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In multiplex networks, cycles cannot be characterized only by their length, as edges may occur
in different layers in different combinations. We define a classification of cycles by the number of
edges in each layer and the number of switches between layers. We calculate the expected number
of cycles of each type in the configuration model of a large sparse multiplex network. Our method
accounts for the full degree distribution including correlations between degrees in different layers.
In particular, we obtain the numbers of cycles of length 3 of all possible types. Using these, we
give a complete set of clustering coefficients and their expected values. We show that correlations
between the degrees of a vertex in different layers strongly affect the number of cycles of a given
type, and the number of switches between layers. Both increase with assortative correlations and are
strongly decreased by disassortative correlations. The effect of correlations on clustering coefficients
is equally pronounced.

PACS numbers: 89.75.Hc, 89.75.Fb,02.50.-r

I. INTRODUCTION

The realization that many complex systems cannot be
understood by representing them as a single network, has
led to an explosion of interest in multilayer and multiplex
(multiple types of edges) networks. Applications range
from infrastructure [1], financial [2], transport [3] and
ecological [4].
To properly study multilayer systems, it is essential

to understand the fundamental properties of such struc-
tures. Many concepts from single layer networks have
already been generalized to multiple layers, from the de-
gree distribution, to connectivity, adjacency and Lapla-
cian matrices, centrality measures and so on [5–7]. In
many cases, the generalization of concepts from single
networks—for example, the meaning of “giant connected
component” [8, 9]—is not straightforward, and intro-
duces a new dimension to the problem.
In this Paper, we give an analytical description of the

statistics of cycles in multiplex networks. In particular,
we consider multiplex networks characterized by a given
multi-degree distribution (configuration model). As this
model is the starting point of any network analysis of a
real-world system, it is easy to see how important it is
to analytically characterize a structural property like the
statistics of cycles. In a multilayer network, the possibil-
ity to switch between layers greatly increases the number
of cycle types with respect to the single layer case. Cy-
cles are then no longer defined simply by their length.
We must take into account the proportion of the cycle
in each layer, as well as the number of switches between
layers. In particular, this leads to a set of different clus-
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tering coefficients generated by different cycles of length
3.

Even when two cycles contain the same number of
edges of each color, they can differ in the way colored
edges are arranged within the cycle. We introduce a ma-
trix s characterizing the number of edges of each color,
and the number of switches between layers of a cycle.
We give formulæ for calculating the mean number of cy-
cles corresponding to a given s in a random graph with
a given size and degree distribution. As examples, we
calculate the distribution of edge colors and switches in
cycles of a given length, show the effects of degree cor-
relations between layers, and examine the special case
of cycles of length 3, which allows the calculation of the
generalized clustering coefficients in multiplex networks.

The statistics of cycles is relevant both from a theoret-
ical and an applicative point of view. From a theoretical
perspective, it allows one to understand whether the dis-
tribution of cycles observed in a real world network is sig-
nificantly different from that in a random graph with sim-
ilar statistics [10]. Even in the single layer case, the high
concentration of finite cycles in real-world networks has
been a formidable barrier to analytic treatment, as math-
ematical models of large networks are typically based on
the local tree-like assumption, i.e. the vanishing of den-
sity of finite cycles as the size of the network diverges [11–
13]. On the other hand, some analytic theories have been
quite successful even in real-world networks [14], suggest-
ing that the role played by the detailed architecture of
topological correlations and cycles is not easily charac-
terized. In multiplex networks, further types of correla-
tions arise naturally, with implications for the structural
properties of the multiplex [15, 16]. It is therefore neces-
sary to turn now to multiplex cycles and investigate the
statistics of each category based on edge color and layer
switches, and the effects of correlations on them. The
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properties of cycles is also an important topic of graph
theory [17, 18]. A relatively smaller volume of work has
been devoted to cycles on colored edge graphs, mainly
involving only theorems of existence [19].
The statistics of cycles in multiplex networks is also

relevant for a number of applications. In information
technology, the presence of multiple paths of heteroge-
neous colors is a structural property that improves the
robustness of a network [20] and the security of a wireless
sensor network from a malicious attack [21]. Multiplex
cycles are also relevant when examining commuter be-
havior on multiple transport networks, as they provide
alternative routes [3]. In such applications, switching be-
tween layers may have a time or monetary cost, a con-
sideration which is absent in single layer networks. The
statistics of switches is therefore an essential part of any
analysis of cycles in multiplex networks.
This paper is organized as follows. In Section II, we

describe a classification of cycles in multiplex networks
and explain our formula to calculate the number of cycles
within a given class. In Section III, we use our formula
to calculate multiplex clustering coefficients. Finally, in
Section IV we state our conclusions.

