spectral value |~̂uk|2/tmsr with the scale param-
eter Pu(fk)/2 of the distribution in Eq. (77), the ratio
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2|~̂uk|2/Pu(fk)tmsr is Γ-distributed with shape parameter
2 and scale parameter 1 for all frequencies, i.e.

p

(
2|~̂uk|2

Pu(fk)tmsr
= z

)
= ze−z for all k = 0, 1, 2, . . .N−1.

(79)
This provides a diagnostic test of the fit to the power
spectrum. If the theory is correct, the distribution of the

ratios 2|~̂uk|2/Pu(fk)tmsr is given by the probability dis-
tribution in Eq. (79). This can be tested using, i.e., a χ2-
goodness-of-fit test. The inset in Fig. 2(e) and Fig. 10(b)
both show examples of the distributions of these ratios
for experimental and simulated data, respectively.

E. Auto-covariance of secant-approximated

velocities in the presence of localization errors

We now return to the auto-covariance of secant-
approximated velocities introduces in Sec. VI H, and
we show how they are distorted by localization errors.

With ~uj = ~u
(true)
j + (~ξj − ~ξj−1)/∆t being the secant-

approximated velocity defined in Eq. (67), the auto-
covariance function φj−k = 〈 ~uj ·~uk 〉 consists of two terms

φj−k = φ
(true)
j−k +

〈 (~ξj − ~ξj−1)(~ξk − ~ξk−1) 〉
(∆t)2

, (80)

where φ
(true)
j−k =

〈
~u
(true)
j · ~u(true)

k

〉
is given in Eqs. (61)

and (65). Consequently,

φj = φ
(true)
j for |j| ≥ 2 , (81)

φ±1 = φ
(true)
1 − 2σ2

pos/(∆t)2 , (82)

φ0 = φ
(true)
0 + 4σ2

pos/(∆t)2 , (83)

which shows that the localization errors change the cor-
relation function only at times t0 = 0 and t±1 = ±∆t.
The finding is illustrated in Fig. 11, and the implications
are discussed in the next section.

F. How to eyeball the magnitude of the

localization error

Note that φ
(true)
0 has a lower value than φ(0) due to

discretization, and localization error raises this lowered
value. Fortunately, we know from our theory by how

much φ
(true)
0 is lower than φ(0), so the experimental lo-

calization error can be determined by including σ2
pos as

a parameter in a fit of a theoretical φ(t) to experimental
data for φj .

Note also that the presence or absence of noise to be
accounted for can be seen directly from the manner φ1

falls below the backwards extrapolation of φj from its
values for j ≥ 2; see Fig. 11. This observation is valid
beyond the OU-process and can be used if we have chosen

! !"# $ $"# %

&'() ! *" +

$!!$

$!!

,
)-

.
/'

&0
1
2
&.

/.
33

"
4/

&"
*%

#
"

+

56 73./)88
9)/1:& 1773.;"
9)/1:& 1773.;"< -./" )33.3
=:8&1:& 81(7-':>

FIG. 11. (Color online). Velocity auto-covariance function
with discretization effects and effects of localization errors.
Full line, small filled circles, and open circles: Same as in
Fig. 5. In particular, with the present section’s notation,

open circles show φ
(true)
j = 〈~u

(true)
j · ~u

(true)
0 〉 for ∆t = P/2.

Triangles show φj = 〈~uj · ~u0〉, which equals φ
(true)
j except for

j = 0,±1, where φj is shifted up by 4σ2
pos, respectively down

by 2σ2
pos, relatively to the values of φ(true). The magnitude of

the localization error is σpos = 0.2σP 3/2.

∆t ≪ P , with P denoting the shortest correlation time
in case there are more than one. In that case the initial
decrease in the correlation function φ(t) plots as an es-
sentially straight line for time-lags t up to several times

∆t, and because ∆t/P ≪ 1, φ
(true)
j = φ(tj) to a very

good approximation, especially for j ≥ 2. Consequently,
the experimental values for φj also plot on top of the
straight line representing φ(t), except for j = 0,±1, and
2σ2

pos can be read off the plot as the amount by which φ1

falls below the straight line passing through φj ’s values
for j ≥ 2.

This quick eyeball-estimation of the noise level can in-
clude and find confirmation in the value of φ0, which,
in the absence of discretization effects, must fall twice as
much above the straight line through φj with j ≥ 2, as φ1

falls below it, and never more than this, since discretiza-
tion effects lower this value.
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FIG. 12. (Color online). Mean squared displacement accord-
ing to Fürth’s formula (full line), with the effect of localization

error included. Here σpos = 0.2σP 3/2. The localization error
shifts the graph shown in Fig. 6 up by a constant value 4σ2

pos.

G. Mean squared displacement as function of time

in the presence of localization error

Finally, Fürth’s formula [Eq. (22)] is slightly modified
due to the localization error, as

〈
[~r(t) − ~r(0)]2

〉

=

〈[
~r(true)(t) − ~r(true)(0) + ~ξ(t) − ~ξ(0)

]2〉

=

〈[
~r(true)(t) − ~r(true)(0)

]2〉
+ 4σ2

pos

= 4D
[
t− P (1 − e−t/P

]
+ 4σ2

pos .

(84)

The value of the root-mean squared displacement is
shifted upward by a constant value 4σ2

pos. This is il-
lustrated in Fig. 12, and provides an alternative way to
determine σpos.

VIII. CONSEQUENCES OF FINITE

MEASUREMENT TIME

Cell trajectories are only recorded for a finite time [65].
In Sec. V C, the power spectrum for the “tangent”-
velocity was derived under the assumption that the mea-
surement time tmsr was much longer than the persistence
time P , and in Sec. VI F the contributions from the ends
of the sum in the Fourier transformation were neglected.
In the present section, we account for the finite measure-
ment time, and derive the power spectra for both the
“tangent”-velocity and the secant-approximated velocity.

