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Complex diseases can be modeled as damage to intra-cellular networks that results in abnormal
cell behaviors. Network-based dynamic models such as Boolean models have been employed to
model a variety of biological systems including those corresponding to disease. Previous work
designed compensatory interactions to stabilize an attractor of a Boolean network after single node
damage. We generalize this method to a multi-node damage scenario and to the simultaneous
stabilization of multiple steady state attractors. We classify the emergent situations, with a special
focus on combinatorial effects, and characterize each class through simulation. We explore how
the structural and functional properties of the network affect its resilience and its possible repair
scenarios. We demonstrate the method′s applicability to two intra-cellular network models relevant
to cancer. This work has implications in designing prevention strategies for complex disease.

I. INTRODUCTION

Complex networks are increasingly used to understand
and simulate the behavior of biological systems such as
cellular signaling networks [1–6]. The network-based dy-
namic modelling approach aims to capture the biologi-
cal function and behavior of these systems as an emer-
gent property that arises from the totality of interactions
among the components [7]. Several researchers have suc-
cessfully used network-based approaches such as Boolean
and logical models to study specific biological processes
[2, 3, 8]. Complex diseases including diabetes and cancers
can be modeled as network damage due to temporary or
permanent node perturbation (e.g. constitutive activa-
tion of a protein arising from a genetic mutation) [2, 9].
Thus the topics of network repair and network control
have drawn significant attention in the scientific commu-
nity [10–13]. Most approaches aim to influence network
dynamics by controlling the states of certain nodes of the
network [11, 12]. Recently, another approach to the net-
work control problem, namely modifying the interactions
in the network, was proposed [10]. Using this approach,
compensatory interventions can be found to stabilize an
attractor (e.g. steady state) of the network after damage
to a single node [10]. These interventions can be imple-
mented as preventive measures or applied immediately
after the onset of damage. The effect of the intervention
is that the perturbation does not propagate to the rest of
the network, and a close-to-normal behavior is restored
[10]. Ultimately, a combination of node-based and edge-
based approaches will provide researchers more potential
therapeutic strategies.

Recent research suggests that complex diseases such
as cancer often involve multiple gene mutations and the
“one disease, one target, one drug” approach may not be
effective to battle these diseases [9, 14, 15]. Thus it is
worthwhile to use the network paradigm to explore the
combinatorial effect of multiple gene mutations, and to
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design control measures to prevent these effects. More-
over, many biological systems were shown to have several
possible steady states (e.g. several possible cell types),
each reachable for alternative histories (time courses)
[2, 3, 7]. Repair interventions should be cognizant of
these alternative states and maintain (or eliminate) them
as necessary or desired in the specific context. Here we
generalize the method of Campbell et al. [10] to a multi-
ple node damage setting, and to systems that have mul-
tiple steady states, aiming to provide a theoretical plat-
form to mitigate damage more realistically.
This paper presents three key results. First, we use

analytical and computational methods to study how net-
work structure and regulatory logic affect the resilience
of the network′s steady states to single node perturba-
tion. Second, we present an algorithm to design com-
pensatory interventions to stabilize a steady state of the
network after double node damage and evaluate it on ran-
dom Boolean networks. Third, we apply the algorithm
on stabilizing two steady states simultaneously after a
single node damage and discuss the emerging situations
and their corresponding frequencies. We apply the above
algorithms to two biological examples and also adapt the
latter algorithm to the alternative goal of stabilizing a
steady state and destabilizing another.

II. BACKGROUND: BOOLEAN MODELING

A network is a mathematical abstraction of a set of
relationships between various elements. The network
consists of nodes that represent the different elements
and edges that specify the pairwise relationships between
them [16, 17]. In biological networks at the molecular
level, nodes are molecular species such as small molecules,
RNA, protein, and edges indicate interactions and reg-
ulatory relationships [7, 18]. A substantial amount of
studies have characterized the topological properties of
networks, such as degree distribution, heterogeneity and
community structure [16, 17]. Biological networks were
found to exhibit interesting topological properties such
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as a heterogeneous degree distribution [19, 20]. How-
ever, in order to understand the biological function of
a system, the network′s topological information alone is
not enough and dynamical information should be incor-
porated. More specifically, in a dynamical model, each
node i is characterized by a state variable σi , which can
be continuous or discrete, and the vector (σ1 , · · · , σn)
represents the state of the system [7]. The state of the
system can be followed in continuous time or at dis-
crete time intervals. In discrete time models, the ac-
tivity of each node σi is described by a regulatory rule
σi(t + τi) = f (σi1 (t), · · · , σik (t)), where i1 , · · · , ik are the
regulating nodes of i and τi is a discrete time delay.
Here we focus on discrete time Boolean network mod-

els, where node states are binary, 1(ON) or 0(OFF), and
the regulatory rule is specified by a truth table. This
is motivated by the fact that biological species are fre-
quently observed to have highly nonlinear regulation and
switch-like behavior; thus the node state 1 means the
molecular species is above a threshold concentration or
activity and the node state 0 means it is below a thresh-
old concentration or activity [7, 18]. The time trajectory
of the system is simulated deterministically or stochasti-
cally depending on the updating scheme. A simple deter-
ministic updating scheme is synchronous updating, where
τi = 1 for every node. For this scheme, given a specific
initial state, the system will deterministically evolve into
an attractor, which can be a steady state (fixed point) or
several states that repeat regularly, called a limit cycle.
Steady states can be interpreted as cell types and limit
cycles correspond to a cell cycle or circadian rhythms [7].
A commonly used stochastic updating scheme is general
asynchronous updating, where a random node is selected
to be updated at each time step [21]. This type of update
is motivated by the fact that different biological processes
have various timescales, and often the timescales of spe-
cific processes are not known [22]. Fixed points (steady
states) do not depend on the updating scheme [23]. How-
ever, limit cycles are generally unstable to infinitesimal
deviation from synchronous updating [23], and the known
variety of time scales in biological processes makes limit
cycles observed in synchronous updating schemes inher-
ently suspect. While stochastic update may lead to at-
tractors that involve irregular repetitions of a set of states
(so-called complex attractors) [7], we here focus our at-
tention on steady state attractors. Abnormal behavior
of a certain element can be modelled as a change in the
node state, either a temporary perturbation or perma-
nent damage [2, 9]. For example, a loss-of-function mu-
tation or the knockout of a gene can be represented as a
permanent OFF state of the corresponding node in the
network.

III. RESULTS

A. The influence of single node damage on a

steady state of a system

We consider a Boolean model of a biological system;
this model will have one or several attractors. We start

from a steady state s . Then we consider damage to a
node i by permanent knockout (sustained OFF state) or
constitutive expression or activity (sustained ON state).
If the damaged state s∗ is a new steady state (i.e. other
nodes are not affected by the perturbation), we say that
steady state s is stable against the damage. In the con-
verse case, the state of one or more nodes will change,
which then has a cascading effect in the biological sys-
tem. We say the steady state s needs repair in order
to prevent damage propagation. We define the sensitive
node set Si as the set of nodes that would change their
state as a direct consequence of the damage to node i .
Previous research has studied the relationship between

a network′s structure and its topological resilience to in-
cremental node loss [24] and the relationship between
average degree and the effect of single node damage [10].
It was shown that the larger the average node degree,
the less stable a steady state is against single node dam-
age. Another related result is that random Boolean net-
work ensembles will go through a phase transition from
a frozen phase to a chaotic phase as the average node de-
gree increases. Two states that initially differ in a single
node’s state will diverge on average in the chaotic phase.
The critical boundary is average degree <K> = 2 when
considering unbiased Boolean logic (all Boolean func-
tions) and using an annealed approximation (at every
time step the input nodes and Boolean functions are ran-
domized for each node)[25–30]. We note that our setting
of a steady state damaged by a single node knockout is
different from what was considered in previous work on
random Boolean network ensembles.
As biological networks have been observed to exhibit

degree heterogeneity and long-tailed decreasing degree
distributions [1, 19, 31, 32], we explore the effect of degree
heterogeneity on the resilience of a steady state following
single node knockout. To probe a variety of regulatory
rules consistent with a given number of regulators, we
first consider random Boolean rules, and then focus on
more realistic nested canalizing Boolean functions.