II. STATISTICS OF CYCLES

2

1

3

s
11 = 2

s
12 = 2

s
22 = 1

s
11 = 0

s
22 = 0

s
33 = 0

s
12 = 2

s
13 = 2

s
23 = 2

FIG. 1. Notation of multiplex cycles.

We characterize a given cycle in a multiplex network,
by the matrix s = {sab}a,b=1,...,M , where each element
sab defines the number of nodes in the cycle which con-
nect an edge of type a with an edge of type b. When
a = b, this counts the number of nodes where the cycle
remains in the same layer. When a 6= b, sab counts the
number of switches between layer a and layer b. In this
Paper, we identify and study the classes of equivalence
of cycles with the same s. In addition, here we only con-
sider cycles without an orientation, therefore the order
of the switches is not important, i.e. sba = sab. Exam-
ples of cycles with a given s are shown in Fig. 1. As a
consequence of this definition, the total number of edges
in layer a is then na = saa + 1

2

∑

b6=a sab. Clearly, the
number of switches must be such that na is an integer
for all a. The total length of a cycle L is the sum of all
entries of s.
We consider a generalization of the configuration

model to multiplex networks, i.e. large sparse random

multiplex networks with N nodes in M layers, defined by
the joint multidegree distribution P (q1, q2, ..., qM ). This
ensemble includes all possible configurations with mul-
tidegree sequence sampled from this distribution with
equal statistical weight [22, 23].
To calculate the mean number of cycles N (s) with a

given s in a random graph, we first count the number of
ways we can select, from the given multidegree distribu-
tion, the nodes that have the connectivity required for
each sab; then, we count the number of ways we can con-
nect these nodes to form a cycle. This method is similar
to that used in, for example, Ref. [24] but we extend it
to account for edges of different colors and switches be-
tween layers. The results can be written as the product
of several factors:

N (s) = G(s)W (N, s)R[N, s, P (q)] , (1)

where R(N, s, P (q)) counts the number of ways one can
select pairs of edges connected to L nodes, in the cor-
rect numbers to match the elements of matrix s, W (N, s)
counts the number of graphs in the ensemble containing
the cycle, and G(s) counts the number of ways of arrang-
ing the selected nodes to form a cycle. In principle one
can complete this calculation for an arbitrary cycle in a
multiplex with an arbitrary number of layers. However,
the calculation of G(s) becomes somewhat complicated
for more than two layers, for anything but the shortest
cycles.
Let us focus, now, on a two layer random multi-

plex (duplex), defined by the joint degree distribution
P (q1, q2). In the case of two layers, s has three entries:
s11, s22, and s12. For a given L, s11 and s22 can take
any value from 0 to L, while the number of switches
s12 ≡ 2p, for integer p, to ensure that the number of
edges of each color is integral, while all three must sat-
isfy s11 + s22 + s12 = L. The formula (1) can be calcu-
lated explicitly in the asymptotic case characterized by
L ≪ N .
Without switches, G(s) is simply the number of pos-

sible orderings of the L nodes, dividing by 2L as each
direction and starting point in the ordering is equivalent:

G(L, 0, 0) =
L!

2L
(2)

and similarly for G(0, L, 0). When s12 > 0, G(s) is given
by the number of ways of ordering the switches (s12−1)!
multiplied by the number of ways D(s11, p)D(s22, p) of
placing the non-switching nodes in the spaces between
the switches, where

D(s, p) =

l
∑

n1=0

(

s

n1

)

n1!

s−n1
∑

n2=0

(

s− n1

n2

)

n2 . . .

· · ·
s−

∑p−2
j=1 nj
∑

np−1=0

(

s−∑p−2
j=1 nj

np−1

)

np−1!



s−
p−1
∑

j=1

nj





=
(s+ p− 1)!