A. Effect of finite measurement time on

“tangent”-velocity power spectrum

Recall from Eq. (25) and the definition of the power
spectrum in Eq. (26) that if all terms are kept, the power
spectrum for continuous measurements is

Pv(fk) = 〈|~̃v(fk)|2〉/tmsr (85)

=
1

P−2 + (2πfk)2
×

{
σ2
〈
|~̃η(fk)|2

〉
+
〈

[~v(tmsr) − ~v(0)]
2
〉

−2σ
〈
ℜ
{
~̃η(fk)

}
· [~v(tmsr) − ~v(0)]

〉}
/tmsr.

A straightforward calculation shows that the real and
imaginary parts of the components of ~̃η(fk) are indepen-
dent random Gaussian variables with identical variances,
and

〈η̃∗a(fk) η̃b(fk′)〉 = δa,b δk,k′ tmsr , (86)

which gives
〈
~̃η∗(fk) · ~̃η(fk′ )

〉
= 2tmsrδk,k′ . (87)

The second term in Eq. (85) is

〈
(~v(tmsr) − ~v(0))2

〉
= 2

〈
~v2
〉
− 2φ(tmsr)

= 2σ2P (1 − e−tmsr/P ),
(88)

where we have used Eqs. (17) and (20).
Direct calculations give the last term in Eq. (85),

〈
ℜ
{
~̃η(fk)

}
· ~v(tmsr)

〉
= 2σP

1 − e−tmsr/P

1 + (2πPfk)2
, (89)

and
〈
ℜ
{
~̃η(fk)

}
· ~v(0)

〉
= 0 , (90)

as ~η(t) is independent of ~v(0) for t ≥ 0.
Finally, we have the velocity power spectrum for a fi-

nite measurement time

Pv(fk) =

〈∣∣∣~̃v(fk)
∣∣∣
2
〉
/tmsr

=
4D

1 + (2πPfk)2

[
1+

P

tmsr

(
1 − e−tmsr/P

)(
1 − 2

1 + (2πPfk)2

)]
.

(91)

Compared with the expression for the infinite measure-
ment time in Eq. (26), the finite measurement time gives
a correction of order (P/tmsr) (1 − e−tmsr/P ) → P/tmsr

for tmsr/P → ∞ with a coefficient that numerically is
less than one. So the contributions from the ends of the
time interval vanishes when the measurement time tmsr

is much longer than the persistence time P .
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B. Effect of finite measurement time on

secant-approximated velocity’s power spectrum

When introducing the discrete Fourier transformation
of the secant-approximated velocities in Eq. (56) contri-
butions from the ends of the sum in the Fourier transfor-
mation were neglected. In App. F these end point con-
tributions are kept, and the resulting power spectrum for
the secant-approximated velocities becomes

P (finite)
u (fk) = Pu(fk) +

4σ2
pos

tmsr
cos(2πk/N)

+
1

tmsr

[
4DP

(1 − c)3

1 + c

{
(1 − cN − cN−1) cos(2πk/N) − cN−1

− 2 cos2(πk/N)
[
2 − cN−1(1 + c)2 + 2

{
cN (1 + c) − c

}
cos(2πk/N)

]

1 + c2 − 2c cos(2πk/N)

}

− 8D∆t

(
1 − 2

1 − c

1 + c

P

∆t

)(
1 − cN

)
+ 2(∆t)2

(
1 − cN

)
σ2
~u(true)

]/

[
1 + c2 − 2c cos(2πk/N)

]
.

(92)

Here Pu(fk) is the power spectrum for the secant-
approximated velocity in presence of localization errors
from Eq. (76), and σ2

~u(true) is defined in Eq. (71). Notice
that contributions from the end points in the sums of
the Fourier transforms decay with the length of the time
series as 1/N as the measurement time is tmsr = N∆t.

Figure 13 shows a comparison between the power spec-
trum for the “tangent”-velocity, the secant-approximated
velocity, and the secant-approximated velocity with lo-
calization errors including the contributions from the
ends of the Fourier transform (full dots) and without
them (open circles) for a trajectory with N = 32 points.
Notice how the inclusion of the ends increases the ex-
pected power spectral values for all frequencies, except
at the lowest frequencies.

IX. DISCUSSION AND CONCLUSION

Given that space and time both are continuous and
given that it is not possible to measure continuously in
time, empirical data from a continuous dynamical process
are a time-series of values separated in time by a finite
time-lapse. The time-lapse is an experimental artefact,
not part of the dynamical process, and hence should not
occur in a model describing this process in continuous
time.

So how do we construct such a continuous model from
time-lapse recorded data? How do we do this when ex-
perimental errors occur on recorded coordinates? Alter-
natively, if a model already exists, how do we connect
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FIG. 13. (Color online). Power spectra including effects of
finite measurement time. Power spectra for the “tangent”-
velocity, the secant-approximated velocity, and the secant-
approximated velocity with localization error, respectively.
Full circles are the results including the ends of the sum in
the Fourier transforms [see Eqs. (91,92)], while open circles
are without these end points [see Eqs. (25,60,76)]. The pa-
rameters are the sample time ∆t = P/2, the localization error

σpos = 0.2σP 3/2, and the length of the trajectory N = 32.

it with time-lapse recorded data, which typically contain
experimental errors?