1. Theoretical estimation of resilience probability in case of

single node damage

We define the resilience probability (RP) of a steady
state as the probability that the steady state of the net-
work is stable against single node damage. It follows that
the damage probability DP = 1 − RP . We define α(Ij )
to be the probability that a node j with in-degree Ij is
stable (does not change state) if one of its randomly cho-
sen inputs, i , is knocked out. Knocking out a node i will
directly affect the state of at most Oi nodes, where Oi

is the out-degree of node i . If we denote the nodes reg-
ulated by i as n1 , n2 , · · · , nOi

, then the probability that
the state of the system is a steady state after we knock

out node i alone is p(i) =
∏Oi

i=1 α(Ini
) since every regu-

lated node must be stable for the overall network to be
stable. The average RP is given by RP = 1

N

∑N

i=1 p(i).
Under the mean-field assumption that every node follows
the same node in-degree distribution f (Ii) and out-degree
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distribution g(Oi), the average RP can be estimated as1

RP =
∑

Oi

g(Oi)(
∑

Ij

f(Ij)α(Ij))
Oi (1)

In all cases α(Ij = 0 ) = 1 as a source node cannot, by
definition, be disrupted by any other node. If each possi-
ble Boolean function occurs with equal chance, α(Ij ) =

1
2

for Ij > 0 ; this is due to the equal probability of hav-
ing 0 or 1 values in each position of the function, which
leads to a chance of one half that a change in value of
an input variable does not lead to a change in value
of the output2. However, to make sure that the reg-
ulatory logic correctly reflects the desired topology, we
use effective Boolean rules wherein no input is redun-
dant or spurious [34]. That is, for any input node
i , f (· · · , σi = 1 , · · ·) 6= f (· · · , σi = 0 , · · ·) for at least one
pair of input configurations. We find by exhaustive enu-
meration that for effective rules, the probability α(Ij )
changes with the in-degree of the affected node j : α(Ij =
1) = 0, α(Ij = 2) = 0.4, α(Ij = 3) ≈ 0.477, α(Ij =
4) ≈ 0.498. A Monte Carlo calculation shows that α
approaches 0.5 as node in-degree increases. Thus one
can readily see from the estimated average RP (formula
1) that (

∑
Ij
f (Ij )α(Ij ))

Oi decreases from 1 exponentially

as Oi increases from 0. Thus sink nodes and nodes with
smaller out-degree have a greater contribution to the re-
silience probability, as they affect no or few other nodes.
Given an average node out-degree, heterogeneity in the
out-degree distribution tends to make the steady state of
the network more stable against single node damage be-
cause it leads to more low-degree nodes. However, since
α(Ij ) increases relatively slowly and saturates at 0.5 as
Ij increases, it is less straightforward to see the depen-
dence between in-degree heterogeneity and the resilience
probability of a steady state. We note that our mean-field
approximation takes out-degree distribution and effective
Boolean rules into consideration compared with annealed
approximation.
We also analyze the effect of restricting the Boolean

rules to nested canalizing rules, as research shows that
the regulation in biological networks is frequently de-
scribed in this way [35]. A nested canalizing Boolean
function with k inputs can be generated by determin-
ing two sequences, the input sequence (I1 , I2 , · · · , Ik )
and the output sequence (O1 ,O2 , · · · ,Ok ), where Ii or
Oi is either 0 or 1. The output o as a function of in-
put configuration (i1 , · · · , ik ) is thus determined through
the hierarchy o = O1 if i1 = I1 ; o = O2 if i1 6= I1 and
i2 = I2 ; · · ·; o = Ok if i1 6= I1 , · · ·, ik−1 6= Ik−1 , ik = Ik ;
o = NOT Ok if i1 6= I1 , · · ·, ik−1 6= Ik−1 , ik 6= Ik . The
last condition is used to guarantee that the rule is an ef-
fective rule [35]. All nested canalizing functions can be
written in the above form up to a permutation of node
order. We determine analytically, and verify by numeri-

1 To be exact, the in-degree distribution f (Ii ) in formula 1 should
be the conditional in-degree distribution conditioned on a node
being knocked out. The conditional in-degree distribution can
be obtained through the in-degree distribution reweighted by in-
degree.

2 A similar result was obtained in [33].

cal simulations, that the probability that a node′s state
will not change after knockout of one of its x regulators
is α(x ) = x−1

x
for nested Boolean functions generated by

the method above with no bias in Ii or Oi . This is be-
cause knocking out the first dominant canalizing variable
i1 (the probability of this is 1/x ), will change the input
configuration; the output will be changed with probabil-
ity 1/2, which is the probability that two outputs O1

and Ol(l 6= 1 ) of the nested Boolean function hierarchy
are different. Knocking out the second dominant canal-
izing variable changes the output only if i1 6= I1 (the
probability of this is 1/2), the probability that output is
changed is 1/2 as before under the condition i1 6= I1 , and
so on. Also notice that the order of the last two inputs
in the hierarchy of the canalizing function does not affect
the resilience probability, thus the probability of need-
ing repair is 1

x
(1
2
+ (1

2
)2 + · · · + (1

2
)x−1 + (1

2
)x−1) = 1

x
,

and therefore α(x ) is x−1
x

. Notice that two different
sequences may give the same rule, for example, for a
one-input rule, (I1 = 1,O1 = 1) is actually the same
as (I1 = 0,O1 = 0). Also, nested canalizing function
ensembles generated by the input and output sequence
with no bias lead to a different degeneracy of the Boolean
functions in a Boolean table representation, in which the
output of the Boolean function is specified for each pos-
sible input configuration. Simulations show that nested
canalizing Boolean functions randomly picked from the
Boolean table representation with equal probability have
a different α(x ) function: α(x = 2) = 0.5, α(x = 3) =
0.625, α(x = 4) = 0.712, α(x = 5) = 0.766. Regardless
of the representation, α is larger for nested canalizing
functions compared with random Boolean functions or
effective random Boolean functions. This indicates that
steady states of networks with nested Boolean functions
will have an increased resilience against single node dam-
age [35–37]. Since α is smaller than 1, the conclusion
that heterogeneity in the out-degree distribution tends
to make the steady state of the network more resilient
against single node damage holds for nested canalizing
functions.

2. Damage probability in simulations of random network

ensembles

To estimate the resilience probability, we consider
five random Boolean network ensembles with differ-
ent in-degree/out-degree distributions, namely (a) con-
stant in-degree and scale-free out-degree distribution
(SF out), (b) constant in-degree and Poissonian out-
degree (NK out), (c) constant in-degree and constant
out-degree (NKK), (d) Poissonian in-degree distribution
and constant out-degree (NK in), and (e) scale-free in-
degree distribution and constant out-degree (SF in). The
algorithm we used in generating these networks will give
scale-free (power-law) degree distribution or Poisson de-
gree distribution in the limit of very large network size.
Even for small network sizes, the heterogeneity of these
two types of networks is significantly different, e.g. the
standard deviation of the first′s is approximately twice
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FIG. 1: The estimated damage probability across five
ensembles with different degree heterogeneity. Different
symbol shapes of the series represent different average
degree, <K> = 1 (squares), <K> = 2 (circles), and
<K> = 3 (triangles). Single node knockout results are
shown with empty symbols and double node knockout
results are shown with solid symbols. The standard
error of the average damage probability is estimated to
be in the order of 0.001, which is negligible compared
with the size of the symbol.