(p− 1)!
(3)
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Thus

G(s11, s22, s12) =

{

(s12 − 1)!D(s11, p)D(s22, p) s12 > 0
(s11+s22)!
2(s11+s22)

s12 = 0
.

(4)
The number of ways to form layer 1 is the num-

ber of ways to connect c1N stubs in pairs: (c1N −
1)(c1N − 3)...3 · 1 = (c1N − 1)!!, while the number of
ways to connect the edges not forming part of the loop is
(c1N−2s11−s12−1)!!. Hence the fraction of layer 1 con-
figurations containing the loop is the ratio of these two
numbers. Repeating for layer 2, we find that W (N, s)
can be simply written

W (N, s) =
(c1N−2s11−s12−1)!!(c2N−2s22−s12−1)!!

(c1N − 1)!!(c2N − 1)!!
.

(5)

A. Formulæ for short cycles

When L ≪ N , the factor W (N, s) can be approxi-
mated as

W (N, s) =
1

NL〈q1〉s11+p〈q2〉s22+p
. (6)

Furthermore, we can treat the selection of nodes as being
done with replacement, meaning that R(N, s, P (q)) can
be simply written as a product of terms for each node in
the cycle:

R(N, s, P (q)) =
NL〈q1(q1 − 1)〉s11 〈q2(q2 − 1)〉s22 〈q1q2〉s12

s11!s22!s12!
(7)

where 〈...〉 indicates averages with respect to the degree
distribution (ensemble averages).
When Eq. (7) is combined with G(s) and W (N, s) as

given by Eqs. (4) and (6) we find that, when none of
s11, s22, s12 is zero,

N (s) =

(

s11 + p− 1

s11

)(

s22 + p− 1

s22

)

1

2p

[ 〈q1(q1 − 1)〉
〈q1〉

]s11

×
[ 〈q2(q2 − 1)〉

〈q2〉

]s22
[

〈q1q2〉
√

〈q1〉〈q2〉

]2p

, (8)

In the case s12 = 0, the cycle consists of only one color,
so N (s) = 0 unless either s22 = 0 or s11 = 0, in which
case

N (L, 0, 0) =
1

2L

[ 〈q1(q1 − 1)〉
〈q1〉

]L

. (9)

This coincides with the single layer result found in, for
example, Ref. [24]. Similarly, the formula for N (0, L, 0)
is found simply by exchanging the subscripts.
On the other hand, when s11 = 0, it is still possible

to have s12 > 0, when each segment in layer 1 consists

of only a single edge (i.e. each switch between layers is
immediately followed by another switch). Then

N (0, s22, 2p) =

(

s22 + p− 1

s22

)

1

2p

[ 〈q2(q2 − 1)〉
〈q2〉

]s22
[

〈q1q2〉
√

〈q1〉〈q2〉

]2p

,

(10)

and similarly for the case s22 = 0 but s12 > 0 and s11 > 0,
by exchanging the subscripts 1 and 2. If we project the
two layers onto a single network, we recover the existing
result for a single colored network, which has the same
form as Eq. (9).
These results are valid for L ≪ N , such as in the limit

N → ∞. The expected number of cycles in other cases,
for longer cycles (when terms of O(1/N) can’t be ne-
glected) can be found by a more precise derivation, which
we outline in the Appendix.

B. Representative examples

0 20 40 60 80

n1, n2, s12

0

0.06

0.12

0.18

p
ro

ba
bi
li
ty

FIG. 2. Distribution of number of edges of type 1 (circles, blue
online) and 2 (triangles, green online) and number of switches
s12 (squares, red online) in cycles of length L = 80 in two
uncorrelated layers with Poisson degree distributions having
mean degrees 〈q1〉 = 25 and 〈q2〉 = 45. Symbols are from
summation of Eq. (8), solid lines are binomial distributions
for L trials with probabilities 〈q1〉/(〈q1〉 + 〈q2〉), 〈q2〉/(〈q1〉+
〈q2〉), and 〈q1〉〈q2〉/(〈q1〉+ 〈q2〉)

2 respectively.