Conditional averaging will characterize the individual
terms in an unknown stochastic differential equation, if
such an equation will model the process in continuous
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space-time. But a naive approach can lead to highly in-
correct parameter estimates, we have demonstrated. A
feasible path to correct parameter extraction via condi-
tional averaging simulates the model in effectively con-
tinuous time and takes data from the simulated model
exactly as they were taken in the experiment. Models are
then fitted to data by simulating the model several times
in each iteration [7]. This procedure is computationally
expensive and generates no analytical understanding of
how recorded data are affected by discretization effects
and localization errors.

In the present paper, we recommended several steps
describing how to plot and analyze experimental data,
and how to compare data with a theoretical model for
the underlying dynamics. The model comparison must
account for how test statistics, such as the mean-squared-
displacement and the velocity power spectrum, are dis-
torted by discretization, localization errors, and finite
measurement times. In Sec. VI D we demonstrated how
a naive direct comparison of a theoretical model formu-
lated in continuous time with discretely sampled data
can lead to gross misinterpretation of the fitted model
parameters.

Then we used the Ornstein-Uhlenbeck model as an ex-
ample of persistent random motion. We derived analyti-
cally how test statistics were influenced by experimental
conditions, but we also used Monte Carlo simulations
for illustrations. More realistic and complex models for
cell motility might not be analytically solvable. In this
case we recommend Monte Carlo simulations as an eas-
ier route to investigate the effects of discretization and
localization errors. Monte Carlo simulation also provides
errors estimates for fitted parameter values.

Finally, we stressed the importance of fitting to uncor-
related data— specifically, the power spectrum—instead
of correlated data, such as as the mean squared displace-
ments. Otherwise, it is difficult to obtain reliable error
estimates on the resulting estimates for parameter values
from standard fitting routines. Consequently, one also
cannot do the goodness-of-fit tests necessary to validate
that data are consistent with a given candidate model.

Conditional averaging, as discussed here, works for
motility that is described by a stochastic differential
equation, as, e.g., the OU-process. The method applies
also to motility that is described by a stochastic integro-
differential equation, at least when an exact mathemat-
ical transformation will recast this stochastic integro-
differential equation as a small set of coupled stochastic
differential equations. This is demonstrated in Refs. [7]
and [28], in which motility models of this kind are de-
duced from experimental data.

Such a transformation may be possible only for integro-
differential equations with particularly simple memory
kernels. The kernels in Refs. [7] and [28] decrease expo-
nentially in time, i.e., they “forget” at a constant rate.
More complicated memory kernels can result in an infin-
ity of coupled differential equations when the dynamics
they describe is sought modeled with ordinary stochas-

tic differential equations without time-lag. For exam-
ple, a dynamics as “simple” as Brownian motion of a
microsphere in an incompressible fluid like water does
not seem to admit such a transformation when modelled
hydrodynamically correctly [66, and references therein].
Its (time lag)−1/2 power-law memory-kernel describes the
back-flow effect from the surrounding fluid, which has in-
finitely many degrees of freedom. It thus stands to reason
that its dynamics cannot be described by a few variables
that are local in time.

All dynamics with power-law-decreasing velocity auto-
covariance may have the same problem, which includes
fractional Brownian motion. Then it is of little help
that effects of localization errors and motion blur already
are known for this problem [67]. Motility models in the
same vein—i.e., with long-term memory effects showing
as anomalous diffusive behavior—may thus be too much
of a challenge for the approach suggested here, or the ap-
proach must somehow be recast in the frequency domain.

On the other hand, the empirical evidence for such
anomalous behavior in motile cells is weak. So its obser-
vation may be due to artefacts, such as localization errors
and effects of finite sampling rate going unaccounted for
in data sets of limited statistics. Also, we find it diffi-
cult to imagine the mechanism inside a motile cell that
will provide it with the long-term memory needed for the
cell to display a velocity-auto-covariance function with a
fat power-law tail. So maybe it is not there. Maybe
proper accounting for measurement artefacts combined
with modeling, along the lines described here, will elimi-
nate the observed power-laws.
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Appendix A: Mean-squared displacement and

autocorrelation from data

Given a trajectory of measured positions ~ri for i =
0, . . .N , the mean-squared displacement (MSD) for this
specific trajectory is estimated with

〈
d2n
〉

=
1

N − n + 1

N−n∑

i=0

(~ri+n − ~ri)
2
. (A1)
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Notice that the estimates obtained in this manner for
different values of n are highly correlated, as they are
generated from the sametime-series of positions (see, e.g.,
the discussion in Sec. 3.2 in [47]).

The auto-covariance of the secant-approximated veloc-
ities we estimate with the expression [28]

φj = 〈~ui~ui+j〉

=
1

N − j − 1

N−j∑

k=1

(
~uk −

1

N − j

N−j∑

ℓ=1

~uℓ

)

·


~uk+j −

1

N − j

N∑

ℓ=j+1

~uℓ


 .

(A2)

Appendix B: Definition of generalized Gaussian

white noise

Note that the components of ~η have infinite variance,
if one reads Eq. (11) naively as the auto-covariance of
an ordinary stochastic process, since for t′ = t′′ it states
that

〈 ηa(t′)2 〉 = δ(0) = ∞ . (B1)

The components of ~η are not ordinary Gaussian random
variables, however, but advanced-math quantities: Each
component is the first derivative of a Wiener process [68].