the second′s 3. For each ensemble, we generate 1000 net-
works with 20 nodes. To make sure that the generated
ensemble has the desired topology and degree distribu-
tion, we only accept at least weakly connected networks
and use effective rules when assigning a Boolean function
to each node. We study ensembles with average degree
<K> = 1, 2 and 3, which would be in frozen phase for
<K> = 1 and chaotic phase for <K> = 2 or 3 when con-
sidering the annealed approximation, the infinite network
size limit and unbiased effective Boolean rules [26–30].
Note that knowing the phase is not enough to predict
the damage probability. For each network, we find all
the steady states. For each steady state, we individually
knock out (keep in the OFF state) every node that has
the ON state in the steady state. A similar procedure
can be followed to consider the constitutive expression
(sustained ON state) of nodes that are currently OFF
in the attractor; we do not explicitly consider this latter
case.
We estimate the resilience probability (RP) and

damage probability (DP = 1 − RP) for networks with
given topological characteristics by considering all steady
states and all possible node knockouts with equal proba-

3 When the average degree equals 2, the standard deviation of
the node out-degree of one sample ensemble is 1.336 for Poisson
distribution, 2.675 for scale-free distribution. When the aver-
age degree equals 3, the standard deviation is 1.588 for Poisson
distribution, 3.188 for scale-free distribution.

bility in the corresponding network ensemble. We do not
weight our analysis based on the size of the attraction
basin of steady states, as this property is not necessarily
relevant in biological systems [38]. Fig. 1 summarizes
the simulation results for the estimated damage proba-
bility. In agreement with the theoretical result, for single
node damage, given a fixed node in-degree, heterogene-
ity in out-degree leads to a smaller damage probability
for the steady state (compare SF out, NK out and NKK
results). In contrast, with node out-degree fixed, het-
erogeneity in in-degree distribution does not show a gen-
eral trend and is connectedness dependent: the damage
probabilities of the NKK, NK in and SF in ensembles are
close for <K> = 2 or <K> = 3. Thus the theoretical
analysis (see III A 1 2nd paragraph) is consistent with the
computational result. A quantitative comparison of dam-
age probability estimation by simulations and mean-field
theory is shown in Table I for selected ensembles.

TABLE I: A quantitative comparison of damage
probability estimation

Average degree/Method SF out NK out NKK NK in SF in
<K> = 2 Simulation 0.494 0.694 0.818 0.805 0.789
<K> = 2 Mean-field 0.496 0.711 0.84 0.842 0.824
<K> = 3 Simulation 0.624 0.785 0.877 0.886 0.895
<K> = 3 Mean-field 0.609 0.805 0.891 0.905 0.906

Single node damage probability estimation by
simulations (1st and 3rd row) and mean-field theory
(2nd and 4th row). Different columns correspond to
different ensembles. Mean-field calculations employ the
degree distributions of the generated ensemble.

B. Double node damage

1. Classification of the resilience scenarios of double node

damage

In this section, we generalize the single node damage
repair algorithm proposed in Ref. [10] and investigate
the properties of interventions that prevent the cascad-
ing effect of knocking out two nodes in a network. The
potential combinatorial effects of simultaneous damage
to two nodes have been named genetic interactions in bi-
ological systems [9]. A specific example of cases where
combined knockout of two genes has a stronger effect
than the sum of the effects of the individual knockouts is
synthetic lethality [39–41]. The converse case was termed
synthetic viability [41, 42]. Both of these genetic interac-
tions have been studied experimentally [39, 40] and theo-
retically [41, 42]. Here we go beyond the identification of
genetic interactions by determining the specific edge ad-
ditions through which the cascading effects of cumulative
damage can be prevented.
When repair is necessary, for each sensitive node, we

define candidate nodes as nodes that are neither its
pre-existing regulators nor the sensitive node itself, and
we add a suitable interaction starting from a candidate
node to prevent the state change. (We avoid using pre-
existing regulators since it is less biologically feasible
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TABLE II: Classifications of different situations
comparing single node damage and double node
damage.

Class/
subclass

Status of SS after
single node damage

Status of SS after
double node damage

1 (b) stable for both stable
2 (c) stable for both Needs repair

3 (a)
stable in one case,
needs repair in the other case

stable

4
(a,b,c,d)

stable in one case,
needs repair in the other case

Needs repair

5 (a) Both need repair stable
6
(a,b,c,d)

Both need repair Needs repair

a SA ∪ SB ) SAB

b SA ∪ SB = SAB

c SA ∪ SB ( SAB

d (SA ∪ SB )\SAB 6= ∅ and SAB\(SA ∪ SB ) 6= ∅

The first column is the class and its possible subclasses,
whose definitions are given in the last four rows. The
subclasses are defined based on the relationships
between SAB and SA ∪ SB . SA ∪ SB ) SAB means SAB

is a true subset of SA ∪ SB . (SA ∪ SB)\SAB 6= ∅ and
SAB\(SA ∪ SB) 6= ∅ means that SAB is not a subset of
SA ∪ SB and SA ∪ SB is also not a subset of SAB , where
\ means relative complement. SS means steady state.

[10].) This way, we preserve the steady state aside from
the immediate impact on the damaged node and block
the cascading effect as soon as possible. Specifically,
say node i is regulated by nodes that belong to set A,
xi = f (xj1 , · · · , xjk ), where j1 , · · · , jk ∈ A. If one wants
to repair node i so that it remains ON (xi = 1), one
needs to find a candidate node l (i.e. l /∈ A and l 6= i)
and modify the rule such that xi = f (xj1 , · · · , xjk ) OR xl
if xl =1 or such that xi = f (xj1 , · · · , xjk ) OR (NOT xl)
if xl =0. Here AND , OR and NOT are Boolean func-
tions. Similarly, if one wants to repair node i so
that it remains OFF (xi = 0 ), one can modify the rule
to be xi = f (xj1 , · · · , xjk ) AND (NOT xl) if xl = 1; or
xi = f (xj1 , · · · , xjk ) AND xl if xl=0 [10]. Assuming that
a candidate node with the appropriate xl value exists,
which is generally the case in realistic networks, regula-
tion of this sort is always possible in principle [10]. We
say that a repair solution exists if each sensitive node
can be repaired. In the algorithm for double node dam-
age, the sensitive node set is determined after knockout
of both nodes; then for each sensitive node, a candidate
node set is identified with the additional restriction of
excluding both damaged nodes. Then, similarly to single
node knockout, an interaction is added from an appro-
priate candidate node to each sensitive node.

When considering the damage of node A, damage of
a different node B, and damage of both nodes, six out-
comes are possible, which are summarized in the first six
rows of Table II. These six outcomes have been discussed
in the context of synthetic lethality in random threshold
networks [41]. In order to compare the repair solutions,

TABLE III: The ten two-input effective Boolean
functions and their classification in double node damage

Function Name (1,1) (1,0) (0,1) (0,0) Class
(NOT A) OR (NOT B) 0 1 1 1 6b
(NOT A) OR B 1 0 1 1 3a
A OR (NOT B) 1 1 0 1 3a
A OR B 1 1 1 0 2c
XNOR(A,B) 1 0 0 1 5a
XOR(A,B) 0 1 1 0 5a
A AND B 1 0 0 0 6b
A AND (NOT B) 0 1 0 0 3a
(NOT A) AND B 0 0 1 0 3a
(NOT A) AND (NOT B) 0 0 0 1 2c

The first column indicates the name of the function of
A and B, where XOR(A,B)= (A AND (NOT B)) OR
((NOT A) AND B), XNOR(A,B)=NOT XOR(A,B).
The second to fifth columns list the value of the
respective function for input combinations (A=1, B=1),
(A=1, B=0), (A=0, B=1), (A=0, B=0). The sixth
column gives the classification (as in Table II) of a
network motif composed of three nodes, wherein A and
B are source nodes and the regulation of C is described
by the respective Boolean function of A and B. This
classification assumes that the input nodes are
A = 1, B = 1 initially. The letter in the last column
gives the subclass based on the relationship between
SA ∪ SB and SAB as described in Table II.

we denote the sensitive node sets after damage to node
A, B, and both A and B as SA, SB , and SAB , respectively.
If no node is a child node of both node A and node B,
SAB = SA ∪ SB . However, if a node is a child node of
both nodes A and B, different situations can emerge as
indicated in the last four rows of Table II. For complete-
ness, for each class (i.e., situation) we list the possible
subclasses in the first column of the table. Classes 1, 2,
3, and 5 admit a single subclass only, while classes 4 and
6 can have any of the four subclasses.