The number of cycles having exactly n1 = s11 +
1
2s12

edges of type 1 for a fixed L can be found by summing Eq.
(8) over each sab. In the absence of inter-layer degree cor-
relations, the resulting distributions for n1 match the Bi-
nomial distribution found by selecting L edges at random
from the network, as shown in Fig. 2. The mean number
of type 1 edges is p1 = 〈q1〉/(〈q1〉 + 〈q2〉), and similarly
for n2. In addition, the number of switches s12, which
must always be even, can be found by summing over s11
and s22. The mean number of switches 〈s12〉 is well pre-
dicted by 2L〈q1〉〈q2〉/(〈q1〉+〈q2〉)2, which is the expected
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number of mismatches when pairing L randomly chosen
edges, and the distribution is also well matched by a bi-
nomial distribution.
The number of cycles for a given matrix s in Eq. (8)

depends only on the moments of the joint degree distri-
bution. This means that networks may have quite differ-
ent degree distributions, and hence different structures,
but if the relevant moments are the same, so will be the
average number of cycles of each kind.
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FIG. 3. (a) Mean for n1 (blue, dashed) and s12 (red, heavy
solid) and corresponding standard deviations (blue dash-dot,
red light, respectively) as a function of Pearson correlation
coefficient r for the degrees of a vertex in different layers. As-
sortative correlations (r < 0) are created using a joint degree
distribution of the form P (q1, q2) = ρ 1

2
[(P (q1)+P (q2)]δq1,q2+

(1 − ρ)P (q1)P (q2). disassortative correlations (r < 0) are
of the form P (q1, q2) = ρ[(P (q1)δq2,0 + P (q2)δq1,0] + (1 −
ρ)P (q1)P (q2), where P (q) ∝ q−γ , with γ = 3.7, is a power-
law distribution, and L = 80. Maximum disassortative corre-
lation occurs when the two layers no longer overlap, at which
point n1 = 0. The corresponding value of r depends on γ.
Figures are qualitatively similar for any value of γ > 3. (b)
Total number of cycles as a function of r.

In simplex networks, it has been shown that degree-
degree correlations for neighboring vertices affect quite
deeply the number of cycles [25]. In multiplex networks,
it is natural to ask about the effect of degree correlations
across layers. Indeed, we can see from the last term in
Eq. (8) that interlayer degree correlations affect the num-
ber of cycles having a given number of switches between
layers. For a given L, assortative interlayer degree cor-
relations will tend to increase the number of switches, as
high degree nodes in one layer, which are more frequently
visited, will also have more available edges in the other
layers. Conversely, disassortative correlations will tend
to decrease the number of switches. The mean number
of edges of type 1 remains constant, although the dis-
tribution changes. These effects can be seen in Fig. 3,
in which we plot the mean and standard deviation of n1

and s12 as a function of the Pearson correlation coeffi-
cient r for the degrees of a vertex in different layers [11].
We see that in the extreme case of disassortative correla-
tions, there are no switches and the entire cycle is of one
color, as the standard deviation of n1 reaches the max-
imum value of L/2. An even more dramatic change is

seen in the total number of cycles of a given length. The
right panel in Fig. 3 shows the total number of cycles of
length L as a function of r. Disassortative correlations
greatly restrict the possible number cycles that can be
formed, while assortative correlations greatly increase it.
Note that the apparently sharp inflections at r = 0 re-
sult simply from the use of different functional forms for
assortative and disassortative correlations.

III. CLUSTERING

The clustering coefficient of a network is related to
the number of triangles, that is, cycles of length three.
In such short cycles, the computation of factor G(s)
is straightforward, thus we can calculate the number
of cycles of length 3 for any number of layers. Such

a cycle may be entirely within one layer: N (1)
m =

z3m/6c3m; have two edges in one layer (m) and one edge

in a second layer (n): N (2)
m,n = zm〈qmqn〉2/2c2mcn; or

have one edge each in three different layers: N (3)
m,n,r =

〈qmqn〉〈qmqr〉〈qnqr〉/cmcncr , where zm ≡ 〈qm(qm − 1)〉
and cm = 〈qm〉. We can then define a global clustering
coefficient by

C =
3
∑

s:L=3N (s)

V(N)

=

3
∑

m

N (1)
m + 3

∑

m,n6=m

N (2)
m,n + 3

∑

m,n6=m
r 6=m,n

N (3)
n,m,r

N
[

∑

m zm + 2
∑

m,n6=m〈qmqn〉
] , (11)

where V(N) is the number of adjacent edge-pairs in the
graph, and the summation is over all cycle matrices s

having length L = 3.