In tune with this, ηa does not really have an expected
value, nor an auto-covariance, though it may seem that
we gave those quantities in Eq. (11). The Dirac δ-
function in Eq. (11) is a reminder that we actually are
doing something more abstract in Eq. (11). The equa-
tion uses well-known notation beyond its conventional
range of application. It does this because it is very conve-
nient: the rules for how to calculate with expected values
hold also when the expected-value-symbol is used more
abstractly in advanced math, so one can essentially do
advanced math calculations on auto-pilot, if one knows
basic math of expected values. This is very slick and
convenient for fast calculation of results in any context
in which ~η occurs in an integral of the bi-linear form

(f, ηa) ≡
∫

f(t)ηa(t)dt , (B2)

and expected values and variances of such forms are to
be evaluated. Example:

〈(f, ηa)(g, ηb)〉 = (f, g) δa,b (B3)

is an essentially trivial consequence of Eq. (11), but very
useful in the following. It is (f, ηa), where f is any real
function with (f, f) < 0—i.e., f is square integrable—
which is a Gaussian random variable. This is what is
meant by a generalized Gaussian random variable, in
analogy with other so-called generalized functions, such

as Dirac’s δ-function. Note that the Gaussian random
variable (f, ηa) has zero mean and variance (f, f) in con-
sequence of Eq. (11). An important special case is the

Gaussian random variable
∫ t2
t1

ηa(t′)dt′, which has vari-
ance t2 − t1.

Appendix C: Auto-covariance of

secant-approximated velocities beyond the

OU-model

For motility models that are more complicated than
the OU-process, we may not be able to derive an equiv-
alent exact analytical formula for φ corrected for dis-
cretization effects, see Sec. VI H. In that situation, the
following considerations can be applied: If φ(t) can be
Taylor-approximated—with proper handling of t = 0
where its first derivative is discontinuous—then it re-
mains true that

φ
(true)
j−k = φ(tj − tk) +

1

12
(∆t)2 φ′′(tj − tk) (C1)

+O((∆t)4) for j 6= k,

φ
(true)
0 = φ(0) − 1

3
∆t |φ′(0)| (C2)

+
1

12
(∆t)2 φ′′(0) + O((∆t)3).

Thus, to O(∆t) one has

φ
(true)
j−k = φ(tj − tk) for j 6= k , (C3)

φ
(true)
0 =

(
1 − ∆t |φ′(0)|

3φ(0)

)
φ(0) . (C4)

So in this approximation, discretization affects only the
data point at zero time-separation in φj , by lowering it an
amount proportional to ∆t. In the better approximation
of Eq. (C1), the dominant effect of discretization remains
a lowering of the first data point in φj , at j = 0, while
other data points are raised where the function is convex,
and lowered where it is concave.

Appendix D: Effective discrete process

By inserting Eq. (16) in Eq. (6), we find that we can
write

~u
(true)
j = (gj , ~η) (D1)

with

gj(t) =
σP

∆t
×





(1 − c)e−(tj−1−t)/P for t ≤ tj−1

1 − e−(tj−t)/P for tj−1 ≤ t ≤ tj
0 for tj ≤ t

.

(D2)
Here gj is a square integrable function of time. The set of
such functions form an abstract vector space with a scalar
product (·, ·) defined in Eq. (B2). In quantum mechanics
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it is used as the space of wave functions. Here, we just
think of the functions gj and gj+1 as two vectors, and
split gj+1 into its component after gj, call it γgj, and its
component orthogonal to gj , which then is gj+1 − γgj.
Orthogonality, i.e., (gj, gj+1 − γgj) = 0 determines γ =
(gj+1, gj)/(gj , gj).

Using this in Eq. (D1), we find the useful relationship

~u
(true)
j+1 = γ~u

(true)
j + ~ζj , (D3)

where

~ζj ≡ (gj+1 − γgj, ~η) (D4)

by construction is uncorrelated with ~u
(true)
j ,

〈~ζj ⊗ ~uj〉 =

(

1 0
0 1

)

(gj+1 − γgj, gj) = 0 . (D5)

Equation (D2) inserted in the definition of (·, ·) in
Eq. (B2) gives

(gj, gj) =
σ2P 3

(∆t)2
(c− 1 + ∆t/P ) , (D6)

(gj , gj+k) = 1
2

σ2P 3

(∆t)2
(1 − c)2ck−1 for k = 1, 2, . . . ,(D7)

where we recall that c = exp(−∆t/P ). This show that
the left-hand sides are j-independent constants. Hence
so is γ,

γ =
(1 − c)2

2(c− 1 + ∆t/P )
∼ 1 − 2∆t

3P
for ∆t/P → 0 . (D8)

While ~ζj is an ordinary Gaussian noise, it is not white

because each component of ~ζj is correlated with its val-

ues at other times: 〈~ζi ⊗ ~ζj〉 6= 0 for all i, j. The fact

that ~ζj is correlated with ~ζi for all values of i, makes
Eq. (D3) unpractical for numerical iteration. It is not a
good way to Monte Carlo simulate a time series of se-

cant velocities ~u
(true)
j . Equation (D3) is also unpractical

as starting point for a calculation of the power spectrum

of ~u
(true)
j . Equation (D3) is maximally convenient for

derivation of the results presented in App. E. An alter-

native, complementary recursion relation for ~u
(true)
j was

given in Sec. VI A.

Appendix E: Expected value and covariance matrix

for the secant-approximated velocity in presence of

localization error

1. Expected value

To derive Eqs. (69,70), we consider the expected value
of the acceleration of the secant velocities, given a mea-
sured secant velocity ~uj,

〈~aj〉~uj
=

〈~uj+1〉~uj

∆t
− ~uj

∆t
. (E1)

Recalling that the dynamics of ~u
(true)
j given in Eq. (D3),

the expected value 〈~uj+1〉~uj
can be expressed as

〈~uj+1〉~uj
=

〈
γ~u

(true)
j + ~ζj +

~ξj+1 − ~ξj
∆t

〉

~uj

. (E2)

The vector ~uj is given by the independent variables on the

r.h.s. of Eq. (67). For given ~uj, Eq. (67) thus gives ~u
(true)
j

in terms of the known value for ~uj and the stochastic
variable ∆~uj defined in Eq. (68). The localization error
~ξj+1 at time tj+1 and the vector ~ζj defined in Eq. (D4)
are independent of these variables, so

〈
~ζj

〉
~uj

=
〈
~ξj+1

〉
~uj

= 0 , (E3)

and hence

〈~uj+1〉~uj
= γ

〈
~u
(true)
j

〉
~uj

−

〈
~ξj

〉
~uj

∆t
. (E4)

So the task is to calculate the expected values on the
r.h.s. of Eq. (E4). We show in detail how to find〈
~u
(true)
j

〉
~uj

and state the result for the other terms.