In order to gain insight into how different networks
lead to the different outcomes of Table II, we consider a
simple network motif, in which two nodes (A, B) regulate
a third node C. We determine which class and subclass
each two-variable Boolean function belongs (Table III).
We start from state (1, 1) for the two nodes (in the order
A, B). If the output of state (0,1) is different from that of
state (1,1), the state needs repair after damage to node
A; similar conclusions apply to all the cases. The sym-
metrical AND rule and its negation belong to class 6, the
symmetrical OR rule and its negation belong to class 2,
four cases of unsymmetrical two-variable regulation be-
long to class 3, and the XOR/XNOR functions belong to
class 5. The three node motif holds the same properties
when embedded within a larger network. However, we
emphasize that a network containing a three-node motif
and additional nodes does not necessarily fall into the
same category as the three-node motif alone, since dif-
ferent parts of the network may be different for different
damage situations.
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FIG. 2: Probability of each class of double node knockout across the five ensembles with different degree
distributions. The left and right graph shows the result for networks with average degree <K> = 2 and <K> = 3
respectively. Classes 1 to 6 are drawn in square, circle, up triangle, down triangle, diamond, and star symbols
respectively.

We find that in subclass b, that is, SA ∪ SB = SAB ,
the repair solution for the double node damage will al-
ways be a subset of the “direct product” of the sin-
gle node damage repair solution. More rigorously,
let SA = {A1 , · · · ,Am} and SB = {B1 , · · · ,Bn}. A re-
pair solution after knocking out node A has the form
(rA1

, · · · , rAm
), where rA1

represents a way to stabi-
lize node A1 . Let RA1

be the set containing all rA1

that appears in all possible repair solutions. The set
of all possible solutions after knocking out node A
will be denoted as GA = {(rA1

, · · · , rAm
) : rAi

∈ RAi
}.

For the direct product of single node damage
repair solution, SD = {D1 , · · · ,Dp}, p = |SA ∪ SB |;
RDi

= RAi
∪ RBi

if Di ∈ SA ∩ SB and Di = Ai = Bi ;
RDi

= RAi
if Di ∈ SA ∩ S c

B and Di = Ai ; RDi
= RBi

if Di ∈ S c
A ∪ SB and Di = Bi . Then the direct prod-

uct of single node damage repair solution is given by
GD = {(rD1

, · · · , rDm
) : rDi

∈ RDi
}. This can be ex-

plained in the following way: since a node only has two
states in a Boolean network, it will either be stable or
will need repair. When the node needs repairing, damage
to an additional node reduces the number of candidate
nodes that can be used as starting points of the repair
edges; nothing else should happen. Thus, the individ-
ual single node repair solutions are compatible with each
other. Another observation is that SAB = SA = SB can
only happen if A and B are regulating the same node(s).
Otherwise, part of the damage, and thus also of the repair
solutions, would be independent of each other.

2. Damage probability and class distribution in simulations

of random network ensembles

Similarly to Sec. III A 2, we study the effect of degree
heterogeneity on the resilience probability in a double

knockout setting. We also explore the distribution of the
repair categories introduced in Sec. III B 1 using simula-
tions of random Boolean networks. The computational
details are similar as in Sec. III A 2 except we consider
all possible pairs of knockouts to obtain the estimation
for the damage probability and the classification of each
category.

As shown in Fig. 1, the damage probability after dou-
ble knockout is rather high regardless of the degree distri-
bution and is higher than the damage probability after
single knockout. As one can see, the double-knockout
damage probability is higher in a network with higher
average degree, which is consistent with the established
conclusion that the complexity of the dynamics increases
with larger average node in-degree [26–28]. The NKK
model with K=1 is an exception; here the damage prob-
ability is 1 whether one or two nodes are damaged. This
is because this network forms a single cycle. The only
possible effective Boolean rules for K=1 are the identity
(the output equals the input) and the negation. Thus
knocking out any currently-ON node in the network will
induce a change in its child node, which means the net-
work will need to be repaired.

Based on the simulations, the damage probabilities of
ensembles with fixed out-degree (K=2 and K=3) for dou-
ble node knockout are rather close to each other; in-
degree heterogeneity does not significantly change the
damage probability. However, when we compare the
three ensembles with fixed in-degree, out-degree hetero-
geneity leads to a decrease in the damage probability; this
is because of the abundance of sink nodes. These results
are similar to the results of the single node knockout.

To illustrate the distribution of the double damage
classes introduced in Table II, in Fig. 2 we plot the prob-
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FIG. 3: The probability that one needs to repair more or different (circles) or fewer (squares) nodes for simultaneous
damage of two nodes compared to the union of the repairs needed for individual damage to each of the nodes. The
probability that one needs to repair the same nodes is 1 minus the sum of the two shown probabilities. The same
network ensembles as in Fig. 1 and 2 are used. Solid symbols represent <K> = 2 results and empty symbols
represent <K> = 3. (a) Simultaneous damage of two nodes that share a downstream target. (b) The general case of
simultaneous damage of two nodes.

ability of each class in the five ensembles. Based on the
simulations, class 2 (both single damage cases are stable,
repair is needed for double damage), class 3 (repair is
needed for one case of single damage, stable after dou-
ble damage) and class 5 (repair is needed for each single
damage, stable after double damage) have very low prob-
ability of occurrence. The reason is that the occurrence
of these situations requires that the nodes being knocked
out are regulating a common target. In contrast, most
randomly chosen node pairs are independent. Class 6 (see
Table II) tends to have the highest probability, followed
by class 4 and class 1 ; the probability of these cases also
varies more in the different ensembles. Comparing the
three ensembles with a fixed out-degree (K=2 or K=3),
the probability of each class is fairly close according to
the simulation. Comparing the three ensembles with a
fixed node in-degree, we can readily see that heterogene-
ity in node out-degree leads to a smaller probability for
class 6 (stars) and larger probability for classes 4 (down
triangles) and 1 (squares). This is related to the fact
that heterogeneity in node out-degree leads to more sink
nodes in the network.

As we are interested in combinatorial effects of dou-
ble node knockout, we marginalize all the (sub)classes
into three categories based on whether we need to re-
pair more or different nodes (class 2, 4c, 4d, 6c, and
6d), the exact same set of nodes (class 1, 4b and 6b),
or less nodes (classes 3, 5, 4a, and 6a) in case of double
damage compared to the union of the two single dam-
age cases. We estimate the probability of each category
by simulation using the five ensembles. If the two nodes
being knocked out do not share a target, the two dam-

age processes are independent and there will not be any
combinatorial effect. It is therefore of particular interest
to calculate the probability of each category in just the
cases wherein the two nodes share a target (Fig. 3(a)),
and compare with the general case (Fig. 3(b)). Since
prior research shows that the average degree of biological
networks is around 2 [33, 43], we focus on <K> = 2 and
<K> = 3. According to both Fig. 3(a) and 3(b), the
probability that we need to repair fewer nodes (subclass
a) in double knockouts is larger than the probability that
we need to repair more or different nodes (subclasses c
and d). This is consistent with the fact that in Table III,
there are more motifs corresponding to subclass a than to
subclass c. For <K> = 2, compared with networks with
constant in-degree (the left three ensembles in Fig. 3(a)),
networks with constant out-degree and heterogeneous in-
degree distribution (the right two ensembles in Fig. 3(a))
demonstrate a lower probability for cases wherein one
needs to repair more or fewer nodes; for <K> = 3, the
probabilities are close to each other. As the network
topology changes from constant in-degree and scale-free
out-degree distribution to constant in-degree and out-
degree to constant out-degree and scale-free in-degree
distribution (from left to right in Fig. 3(b)), the per-
centage of node pairs sharing a target node among all
possible pairs increases. This change is more dramatic
than the change in the probability of the three categories
across different ensembles in Fig. 3(a). Thus as shown in
Fig. 3(b), the probability of cases wherein one needs to
repair more nodes (circles) or less nodes (squares) among
all node pairs increases across the five ensembles.