One may also define partial clustering coefficients for
triangles entirely within a given layer, two given layers,

or three given layers (C
(3)
m,n,r) respectively:

C(1)
m =

3N (1)
m

1
2Nzm

=
z2m
Nc3m

, (12)

C(2)
m,n =

3N (2)
m,n

1
2N [zm + 2〈qmqn〉]

=
3zm〈qmqn〉2

N [zm + 2〈qmqn〉] c2mcn
,

(13)

C(3)
m,n,r =

3N (3)
m,n,r

1
2N [〈qmqn〉+ 〈qmqr〉+ 〈qnqr〉]

(14)

=
6〈qmqn〉〈qmqr〉〈qnqr〉

Ncmcncr [〈qmqn〉+ 〈qmqr〉+ 〈qnqr〉]
, (15)

or triangles entirely in one, two, or three layers, regardless
of which particular layers they are (these less fine-grained
coefficients were defined and calculated numerically in
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Ref. [10]):

C(1) =

∑

m(zm/cm)3

N
∑

m zm
, (16)

C(2) =
3
∑

m,n6=m zm〈qmqn〉2/(c2mcn)

N
∑

m,n6=m [zm + 2〈qmqn〉]
, (17)

C(3) =
6
∑

m,n6=m,r 6=m,n〈qmqn〉〈qmqr〉〈qnqr〉/cmcncr

N
∑

m,n6=m,r 6=m,n〈qmqn〉
.

(18)

These formulæ give the expected clustering coefficients
for large random graphs, taking into account the full de-
gree distribution. This gives a more accurate result than
found by simply matching the mean degree to an Erdős-
Rényi network [10], for which the clustering coefficients
can be calculated by considering the probability for a
given edge to be present or absent:

C
(1)
m(ER) =

cm
N

, (19)

C
(2)
m,n(ER) =

3cmcn
N(cm + 2cn)

, (20)

C
(3)
m,n,r(ER) =

6cmcncr
N(cmcn + cmcr + cncr)

, (21)

C
(1)
ER =

∑

m c3m
N
∑

m c2m
, (22)

C
(2)
ER =

3
∑

m,n6=m c2mcn

N
∑

m,n6=m(c2m + 2cmcn)
, (23)

C
(3)
ER =

6
∑

m,n6=m,r 6=m,n cmcncr

N
∑

m,n6=m,r 6=m,n cmcn
, (24)

CER =

∑

m cm
2N

, (25)

which coincide with the results found by inserting uncor-
related Poisson degree distributions into Eqs. (11)-(18).
To illustrate the importance of taking correlations into

account, we compared our formulæ Eqs. (11)-(18) with
measurements of synthetic networks. The results are
summarized in Fig. 4. This shows that our method suc-
cessfully accounts for the effects of broad degree distri-
butions, and inter-layer correlations. In comparison, the
Erdős-Rényi formulæ are generally only accurate for un-
correlated Erdős-Rényi layers and fail completely in the
presence of strong correlations between layers.

IV. CONCLUSIONS

In single layer networks, cycles are characterized by
their length. In multiplex networks, there are many more
possibilities. In particular, there is the possibility to
switch between layers, and this must be accounted for.
In this Paper we have introduced a classification for cy-
cles in multiplex networks based on the number of edges
in each layer, and the number of switches between layers.
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FIG. 4. (a) Total clustering coefficient, C (circles, green), sin-

gle layer, C(1) (triangles, blue) and two layer, C(2) (squares,
red), clustering coefficients for a two layer multiplex net-
work with assortative inter layer degree correlations, joint
degree distribution P (q1, q2) = ρ 1