Recall that the localization error ~ξj is defined as a
Gaussian variable with independent components with

zero mean and variance σ2
pos for all j. That is,

〈
~ξ2j

〉
=

2σ2
pos for all j. This implies that ∆~uj ≡ (~ξj − ~ξj−1)/∆t

has zero mean and variance σ2
∆u = 4σ2

pos/∆t2 for all
j. Similarly, we denote the variance of the measured
secant velocity ~uj by σ2

u for all j, and from Eq. (67)
we get σ2

u = σ2
~u(true) + σ2

∆u = σ2
~u(true) + 4σ2

pos/∆t2 [see
Eqs. (71,72)].

With this notation, the probabilities for observing the

vectors ~u
(true)
j , ~ξj , ∆~uj , and ~uj become

p~u(true) (~u
(true)
j ) =

1

2πσ2
~u(true)

exp


−

[
~u
(true)
j

]2

2σ2
~u(true)


 ,(E5)

ppos(~ξj) =
1

2πσ2
pos

exp


−

[
~ξj

]2

2σ2
pos


 , (E6)

p∆u(∆~uj) =
1

2πσ2
∆u

exp

(
− [∆~uj ]

2

2σ2
∆u

)
, (E7)

pu(~uj) =
1

2πσ2
u

exp

(
− [~uj]

2

2σ2
u

)
, (E8)

since all four vectors have their two component normal
distributed with zero mean and identical variances. With
the same notation, the conditional probability that the

true secant velocity is ~u
(true)
j given a measured vector ~uj
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is

p(~u
(true)
j |~uj)

=
p~u(true)(~u

(true)
j )p∆u(~uj − ~u

(true)
j )

∫ ∫
d~u

(true)
j p~u(true)(~u

(true)
j )p∆u(~u− ~u

(true)
j )

=
p~u(true)(~u

(true)
j )p∆u(~uj − ~u

(true)
j )

pu(~uj)
, (E9)

where the last equality can be found by direct calculation
or by applying Bayes’ theorem. Thus,

〈
~u
(true)
j

〉
~uj

=

∫ ∫
d~u

(true)
j ~u

(true)
j p~u(true) (~u

(true)
j )p∆u(~uj − ~u

(true)
j )

pu(~uj)

=

[
~uj + σ2

∆u
∂

∂~uj

]

pu(~uj)
×

∫ ∫
d~u

(true)
j p~u(true)(~u

(true)
j )p∆u(~uj − ~u

(true)
j )

=

[
~uj + σ2

∆u
∂

∂~uj

]
pu(~uj)

pu(~uj)
,

where Eq. (E9) has been used in the last step. Continuing
gives the final result

〈
~u
(true)
j

〉
~uj

= ~uj + σ2
∆u

∂

∂~uj
ln pu(~uj)

=

(
1 − σ2

∆u

σ2
u

)
~uj

=
σ2
~u(true)

σ2
~u(true) + 4σ2

pos/∆t2
~uj

=
σ2
~u(true)

σ2
u

~uj . (E10)

An analogous derivation gives that

〈
~ξj

〉
~uj

∆t
=

2σ2
pos/∆t2

σ2
~u(true) + 4σ2

pos/∆t2
~uj =

2σ2
pos

(∆t)2σ2
u

~uj .

(E11)
Inserting Eqs. (E10,E11) in Eq. (E4), and substituting
the resulting expression for 〈~uj+1〉~uj

in Eq. (E1) gives

the final result, Eq. (69).

2. Covariance matrix

The covariance matrix of the secant approximated ve-
locity in presence of localization errors is derived in a
way similar to its expected value, but the calculations
are slightly more involved. The starting point is Eq. (67),

which is re-written using Eq. (D3)

~uj+1 = ~u
(true)
j+1 + ∆~uj+1 (E12)

= γ~u
(true)
j + ~ζj + ∆~uj+1

= γ [~uj − ∆~uj] + ~ζj + ∆~uj+1

= γ~uj + ~ζj +
1

∆t

[
~ξj+1 − (1 + γ)~ξj + γ~ξj−1

]
.

The secant approximated acceleration is then

~aj ≡
~uj+1 − ~uj

∆t

= −1 − γ

∆t
~uj

+
1

∆t
~ζj +

1

(∆t)
2

[
~ξj+1 − (1 + γ)~ξj + γ~ξj−1

]
,

(E13)

and with Eqs. (69,70)

~aj − 〈~aj〉~uj
=

γ − ε

∆t
~uj +

1

∆t
~ζj

+
1

(∆t)2

[
~ξj+1 − (1 + γ)~ξj + γ~ξj−1

]
.

(E14)

Here ~uj is the measured secant-approximated velocity,

i.e. constant, and ~ζj , ~ξj+1, ~ξj , and ~ξj−1 are four random
variables .