As discussed in Sec. III A 1, using nested canalizing
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FIG. 4: Damage probability in network ensembles using effective Boolean rules (solid symbols) or nested canalizing
rules (empty symbols). Square symbols represent <K> = 2 and circular symbols represent <K> = 3. (a) Single
node knockout; (b) double node knockout.

functions helps make a steady state more resilient to sin-
gle node damage under the same network topology. This
is confirmed by simulation results summarized in Fig.
4(a). The damage probability is smaller for networks
with nested canalizing functions (empty symbols) for all
five ensembles with <K> = 2 or <K> = 3. This conclu-
sion holds for double node damage, as shown in Figure
4(b). As discussed in Sec. III A 1, out-degree hetero-
geneity leads to lower damage probability for both effec-
tive and canalizing functions (compare the first three en-
sembles). In the case of nested canalizing Boolean func-
tions, in-degree heterogeneity also leads to a lower dam-
age probability, in contrast with its minor effect in case
of effective Boolean functions. This is because higher in-
degree leads to more stability for nested canalizing func-
tions, reflected in the fact that the stability probabil-
ity α(Ij ) of nested canalizing functions keeps increasing
steadily and is much larger than that of effective Boolean
functions for higher Ij (see Sec. III A 1).

C. Single node damage in networks with two

steady states

1. General Discussion

Another follow-up direction is to explore the effect of
single node damage on two different steady states of a
network. The goal is to see whether a single solution can
remedy the damage in multiple attractors (steady states
here) at the same time. To classify all the situations of
knockout damage to a single node, we observe that the
damaged node may be normally (when undamaged) ON
in both steady states, or ON in one steady state and OFF
in the other. (We do not consider the situation that the
node is OFF in both steady states, as the knockout dam-
age will not change anything to either steady state). The

categorization of the constitutive expression type damage
will be analogous.

If the node is ON in both steady states, the steady
states can be both stable, both in need of repair or one
is stable and the other needs repair. If the node has
different states in the two steady states, only one of them
needs repair, as summarized in Table IV.

We explore the probability distribution of the classifi-
cation shown in Table IV in random Boolean networks.
The computational details are similar to Sec. III A 2 ex-
cept we consider all possible single node knockouts for
every pair of steady states for a specific network. As
there are 9 classes and each class may have a small prob-
ability, we marginalize class 2 and 3 (where the node is
ON in both steady states before damage and one of the
steady states needs repair after damage), class 4, 5 and
6 (where both need repair), class 8 and 9 (where node
has different states before damage and one of the steady
states needs repair after damage). As shown in Fig. 5,
we found that the class in which both steady states need
repair (up triangle) is less probable in heterogeneous net-
works. The class in which both steady states are stable
(squares) is more probable in out-degree heterogeneous
networks as sink nodes contribute to the resilience prob-
ability of steady state as in Sec. III A.

We are particularly interested in determining whether
or not there are common repair solutions in the cases
where both steady states need repair (classes 4, 5 and 6).
We find from our simulations on network ensembles that
not having common solutions is less probable (the frac-
tion of classes 5 and 6 is between 5% and 7% for different
ensembles with <K> = 2), thus we enumerate these sit-
uations. Similar to Sec. III B 1, we start by looking for
three-node motifs that will lead to no common solutions.
Reexamining the 10 motifs in Table III, and consider-
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FIG. 5: Probability of outcomes of node knockout on pairs of steady states across five network ensembles with
different degree distributions. The left and right graph shows the result for networks with average degree <K> = 2
and <K> = 3 respectively. The classes are grouped as 1 (squares), the union of 2 and 3 (circles), the union of 4, 5,
6 (up triangles), 7 (down triangle), and union of 8 and 9 (diamonds).

TABLE IV: Classification of the outcomes of single
node knockout for two steady states of a network

Situation
Index

Node state
before damage
in the two SSs

Status of the two SSs
after node damage

1 ON in both Both stable

2 ON in both
One SS is stable,
the other SS needs repair,
compatible solutions exist

3 ON in both
One SS is stable,
the other SS needs repair,
no compatible solutions

4 ON in both
Both SSs need repair,
common solution(s) exist

5 ON in both
Both need repair,
compatible (but not common)
solution(s) exist

6 ON in both
Both need repair,
no compatible solutions

7 ON, OFF Both stable

8 ON, OFF
SS with node ON needs repair,
compatible solutions exist

9 ON, OFF
SS with node ON needs repair,
no compatible solutions

The table lists nine situations that will happen after
knocking out a single node in the network that has two
steady states (SSs). The second column indicates the
state of the knocked-out node before damage. The third
column specifies whether the damaged steady state is
stable against the damage or needs repair. We use the
term “common solution” for when we need to repair
exactly the same set of nodes for the two steady states
after single node knockout, we say “compatible
solution” for when there exists a solution that can be
used to stabilize both steady states. Thus all common
solutions are compatible solutions.

ing pairs of possible steady states for these motifs, we
find that only the XOR/XNOR motif will forbid a com-
mon solution for repairing the two steady states. The
XOR/XNOR motif is rarely observed in biological net-
works, as they represent cases where each regulator can
switch between being an activator or inhibitor depending
on the state of the other regulator.

Another mechanism that will lead to no common so-
lutions for repairing two steady states is that there is no
valid candidate to use as a starting point of an additional
edge. One such situation is that all the candidate nodes
have different states in the two steady states, thus none of
them can be used to realize the same function in the two
steady states. This is exemplified in Fig. 6(a). Another
situation is that the sensitive node is regulated by almost
every node (other than the node itself) and there are no
nodes left to be repair candidates since current regulators
cannot be used. A combination of the two situations can
also lead to no valid candidate for repair.

When the node is ON in one steady state and OFF
in the other steady state, the damage will do nothing to
the second steady state. However, the repair solution for
the first steady state may or may not be compatible with
the second steady state. Our simulations using random
networks suggest that the incompatible situation is rarer.
Incompatibility can arise in a lot of simple motifs of two
or three nodes, including a single regulating edge (posi-
tive or negative), OR gate, AND gate, XOR gate, XNOR
gate. The reason why this situation is rare in a real net-
work is that if the network has nodes that have different
states in the two steady states, any of these nodes can
be used as starting points to an additional edge to node
B. This additional edge will have an opposite effect in
the two steady states and thus it can solve the incom-
patibility problem. It is rare, but still possible, that two
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FIG. 6: (a) A simple network to illustrate the situation when there are no valid repair candidates. All the edges are
positive, the updating rules are B = A AND C, C = B OR D, E = C AND D. There are two steady states, (1, 1, 1,
1, 1, 1) and (1, 1, 1, 0, 0, 0). If node A is knocked out, we need to repair node B. All candidate nodes (namely D, E
and F) are in different states in the two steady states, thus no common solutions exist. (b) An example network to
illustrate incompatibility in stabilizing two steady states at the same time because the two steady states only differ
in the state of the knocked-out node and of the sensitive node. C = A OR B, E = D OR E, G = F OR H, I = A OR
E OR G. First, we consider the effect of knockout of source node A on the steady state pair (1, 0, 1, 1, 1, 1, 1, 1, 1)
and (0, 0, 0, 1, 1, 1, 1, 1, 1). When knocking out node A, we need to repair node C to be ON for the first steady
state. However, fixing C to be ON will eliminate the other steady state (where C is OFF) as all the candidate nodes
(B, D, E, F, G, H or I) have the same state in the two steady states; thus no compatible repair solutions exist. The
incompatibility mechanism is the same for knockout of node E in case of the steady state pair (0, 0, 0, 0, 1, 0, 0, 0,
1) and (0, 0, 0, 0, 0, 0, 0, 0, 0), and the knockout of node G in case of the state pair (1, 1, 1, 1, 1, 0, 1, 1, 1) and (1,
1, 1, 1, 1, 0, 0, 0, 1).