2
[(P (q1) + P (q2)]δq1,q2 +

(1 − ρ)P (q1)P (q2), where P (q) ∝ q−γ , with γ = 2.9 for
q ∈ [10, 100]. Each layer has N = 104 vertices. For ρ = 0
correlations are absent, while for ρ = 1 degrees are per-
fectly correlated. Solid lines are expected theoretical val-
ues using Eqs. (11), (16), and (17). (b) Total C, sin-

gle layer, C(1), and two layer, C(2), clustering coefficients
for a two layer multiplex network with disassortative inter
layer degree correlations, joint degree distribution P (q1, q2) =
ρ[(P (q1)δq2,0+P (q2)δq1,0]+(1−ρ)P (q1)P (q2), where P (q) is a
Poisson distribution with mean 50. For ρ = 0 correlations are
absent, while for ρ = 1 degrees are perfectly disjoint. Solid
lines are expected theoretical values using Eqs. (11), (16),
and (17).

We further calculated the expected number of each type
of cycle in a large random multiplex. Our results are valid
for any multi-degree distribution, including distributions
characterized by arbitrary degree correlations between
layers. Interestingly, our formulæ show that the first and
second order moments of the multi-degree distribution
are sufficient to determine the statistics of cycles in large
multiplex networks. The effect of correlations between
a vertex’s degrees in different layers affects these statis-
tics through the degree-degree moment 〈qmqn〉. Assorta-
tive correlations tend to increase the number of switches
in cycles of a given length, while also increasing the to-
tal number of cycles. Disassortative correlations, on the
other hand, may greatly reduce both the total number
of cycles and the total number of switches within these
cycles.

These results further allow us to give the expected
clustering coefficients in multiplex networks. The pos-
sibility that a closed triangle may have edges in multiple
layers requires a more detailed discrimination of cluster-
ing coefficients. We give a complete classification of the
various possible clustering coefficients and give their ex-
pected values. Inter layer correlations again have a strong
effect, significantly increasing or decreasing the mixed-
layer clustering coefficients. These results give a much
more precise view of cycles and clustering in multiplex
networks than using the mean degree alone, and estab-
lish the proper baseline for comparison with real-world
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networks.
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Appendix: The factor R for longer cycles

The derivation given in the main body of this Paper is
valid for L ≪ N . If one wants to consider longer cycles,
a more complex derivation is required, which we sketch
here.

1. Cycles in only one layer

For orientation, we first outline the derivation for cy-
cles within a single layer, which is identical to that for a
single network, and follows the method used in [24].

Consider selecting an arbitrary set of nodes from the
network, of which nq have degree q. There are

(

Nq

nq

)

ways

to select nq nodes, where Nq = NP (q). We sum over
all possible such sets and use a delta function to count
only sets containing exactly L nodes. There are q(q − 1)
ways to select the edges which connect a node of degree q
in the cycle. Together these considerations mean we can
write

R(N,L, P (q)) =

NL
∑

{nq}

δ

(

∑

q

nq−L

)

∏

q

(

Nq

nq

)[

q(q − 1)

N

]nq

. (A.1)

We can write the delta function in integral form, and
after replacing the sum over sets {nq} with a sum over
nq after the product, we have

R(N,L, P (q))

=
NL

2π

∫

dx
∏

q

Nq
∑

nq=0

(

Nq

nq

)[

eixq(q − 1)

N

]nq

e−ixL

=
NL

2π

∫

dx
∏

q

[

1 +
eixq(q − 1)

N

]Nq

e−ixL. (A.2)

Writing the product as a sum within an exponential, and
recognising that as Nq = NP (q), this gives an average

over degree, we have

R(N,L, P (q)) =

NL

2π

∫

dx exp

{

−ixL+N

〈

log

[

1 +
eixq(q − 1)

N

]〉}

.

(A.3)

To evaluate this integral, we assume the integrand to
be strongly peaked around a certain value x∗. Let

φ(x) =
−ixL

N
+

〈

log

[

1 +
eixq(q − 1)

N

]〉

. (A.4)

A local maximum of this function occurs at x∗ which is
the solution of

〈

q(q − 1)

Ne−ix∗ + q(q − 1)

〉

=
L

N
. (A.5)

The second derivative evaluated at x∗ is

d2φ

dx2

∣

∣

∣

x=x∗

= −
〈

q(q − 1)

[Ne−ix∗ + q(q − 1)]2

〉

Ne−ix∗

. (A.6)

These results can be used to replace φ(x) with a Tay-
lor expansion about x∗ in Eq. (A.3). It has a simple
Gaussian form that can easily be evaluated to give

R(N,L, P (q)) =

NL

√
2π

eNφ(x∗)

{〈

q(q − 1)

[Ne−ix∗ + q(q − 1)]2

〉

N2e−ix∗

}−1/2

.