For a given measured secant velocity ~uj , the vectors
~ζj , ~ξj+1 are independent of ~uj , as they are related to the
motion and localization error at time tj+1, respectively.
Furthermore, they are uncorrelated with each other and

the vectors ~ξj and ~ξj−1. So the components of the vectors
~ζj , ~ξj+1 satisfy

〈ζj,q〉~uj
= 0 , (E15)

〈ζj,qζj,q′ 〉~uj

(∆t)2
=

〈ζj,qζj,q′ 〉
(∆t)2

(E16)

=
4(c− 1 + ∆t/P )2 − (1 − c)4

4P (c− 1 + ∆t/P )(∆t/P )2
×

(
σP

∆t

)2

δq,q′

〈ξj+1,q〉~uj
= 0 , (E17)

〈ξj+1,qξj+1,q′ 〉~uj
= 〈ξj,qξj,q′ 〉 = δq,q′σ

2
pos , (E18)

where Eq. (48) was used together with the definition of
the localization error.

The random variables ~ξj and ~ξj−1 are correlated with

each other and ~uj due to the bond ~uj = ~u
(true)
j +

1
∆t

[
~ξj − ~ξj−1

]
. However, they are drawn from iden-

tical distributions, which are symmetric around zero.
That is, for the different components holds pξq (ξj,q) =
pξq (−ξj,q) = pξq (ξj−1,q) = pξq (−ξj−1,q).

Thus, Eq. (E14) can be written out component-wise as
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〈(
aj,q − 〈aj,q〉~uj

)(
aj,q′ − 〈aj,q′〉~uj

)〉
~uj

= δq,q′

{[
γ − ε

∆t

]2
u2
j,q +

1

(∆t)2
〈
ζ2j,q
〉
~uj

− 2
γ − ε

(∆t)3
[(1 + γ) 〈ξj,q〉 − γ 〈ξj−1,q〉]uj,q

+
1

(∆t)
4

[ 〈
ξ2j+1,q

〉
~uj

+ (1 + γ)2
〈
ξ2j,q
〉
~uj

+ γ2
〈
ξ2j−1,q

〉
~uj

− 2γ(1 + γ) 〈ξj,qξj−1,q〉~uj

]}

= δq,q′

{[
γ − ε

∆t

]2
u2
j,q +

1

(∆t)
2

〈
ζ2j,q
〉
~uj

− 2
γ − ε

(∆t)3
(1 + 2γ) 〈ξj,q〉 uj,q

+
1

(∆t)4

[
σ2
pos +

〈
ξ2j,q
〉
~uj

+ 2γ(1 + γ)
{〈

ξ2j,q
〉
~uj

− 〈ξj,qξj−1,q〉~uj

}]}
. (E19)

as there are no correlations between the different compo-
nents. The value of 〈ξj,q〉 is stated in Eq. (E11), so the
task is to calculate

〈
ξ2j,q
〉
~uj

and
〈
ξ2j,q
〉
~uj

− 〈ξj,qξj−1,q〉~uj
.

We start with
〈
ξ2j,q
〉
~uj

and write

〈
ξ2j,q
〉
~uj

=

∫
dξj,qξ

2
j,qp(ξj,q|uj,q)∫

dξj,qp(ξj,q|uj,q)
(E20)

=

∫
dξj,qξ

2
j,qpξq (ξj,q)pδuq

(uj,q − ξj,q/∆t)∫
dξj,qpξq (ξj,q)pδuq

(uj,q − ξj,q/∆t)

=

∫
dξj,qξ

2
j,qpξq (ξj,q)pδuq

(uj,q − ξj,q/∆t)

puq
(uj,q)

,

where we have introduced δuj,q ≡ u
(true)
j,q −ξj−1,q/∆t, and

once again used Bayes’ theorem. As u
(true)
j,q and ξj−1,q are

independent Gaussian random variables with zero mean,
then δuj,q is also a random Gaussian variable with zero
mean and variance σ2

δuq
= 1

2σ
2
~u(true) + σ2

pos/(∆t2).

We will need the following identity: Let p(x, a) =
1√

2πσ2
exp

[
− (a−x)2

2σ2

]
, then holds

x2p(x, a) = σ4 ∂2

∂a2
p(x, a) + 2aσ2 ∂

∂a
p(x, a)

+
[
a2 + σ2

]
p(x, a) .

(E21)

Using Eq. (E21) we obtain

〈
ξ2j,q
〉
~uj

(∆t)
2 =

{
σ4
δuq

∂2

∂u2
j,q

+ 2uj,qσ
2
δuq

∂
∂uj,q

+
[
u2
j,q + σ2

δuq

]} ∫
dξj,qpξq (ξj,q)pδuq

(uj,q − ξj,q/∆t)

puq
(uj,q)

=

{
σ4
δuq

∂2

∂u2
j,q

+ 2uj,qσ
2
δuq

∂
∂uj,q

+
[
u2
j,q + σ2

δuq

]}
puq

(uj,q)

puq
(uj,q)

=
[
u2
j,q + σ2

δuq

]
+

{
σ4
δuq

∂2

∂u2
j,q

+ 2uj,qσ
2
δuq

∂
∂uj,q

}
puq

(uj,q)

puq
(uj,q)

, (E22)

and with

∂2

∂x2 p(x)

p(x)
=

∂2

∂x2
ln p(x) +

[
∂

∂x
ln p(x)

]2
, (E23)

and ∂
∂x ln p(x) =

∂
∂x

p(x)

p(x) Eq. (E22) becomes

〈
ξ2j,q
〉
~uj

(∆t)2
=
[
u2
j,q + σ2

δuq

]
+ 2uj,qσ

2
δuq

∂

∂uj,q
ln puq

(uj,q)

+σ4
δuq

{
∂2

∂u2
j,q

ln puq
(uj,q)

+

[
∂

∂uj,q
ln puq

(uj,q)

]2}
. (E24)