steady states of a network have the same state for most
of nodes and only differ in the state of the knocked-out
node, the sensitive node, and possibly its current regula-
tors. This can happen if the knocked-out node is part of
a bistable motif connected with the rest of the network
with a canalizing function such as an OR gate. Thus the
bistable motif neither affects nor is affected by the rest
of the network in a steady state. Examples of bistable
motifs are a source node, a node with a self-loop and a
two-node feedback loop (see Fig. 6(b)).

D. Biological Examples

In this section, we apply our algorithms to study the re-
silience of the T cell large granular lymphocyte (T-LGL)
leukemia network [44] and the epithelial-to-mesenchymal
transition (EMT) network [45].

T-LGL leukemia is a rare blood cancer. While normal
T cells undergo activation induced cell death (apopto-
sis) after successfully fighting a virus, leukemic T-LGL
cells survive. The network model constructed by Zhang
et al. [44] includes the proteins involved in the activation
of T cells, in activation induced cell death, as well as a
number of proteins that were observed to be abnormally
highly expressed or active in T-LGL cells. The model
describes the regulation of each of these proteins with
Boolean rules, and captures the normal (apoptosis) and
leukemic (survival) states of the system [44]. The original
network has 60 nodes, including three source nodes, and
142 regulatory edges. By fixing all the states of source
(unregulated) nodes in the biologically relevant condition
and iteratively replacing fixed node states in the Boolean
rules, one can reduce the network to a smaller network,

whose nodes′ states are not determined by the source
nodes alone but rather by the specific dynamic trajec-
tory of the system [46]. We perform additional network
simplification as specified in Appendix A. The reduced
network model (Fig. 7) has two steady states, namely a
disease (T-LGL) state (0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1,
1) and a normal T cell state committed to the path to
apoptosis (1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0), where the
nodes are in the alphabetic order, BID, CREB, Caspase,
Ceramide, DISC, FLIP, Fas, GPCR, IAP, IFNG, MCL1,
S1P, SMAD, sFas.

EMT is a cell fate change involved in embryonic devel-
opment which can be reactivated during cancer metas-
tasis [45]. During EMT, epithelial cells lose their orig-
inal adhesive property, leave their primary site, invade
neighboring tissue, and migrate to distant sites as mes-
enchymal cells. A Boolean network model of EMT in the
context of hepatocellular carcinoma invasion has been es-
tablished by Steinway et al. [47]. The EMT network has
70 nodes and 135 edges. Steinway et al. performed a net-
work reduction to obtain a network with 19 nodes and 70
edges (Fig. 8). This type of network reduction has been
shown to have no effect on the permitted dynamics and
enables us to fully explore the state space [47]. In the
reduced network, the adhesion factor E-cadherin is the
sink node and its OFF state will indicate the transition
to a mesenchymal state. The reduced network has two
steady states, the epithelial state (0, 1, 1, 0, 0, 1, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1) and the mesenchymal state (1, 1,
0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0), written in the
order of AKT, AXIN2, β-catenin memb, β-catenin nuc,
Dest compl, E-cadherin, GLI, GSK3β, MEK, NOTCH,
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FIG. 7: Reduced T-LGL leukemia signaling network.
An arrowhead or flat bar end indicates a positive or
negative regulation edge respectively. The nodes and
edges drawn in dashed lines are ignored in the analysis
(see Appendix A).

SMAD, SNAI1, SNAI2, SOS/GRB2, TGFβR, TWIST1,
ZEB1, ZEB2, miR200.

The average degree of the T-LGL leukemia network
is 1.43, the standard deviation is 0.65 for the in-degree
and 0.94 for the out-degree. The average degree of the
EMT network is 3.68, the standard deviation is 1.80 for
the in-degree and 2.38 for the out-degree. To explore the
relationship between the biological case studies and ran-
dom ensembles, we randomize the biological networks to
form an ensemble of 1000 networks for each. We con-
sider two types of randomization, one that preserves the
degree of each node (DPR) and one that additionally
preserves the regulatory function of each node (DFPR).
To preserve node degree, for each randomization, we ex-
change the child nodes of two randomly selected edges
for 50×M times, where M is the total number of edges.
Then we generate effective Boolean functions with the
same bias as the original network (in DRP) or we just
keep the original function (in DFPR).

As shown in Table V, the average damage probability
of the two steady states of the T-LGL network is 0.667
for single node damage and 0.871 for double node dam-
age. The average damage probability of the two steady
states of the EMT network is lower, 0.316 for single node
damage and 0.449 for double node damage. Table V also
indicates that after either single node damage or dou-
ble node damage, the damage probability of the T-LGL
leukemia network does not statistically deviate from the
randomized ensemble average. The damage probability
of the EMT network deviates from the damage probabil-
ity of the degree preserving randomized ensemble. The

FIG. 8: Reduced EMT Network. Nodes represent
proteins and miRNAs involved. An arrowhead or flat
bar end indicates positive or negative regulation,
respectively.

main contributing factor is that the Boolean functions
of the EMT network are all canalizing functions and a
majority of them are also nested canalizing, which tends
to decrease the damage probability, as discussed in the
last paragraph of Sec. III A 1. This nested canalizing na-
ture is destroyed when random functions are used, even if
they have the same bias. Indeed, the damage probability
of the DFPR ensemble is much closer to the result of the
EMT network. Though the Boolean functions used in
T-LGL leukemia networks are also mostly nested canal-
izing, the T-LGL network has an average node degree
smaller than 2 and most two-input effective functions are
also nested canalizing functions, so the randomized func-
tions would be similarly canalizing.

As shown in Table VI, the probability distribution of
each class of double node knockout for the T-LGL net-
work is close to the ensemble average in that class 6
and class 4 are the most well represented. In contrast,
the probability distribution of the double node knockout
classes for the EMT network is different from the ensem-
ble average in that class 1 is more represented and class 6
is less represented, which is consistent with the deviation
in damage probability between the EMT network and its
randomized ensemble. In both cases, the result of the
biological network is closer to the result of the DFPR en-
semble than the result of the DPR ensemble, as expected.
We include the detailed classification of double knockout
pairs in the two biological networks in Appendix B .