(A.7)

To find an explicit expression, we must solve Eq. (A.5)
and evaluate φ(x∗) and hence Eq. (A.7).
In the case L ≪ N , Ne−ix dominates q(q− 1), so that

Eq. (A.5) becomes

〈q(q − 1)〉 = Le−ix∗

(A.8)

so that

Nφ(x∗) = L+ log

( 〈q(q − 1)〉
L

)L

(A.9)

and

{〈

q(q − 1)

[Ne−ix∗ + q(q − 1)]2

〉

N2e−ix∗

}−1/2

=
1√
L

(A.10)

giving

R(N,L, P (q)) =
NL

√
2πL

eL
[ 〈q(q − 1)〉

L

]L

=
NL

L!
〈q(q−1)〉L

(A.11)
which when combined with Eqs. (2) and (6) gives exactly
Eq. (9).
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If instead we expand the lefthand side of Eq. (A.5) we
find

s

N
=

〈q(q − 1)〉
Ne−ix∗

− 〈q2(q − 1)2〉
N2e−2ix∗

+ ... (A.12)

and keeping the two leading terms , the solution is

e−ix∗ ≈ 〈q(q − 1)〉
s

− 〈q2(q − 1)2〉
N〈q(q − 1)〉 (A.13)

which can be substituted into Eqs. (A.4) and (A.7) to
find the expected number of cycles when L is not small
compared with N but L ≪ N2. The result will include
dependence in N and on higher moments of the degree
distribution.

2. Cycles in two layers

Now we outline the derivation for general cycles in a
two layer multiplex. We proceed in the same way, but

now there are three sets of nodes {n(1)
q1,q2} for the nodes

connecting two edges in layer 1, {n(2)
q1,q2} for two edges in

layer 2, and {n(s)
q1,q2} for the switches. We sum over all

possible such sets, and use three delta functions to count
only those whose total number of nodes (of all degrees)
match sij . The combinatorial factor for the number of
ways to select the three sets is

BN
n1,n2,n3

=
N !

n1!n2!n3!(N − n1 − n2 − n3)!
. (A.14)

There are q1(q1 − 1) ways to select the two edges con-

necting each of the n
(1)
q1,q2 nodes, and similarly for n

(2)
q1,q2 ,

while for the n
(s)
q1,q2 switches the factor is q1q2. These

considerations give us

R(N, s, P (q)) =
∑

{n
(1)
q1,q2

}

δ

(

∑

q1,q2

n(1)
q1,q2 − s11

)

∑

{n
(2)
q1,q2

}

δ

(

∑

q1,q2

n(2)
q1,q2 − s22

)

∑

{n
(s)
q1,q2

}

δ

(

∑

q1,q2

n(s)
q1,q2 − s12

)

∏

q1,q2

B
Nq1,q2

n
(1)
q1,q2

,n
(2)
q1,q2

,n
(s)
q1,q2

[q1(q1 − 1)]
n(1)
q1,q2

× [q2(q2 − 1)]
n(2)
q1,q2 [q1q2]

n(s)
q1,q2 . (A.15)

We can represent the delta function as an integral. Re-

placing the sums over sets {n(j)
q1,q2} with sums over n

(j)
q1,q2

after the product,

R(N, s, P (q)) =
NL

(2π)3

∫

dx1dx2dx3

exp
{

ix1(
∑

q1,q2

n(1)
q1,q2−s11) + ix2(

∑

q1,q2

n(2)
q1,q2−s22)+

ix3(
∑

q1,q2

n(2)
q1,q2−s12)

}

×

∏

q1,q2

Nq1,q2
∑

n
(1)
q1,q2

=0

Nq1,q2−n(1)
q1,q2

∑

n
(2)
q1,q2

=0

Nq1,q2−n(1)
q1,q2

−n(2)
q1,q2

∑

n
(s)
q1,q2

=0

B
Nq1,q2

n
(1)
q1,q2

,n
(2)
q1,q2

,n
(s)
q1,q2

[

q1(q1 − 1)

N

]n(1)
q1,q2

[

q2(q2 − 1)

N

]n(2)
q1,q2 [q1q2

N

]n(s)
q1,q2

.