As uj,q [see also Eq. (E8)] is a normal distributed random
variable with zero mean and variance 1

2σ
2
u, it follows that
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∂
∂uj,q

ln puq
(uj,q) = − 2uj,q

σ2
u

and ∂2

∂u2
j,q

ln puq
(uj,q) = − 2

σ2
u

,
so 〈

ξ2j,q
〉
~uj

(∆t)
2 =

[
u2
j,q + σ2

δuq

]
+ 2uj,qσ

2
δuq

(
−2uj,q

σ2
u

)
(E25)

+σ4
δuq

(
− 2

σ2
u

+
4u2

j,q

σ4
u

)

= σ2
δuq

(
1 − 2

σ2
δuq

σ2
u

)

+

(
1 − 4

σ2
δuq

σ2
u

[
1 −

σ2
δuq

σ2
u

])
u2
j,q

=

(
σ2
u −

2σ2
pos

(∆t)2

)
σ2
pos

(∆t)2σ2
u

+

[
2σ2

pos

(∆t)2σ2
u

uj,q

]2
.

The next step is to find
〈
ξ2j,q
〉
− 〈ξj,qξj−1,q〉~uj

. It can

be obtained from the expression for 〈ξj,qξj−1,q〉~uj
, which

can be re-written as

〈ξj,qξj−1,q〉~uj
=

∫
dξj,q

∫
dξj−1,qξj,qξj−1,qp(ξj,q ∩ ξj−1,q |~uj)∫

dξj,q
∫
dξj−1,qp(ξj,q ∩ ξj−1,q |~uj)

=

∫
dξj,q

∫
dξj−1,q ξj,qξj−1,qpξq (ξj,q)pξq (ξj−1,q)p

u
(true)
q

(uj,q − [ξj,q − ξj−1,q]/∆t)

puq
(uj,q)

, (E26)

where we have used Bayes’ theorem, that ξj,q and ξj−1,q

are independent variables, and the definition of marginal
probability distributions.

Applying Eq. (E21) once again and following the
same line of calculation as above gives an expression for〈
ξ2j,q
〉
~uj

− 〈ξj,qξj−1,q〉~uj
, which is

2

[〈
ξ2j,q
〉
~uj

− 〈ξj,qξj−1,q〉~uj

(∆t)2

]

=
1

2
σ2
~u(true)

(
2σpos

∆tσu

)2

+

(
2σpos

∆tσu

)4

.

(E27)

The final expression, Eq. (73), for the covariance ma-

trix
〈(

aj,q − 〈aj,q〉~uj

)(
aj,q′ − 〈aj,q′〉~uj

)〉
~uj

for the se-

cant approximated accelerations, given ~uj , is obtained
by inserting Eqs. (E11), (E16), (E25) and (E27) in
Eq. (E19).

Appendix F: Discrete power spectrum for the

secant-approximated velocities for finite

measurement times including localization error

Here we demonstrate how to calculate the expected
values of the power spectral values taking into account
the finite length of the time series. The staring point is
Eq. (67), which after a discrete Fourier transformation
[see Eq. (50)] and keeping the ends of the sums in the
Fourier transforms becomes

~̂uk = ~̂u
(true)
k +

1 − e2πik/N

∆t
~̂ξk+e2πik/N

(
~ξN − ~ξ0

)
. (F1)

Notice that the localization errors are independent of
the true secant-approximated velocities. First we calcu-

late ~̂u
(true)
k while keeping the ends in the sums of the

Fourier transforms, and then we find the contribution
from the localization error.
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1. Power spectrum for ~̂u
(true)
k for finite

measurement time

The starting point for calculating the power spectrum
is Eq. (39), but here we keep the contributions from the
end of the sums in the Fourier transformation, and find

(e−i2πk/N − c) ~̂u
(true)
k =

1 − c

1 + c

P

∆t
(1 + ei2πk/N ) ∆̂~vk

+ (1 − cei2πk/N )
∆̂~r

(2)

k

∆t

− ∆t
(
~u
(true)
N+1 − ~u

(true)
1

)

− 1 − c

1 + c
Pei2πk/N (∆~vN − ∆~v0)

+ cei2πk/N
(

∆~r
(2)
N − ∆~r

(2)
0

)
.

(F2)

Below we list a number of useful relations. First, Eq. (39)
states that secant-approximated velocity is determined
by the recursion relation

~u
(true)
j+1 = c~u

(true)
j + ~fj , (F3)

with the noise term

~fj =
1 − c

1 + c

P

∆t
(∆~vj + ∆~vj−1) +

∆~r
(2)
j − c∆~r

(2)
j−1

∆t
. (F4)

Iterating Eq. (F3) gives that the difference ~u
(true)
N+1 −~u

(true)
1

can be expressed as

~u
(true)
N+1 − ~u

(true)
1 =

[
cN − 1

]
~u
(true)
1 +

N∑

j=1

cN−j ~fj . (F5)

In addition, Eqs. (31,37) gives that

〈
~fi ⊗ ∆~vj

〉
=

D

∆t
(1 − c)

2
[δi,j + δi−1,j ]

(

1 0
0 1

)

,

(F6)
〈
~fi ⊗ ∆~r

(2)
j

〉
= 2D

(
1 − 2

1 − c

1 + c

P

∆t

)
×

[δi,j − cδi−1,j ]

(

1 0
0 1

)

. (F7)

Secondly, from Eqs. (31,37,39) we get

〈
~u
(true)
1 ⊗ ∆~v0

〉
=

D

∆t
(1 − c)2

(

1 0
0 1

)

, (F8)

〈
~u
(true)
1 ⊗ ∆~r

(2)
0

〉
= 2D

(
1 − 2

1 − c

1 + c

P

∆t

)
(

1 0
0 1

)