We also apply our algorithm of stabilizing two steady
states simultaneously after a single node damage to both
networks. While one generally wishes to eliminate rather
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TABLE V: Comparison between the damage probability
of the two biological networks and their randomizations

network\ensemble DP
DPFR
DP, std

DPR
DP, std

T-LGL SD 0.667 0.674, 0.115 0.725, 0.135
T-LGL DD 0.871 0.875, 0.078 0.905, 0.092
EMT SD 0.316 0.449, 0.122 0.792, 0.096
EMT DD 0.473 0.689, 0.122 0.943, 0.041

The 2nd column is the damage probability (DP) of the
T-LGL leukemia network (first two rows) and the EMT
network (last two rows) after single node damage (SD)
or double node damage (DD). The 3rd and 4th columns
report the average damage probability and its standard
deviation (std) among networks for the corresponding
randomized network ensembles.

than repair a disease state in a biological network, these
networks nonetheless provide a useful framework for ap-
plying our methodology; after considering joint repair,
we will turn our attention to removing the disease state.
Most of the nodes have opposite states in the two steady
states of both networks. This is not surprising since the
two steady states correspond to two opposite biological
outcomes in each case (apoptosis versus survival in the
T-LGL network; epithelial versus mesenchymal state in
the EMT network). Furthermore, the network reduc-
tion used in both cases eliminates nodes that are fixed
by source nodes and have the same state in both steady
states [45, 46].

The only two nodes having the same state in the T-
LGL leukemia network are CREB and IFNG, which exist
in a sink branch of the network and do not directly de-
termine the cell state. Thus when we consider the simul-
taneous repair of the two steady states, there will be 12
cases wherein the damaged node is ON in one state and
OFF in the other. Among them, 4 cases (Caspase, FLIP,
IAP, or SMAD knockout) fall into class 7 (see Table IV).
Directly damaging the node Caspase may be not biologi-
cally interesting as we treat this node to be the sink node
of the signaling network here. All the other 8 situations
(BID, Ceramide, DISC, Fas, GPCR, MCL1, S1P, sFas)
fall into class 8. The class distribution of the classifica-
tions of the DFPR ensemble concentrates on class 8, class
7 and class 4, and the result of the DPR ensemble concen-
trates on class 8, class 4 and class 7, both in decreasing
probability. The class distribution of the randomized en-
sembles is consistent with, but with higher spread than
the class distribution of T-LGL leukemia network, which
is restricted to class 8 and class 7. The latter is mainly
due to the fact that the two steady states are almost
exactly opposite.

When stabilizing the two steady states of the EMT
network simultaneously after a single node damage,
there are 17 nodes whose knockout can be consid-
ered (Dest compl and SOS/GRB2 are OFF in both
steady states). Among them, two cases (AXIN2, SNAI2
knockout) belong to class 1 (see Table IV); nine cases

TABLE VI: Class probability distribution after double
node knockout in the two biological networks

Ensemble \ Class 1 4 6
T-LGL 0.097 0.484 0.387
T-LGL DFPR 0.095 0.444 0.420
T-LGL DPR 0.076 0.397 0.495
EMT 0.505 0.398 0.065
EMT DFPR 0.274 0.479 0.202
EMT DPR 0.041 0.326 0.609

The first and fourth row show the results of the real
biological networks, while the rest are the results of
their DFPR and DPR ensembles. We only list the three
classes (columns) from Table II that have the highest
probability. The probability of the rest of the classes is
smaller than 0.04 and does not show much difference
between the real network and its randomization.

(AKT, β-catenin nuc, GLI, NOTCH, SMAD, TGFβR,
TWIST1, ZEB2, miR2000) belong to class 7 ; six cases
(β-catenin memb, E-cadherin, GSK3β, MEK, SNAI1,
ZEB1) belong to class 8. As an example, let us consider
permanently knocking out node GSK3β, which is ON in
the epithelial steady state and OFF in the mesenchy-
mal steady state. One needs to repair node AKT, MEK,
SNAI1, NOTCH and there are 14, 14, 10, 14 simple re-
pair choices for each corresponding node (see Appendix
C). As most of the nodes have opposite states in the two
steady states, the majority of the repair solutions will be
compatible with the other steady state. The algorithm
then calculates that there will be 11, 11, 6, 11 repair
choices for each corresponding node. The specific choices
are listed in Appendix C.
The class distribution of the DFPR ensemble concen-

trates on class 1, class 8 and class 4 and the result of
the DPR ensemble concentrates on class 8, class 5 and
class 4, both in decreasing probability. The distributions
of the randomized ensembles are more uniformly spread
compared with the distribution of the classifications of
the EMT network, which is restricted to class 8, class 7
and class 1. This restriction is largely due to the fact
that the two steady states are almost exactly opposite.
In summary, we compared the biological networks with

their randomized ensembles, focusing on their damage
probability, class distribution after double node knock-
out and class distribution of repairing two steady states
after single node knockout. The T-LGL leukemia net-
work agrees with its randomized ensembles and the EMT
network deviates from its degree-preserving randomized
ensemble in all tested aspects.
In both networks, a more biologically meaningful inter-

vention than preserving both steady states is to keep the
normal steady state as intact as possible and destabilize
the disease steady state. If the node to be repaired has
opposite states in the two steady states, adding a new
edge starting from a node that has the same state in the
two steady states will destabilize the disease state.
For example, if Fas is knocked out in the T-LGL net-

work, we need to repair Ceramide to be ON to avert
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cascading damage to the healthy steady state. The al-
gorithm will give 9 repair solutions involving a new in-
dependent edge, shown in Appendix D. Two edge repair
solutions (“Ceramide= · · · OR NOT IFNG” and “Ce-
ramide= · · · OR NOT CREB”, where · · · stands for the
original rule for Ceramide) are not compatible with the
second steady state since these two nodes have the same
node state in the two steady states. Thus either of these
two repair strategies will make the disease state a tran-
sient state and the system will keep evolving. Whether
the system evolves toward the healthy steady state de-
pends on the node knocked out and the repair solution.
In the example above, if we knock out Fas and fix Ce-
ramide to be ON by adding an edge from CREB, this
will make the system evolve towards another steady state
wherein Caspase is ON, a state biologically similar to the
healthy steady state.
Similarly to the T-LGL leukemia network, a repair so-

lution using nodes with the same node state in the two
steady states can preserve the epithelial steady state and
perturb the mesenchymal steady state of the EMT net-
work. However, in some cases the new attractor is not an
epithelial one (E-cadherin is not guaranteed to be ON).

IV. DISCUSSION AND CONCLUSION

One promising approach to mitigating the effects of
diseases is to proactively manipulate the interactions in
the relevant biological network. For example, cancerous
cells fail to undergo natural cell death; compensatory in-
teractions in the cancer signaling network may in prin-
ciple drive cancerous cells to undergo cell death. While
a theoretical basis for such manipulation has been estab-
lished in the case of deregulation of a single node (e.g. a
single genetic mutation) [10], complex diseases are trig-
gered by several co-existing gene mutations [9, 14, 15].
The algorithm presented here can be used to design pre-
ventive interventions for combinations of multiple dys-
functions of the network. Our identified repair strat-
egy classes provide a framework to explore the short-
term combinatorial effects of double knockouts and can
be straightforwardly adapted to other types of multiple
perturbations.
The network ensembles most considered here exist in

the chaotic phase for very large networks according to the
well-studied annealed approximation (due to the average
in-degree of 2 or 3), where the topology and update func-
tions are randomized after each time step [25–28]. Thus,
we expect the effects of network perturbations to propa-
gate throughout the network. However, to gain detailed
insight into the dynamic behavior of the network and to
determine specific repair strategies, it is necessary to con-
sider a fixed network topology and interaction rules. We
therefore consider two specific biological case studies in
this report.
As patients are often diagnosed with complex diseases

after symptoms already developed, the cascading effect
of the initial gene mutation or protein dysfunction is al-
ready in progress. Thus it is interesting to consider the

long-term effects of damage when aiming to repair the
effects of single or multiple dysregulations. One can de-
fine a node′s region of influence as the nodes whose states
will be changed due to the cascading effect of its pertur-
bation. Similar to what we have done in the short-term
setting, if the regions of influence of two nodes do not
intersect and are not co-regulating another target, then
the two damage processes are independent of each other,
and one would expect to be able to mitigate their ef-
fects independently. If the regions of influence of two
initially damaged nodes intersect or co-regulate a third
node, combinatorial effects will appear and can be ana-
lyzed in a similar way as we did here.
In some cases two or more steady states with distinct

biological meanings, such as natural cell death and can-
cerous persistence, may exist [9, 48]. As demonstrated in
two biological case studies, our algorithm provides strate-
gies to find compatible ways to stabilize two steady states
or stabilize one and destabilize the other. The approach
we take here is most useful in designing preventive in-
terventions for disease, as the repair is assumed to be
effective on a faster timescale than the propagation of
damage. Model-based design of therapeutic methods for
complex diseases entails an understanding of the disease
state and the identification of manipulations that drive
the system from the disease state back to a normal state
[49]. As a first step, our method provides choices to
destabilize the disease state and a framework to test the
feasibility of simple edge modifications. A systemic study
of the trajectories from a destabilized disease state into a
normal state would be another interesting area for future
work.