(A.16)

Each sum can be completed succesively using the bino-
mial identity. Finally converting the product into a sum
within an exponential, and writing it as an expectation
value we find

R(N, s, P (q)) =
NL

(2π)3

∫

dx1 dx2dx3 exp{Nφ(x)}.
(A.17)

where

φ(x) =
1

N

[

log
(y1
N

)s11
+ log

(y2
N

)s22
+ log

(y3
N

)s12]

+
〈

log

[

1 +
b1
y1

+
b2
y2

+
b3
y3

]〉

(A.18)

and yj = Ne−ixj and b1 = q1(q1 − 1), b2 = q2(q2 − 1),
and b3 = q1q2.
As before, we expand φ(x) about the local maximum

x
∗ which is the simultaneous solution of

s11
N

=

〈

b1
y∗1 [1 + b1/y∗1 + b2/y∗2 + b3/y∗3 ]

〉

(A.19)

s22
N

=

〈

b2
y∗2 [1 + b1/y∗1 + b2/y∗2 + b3/y∗3 ]

〉

(A.20)

s12
N

=

〈

b3
y∗3 [1 + b1/y∗1 + b2/y∗2 + b3/y∗3 ]

〉

. (A.21)

The Taylor expansion requires the second order deriva-
tives:

φjj ≡
∂2φ

∂x2
j

∣

∣

∣

x
∗

= − 1

y∗j

〈

bj(1 + bk/y
∗
k + bl/y

∗
l )

(1 + b1/y∗1 + b2/y∗2 + b3/y∗3)
2

〉

(A.22)

φjk ≡ ∂2φ

∂xjxk

∣

∣

∣

x
∗

=
1

y∗j y
∗
k

〈

bjbk
(1 + b1/y∗1 + b2/y∗2 + b3/y∗3)

2

〉

(A.23)

where the subscripts j, k, l each take one of the values
1, 2, 3. Substituting the second order Taylor expansion
of φ(x) around x

∗ into Eq. (A.17) yields a more complex
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integral than in the single layer case, but its evaluation
is still straightforward,

R(N, s, P (q)) =
NLeNφ(x∗)

(2πN)3/2
[φ11φ22φ33

−φ11φ
2
23 − φ22φ

2
13 − φ33φ

2
12 − 2φ12φ13φ23

]−1/2
.

(A.24)

To evaluate R(N, s, P (q)) for a given distribution, one

solves Eqs. (A.19)-(A.21), evaluates Eqs. (A.22) and
(A.23) and substitutes into Eq. (A.24)).

For L ≪ N we can neglect O(1/N), giving y∗1 =
N〈b1〉/s11 and similar expressions for y∗2 and y∗3 . The
cross derivatives φ12, φ13, and φ23 vanish, and we recover
Eq. (7). For larger L, dependence on N will remain, and
there will be dependence on higher moments of the degree
distribution.
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nio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal,
Z. Wang, and M. Zanin, “The structure and dynamics
of multilayer networks,” Phys. Rep. 544, 1–122 (2014).

[6] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson,
Y. Moreno, and M. A. Porter, “Multilayer networks,”
Journal of Complex Networks 2, 203–271 (2014).

[7] M. De Domenico, C. Granell, M. A. Porter, and A. Are-
nas, “The physics of multilayer networks,” arXiv preprint
arXiv:1604.02021 (2016).

[8] G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and
J. F.F. Mendes, “Avalanche collapse of interdependent
networks,” Phys.Rev. Lett. 109, 248701 (2012).

[9] G. J. Baxter, D. Cellai, S. N. Dorogovtsev, A. V. Goltsev,
and J. F. F. Mendes, “A unified approach to percolation
processes on multiplex networks,” in Interconnected Net-

works (Springer, 2016) pp. 101–123.
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