,

(F9)

With these relations we can derive that

〈(
~u
(true)
N+1 − ~u

(true)
1

)
· (∆~vN − ∆~v0)

〉

=
2D

∆t
(1 − c)2

(
2 − cN − cN−1

)
, (F10)

〈(
~u
(true)
N+1 − ~u

(true)
1

)
·
(

∆~r
(2)
N − ∆~r

(2)
0

)〉

= 8D

(
1 − 2

1 − c

1 + c

P

∆t

)
. (F11)

We also need the relations involving the discrete
Fourier transformations of the noise terms. That is,

〈(
~u
(true)
N+1 − ~u

(true)
1

)
∆̂~r

(2)

k

〉

= ∆t

N∑

j′=1

∑

j=1

cN−j′
〈
~fj′∆~r

(2)
j

〉
e

2πi
N

jk

= 4D∆t

(
1 − 2

1 − c

1 + c

P

∆t

)

N∑

j′=1

N∑

j=1

cN−j′e
2πi
N

jk [δj′,j − cδj′−1,j ]

= 4D∆t

(
1 − 2

1 − c

1 + c

P

∆t

)

(F12)

where we have used that
〈
~u
(true)
1 ∆~r

(2)
i

〉
= 0 for i =

1, · · ·N , and

N∑

j′=1

N∑

j=1

cN−j′e
2πi
N

jkδj′,j =
1 − cN

1 − ce−
2πi
N

k
, (F13)

N∑

j′=1

N∑

j=1

cN−j′e
2πi
N

jkδj′−1,j =
e

−2πi
N

k − cN−1

1 − ce
−2πi
N

k
,(F14)

and, consequently,

N∑

j′=1

N∑

j=1

cN−j′e
2πi
N

jk [δj′,j − cδj′−1,j] = 1 . (F15)

Similarly,

〈(
~u
(true)
N+1 − ~u

(true)
1

)
∆̂~vk

〉

= ∆t

N∑

j′=1

∑

j=1

cN−j′
〈
~fj′∆~vj

〉
e

2πi
N

jk

= 2D (1 − c)
2

N∑

j′=1

N∑

j=1

cN−j′e
2πi
N

jk [δj′,j + δj′−1,j ]

= 2D (1 − c)2
1 − cN − cN−1 + e

−2πi
N

k

1 − ce
−2πi
N

k

(F16)
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We also need an expression for

〈(
~u
(true)
N+1 − ~u

(true)
1

)2〉
,

and first notice that

〈
~f1 ~f0

〉
=

(
1 − c

1 + c

P

∆t

)2

〈∆~v0∆~v0〉

− c

(
1

∆t

)2 〈
∆~r

(2)
0 ∆~r

(2)
0

〉

= 2
(1 − c)3

1 + c

DP

(∆t)2
− 4

Dc

∆t

(
1 − 2

1 − c

1 + c

P

∆t

)
.

(F17)

This leads to

〈
~u
(true)
N+1 ~u

(true)
1

〉
= cN

〈(
~u
(true)
1

)2〉

+
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j=1

cN−j
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~fj~u

(true)
1

〉

= cNσ2
~u(true)
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j=1
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= cNσ2
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1 + c

DP

(∆t)2

− 4
DcN

∆t

(
1 − 2

1 − c

1 + c

P

∆t

)
,

(F18)

where σ2
~u(true) =

〈
~u
(true)
i

〉
is defined in Eq. (72), and,

finally,

〈(
~u
(true)
N+1 − ~u

(true)
1

)2〉

= 2
(
1 − cN

)
σ2
~u(true) − 4cN−1 (1 − c)3

1 + c

DP

(∆t)2

+ 8
DcN

∆t

(
1 − 2

1 − c

1 + c

P

∆t

)
.

(F19)

Returning to Eq. (F2), multiplying both sides with its
complex conjugated, and taking the expected value on
both sides gives the non-vanishing terms
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|e−i2πk/N − c|2
〈
|~̂u(true)

k |2
〉

=
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1 + c
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(F20)

Gathering the terms according to prefactors gives

|e−i2πk/N − c|2
〈
|~̂u(true)

k |2
〉

=

(
1 − c

1 + c

P

∆t

)2
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〈
|∆̂~vk|2

〉
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{
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}
cos(2πk/N)

]

1 + c2 − 2c cos(2πk/N)

}

+ 8D∆t

(
1 − 2

1 − c

1 + c

P

∆t

)[
cN − 1

]
+ 2(∆t)2

(
1 − cN

)
σ2
~u(true)

(F21)

Dividing both sides with |e−i2πk/N − c|2tmsr and then
identifying the first two terms on the r.h.s. with the

power spectrum P
(true)
u (fk) defined in Eq. (60) leads to

Eq. (92) after adding the contribution from the localiza-
tion error calculated below.

2. Influence of localization error on the power

spectrum for finite measurement time

Returning to Eq. (F1), calculating the modulus-square
of the two terms from the localization error, and taking
the expected value gives
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〈∣∣∣∣
1 − e2πik/N

∆t
~̂ξk + e2πik/N

(
~ξN − ~ξ0

)∣∣∣∣
2
〉
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∣∣∣∣
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∆t

〈
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(F22)

The term in the curly bracket is 4σ2
pos[1 −

cos(2πk/N)]/∆t, which leads to

〈∣∣∣∣
1 − e2πik/N

∆t
~̂ξk + e2πik/N

(
~ξN − ~ξ0

)∣∣∣∣
2
〉

=
4σ2

postmsr

∆t
[1 − cos(2πk/N)] + 4σ2

pos cos(2πk/N) .

(F23)
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