Appendix A: Additional simplification of T-LGL

leukemia network

When the sink node Apoptosis is activated, the cell is
going to die. Zhang et al. chose to represent cell death
by a state in which Apoptosis is ON and all the other
nodes are OFF and implemented it by adding to every
node′s Boolean function the clause “AND (NOT Apop-
tosis)” [44]. Here for simplicity we do not use this ad-
ditional clause; this is equivalent with considering any
steady state that includes Apoptosis=ON as a normal
steady state. In the reduced network (Fig. 7) a small
motif consisting of TCR and CTLA4 is isolated from the
main part of the network. Since the small motif does
not influence the apoptotic decision, we ignore it in the
analysis. An auxiliary node P2 in [44] is removed and we
incorporate the effect in the Boolean rule of IFNG. Also,
if the cell is already dead, node knockout and constitutive
expression have no biological meaning. However, the ac-
tivation of Apoptosis requires the node Caspase to be ON
first. Thus, we delete the node Apoptosis and consider
that Caspase is determining the state of the cell.

Appendix B: Classification of double knockout pairs

in the T-LGL leukemia network and EMT network

We apply the algorithm to stabilize a steady state after
double node damage to the T-LGL leukemia network.
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TABLE VII: Classification of double knockout pairs in
the T-LGL leukemia network

Node pair SA SB SAB class
BID,Caspase IAP ∅ IAP 4b
BID,Ceramide IAP S1P IAP,S1P 6b

BID,DISC IAP MCL1,FLIP
IAP,Caspase,
MCL1,FLIP

6c

BID,Fas IAP Ceramide IAP,Ceramide 6b
Caspase,Ceramide ∅ S1P S1P 4b
Caspase,DISC ∅ MCL1,FLIP MCL1,FLIP 4b
Caspase,Fas ∅ Ceramide Ceramide 4b
Ceramide,DISC S1P MCL1,FLIP MCL1,S1P,FLIP 6b
Ceramide,Fas S1P Ceramide S1P,DISC, 6d

DISC,Fas
MCL1,
FLIP

Ceramide
MCL1,FLIP,
Ceramide,

6b

All ten node pairs (A, B) are list in the first column.
The node to be repaired after knocking out A, B, both
A and B are listed in the second to fourth column
respectively, where ∅ means that no node need to be
repaired. The class and subclass index as in Table 1 is
listed in the fifth column.

There are five nodes ON in the healthy steady state, and
thus there are 10 double knockout cases (see Table VII).
Among them, four cases belong to class 4b (see Table
II). Six cases belong to class 6: four in 6b and one each
in 6c and 6d . Thus in this example, there are no cases
where less repair is needed, and there are two cases where
combinatorial effect occurs. For the disease steady state,
there are 7 nodes in the ON state and thus 21 double
knockout cases. Among them one case belong to class 1,
ten cases belong to class 4b and ten cases belong to class
6: three in 6a and seven in 6b.
We also apply the algorithm to stabilize a steady state

after double node damage to the EMT network. For the
epithelial steady state, there are 6 nodes in the ON state
and thus there are 15 double knockout cases. Among
them, three cases belong to class 1, nine cases belong to
class 4b, two cases belong to class 6b and one case to
class 6d. For the mesenchymal steady state there are 13
nodes with ON states and thus 78 node pairs. Among
them, 44 cases belong to class 1, 1 case belongs to class
2, 2 cases belong to class 3, 28 cases belong to class 4
(one in 4a, twenty-six in 4b, one in 4c), 3 cases belong
to class 6 (one in 6a and two in 6b). Thus there are four
cases where less repair is needed and two cases where
more repair is needed for double knockout compared to
the union of two individual single knockouts.

Appendix C: Simple solutions after knocking out

GSK3β in the healthy steady state of EMT network

All the solutions have similar format as above, where
· · · stands for the original rule for that node. Solutions
in normal text format are simple solutions compatible
with disease steady state after knockout GSK3β in the
healthy steady state, i.e., solutions in italics are simple
solutions incompatible with disease steady state after
knockout GSK3β in the healthy steady state.

Modifications for node AKT:
AKT=· · · AND GLI
AKT=· · · AND MEK
AKT=· · · AND NOTCH
AKT=· · · AND SNAI1
AKT=· · · AND TGFβR
AKT=· · · AND TWIST1
AKT=· · · AND ZEB1
AKT=· · · AND ZEB2
AKT=· · · AND NOT β-catenin memb
AKT=· · · AND NOT E-cadherin
AKT=· · · AND NOT miR200
AKT = · · ·AND Dest compl
AKT = · · ·AND NOT AXIN2

AKT = · · ·AND NOT SNAI2

Modifications for node MEK:
MEK= · · · AND AKT
MEK= · · · AND GLI
MEK= · · · AND NOTCH
MEK= · · · AND SMAD
MEK= · · · AND TGFβR
MEK= · · · AND TWIST1
MEK= · · · AND ZEB1
MEK= · · · AND ZEB2
MEK= · · · AND NOT β-catenin memb
MEK= · · · AND NOT E-cadherin
MEK= · · · AND NOT miR200
MEK = · · ·AND Dest compl

MEK = · · ·AND NOT AXIN2
MEK = · · ·AND NOT SNAI2

Modifications for node SNAI1:
SNAI1= · · · AND TWIST1
SNAI1= · · · AND ZEB1
SNAI1= · · · AND ZEB2
SNAI1= · · · AND NOT β-catenin memb
SNAI1= · · · AND NOT E-cadherin
SNAI1= · · · AND NOT miR200
SNAI1 = · · ·AND Dest compl
SNAI1 = · · ·AND SOS/GRB2

SNAI1 = · · ·AND NOT AXIN2
SNAI1 = · · ·AND NOT SNAI2

Modifications for node NOTCH:
NOTCH= · · · AND AKT
NOTCH= · · · AND GLI
NOTCH= · · · AND MEK
NOTCH= · · · AND SNAI1
NOTCH= · · · AND TGFβR
NOTCH= · · · AND TWIST1
NOTCH= · · · AND ZEB1
NOTCH= · · · AND ZEB2
NOTCH= · · · AND NOT β-catenin memb
NOTCH= · · · AND NOT E-cadherin
NOTCH= · · · AND NOT miR200
NOTCH = · · ·AND Dest compl
NOTCH = · · ·AND NOT AXIN2

NOTCH = · · ·AND NOT SNAI2
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Appendix D: Modifications for node Ceramide after

knockout of Fas in the T-LGL leukemia network:

All the solution have the same format: “Ceramide =
· · · OR New Rule”, where · · · stands for the original rule.
Ceramide=· · · OR BID
Ceramide=· · · OR Caspase
Ceramide=· · · OR DISC
Ceramide=· · · OR NOT FLIP
Ceramide=· · · OR NOT GPCR

Ceramide=· · · OR NOT IAP
Ceramide=· · · OR NOT MCL1
Ceramide=· · · OR NOT SMAD
Ceramide=· · · OR NOT sFas
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