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We introduce a growing network model—the copying model—in which a new node attaches to
a randomly selected target node and, in addition, independently to each of the neighbors of the
target with copying probability p. When p < 1

2
, this algorithm generates sparse networks, in which

the average node degree is finite. A power-law degree distribution also arises, with a non-universal
exponent whose value is determined by a transcendental equation in p. In the sparse regime,
the network is “normal”, e.g., the relative fluctuations in the number of links are asymptotically
negligible. For p ≥ 1

2
, the emergent networks are dense (the average degree increases with the number

of nodes N) and they exhibit intriguing structural behaviors. In particular, the N -dependence of the
number of m-cliques (complete subgraphs of m nodes) undergoes m− 1 transitions from normal to
progressively more anomalous behavior at a m-dependent critical values of p. Different realizations
of the network, which start from the same initial state, exhibit macroscopic fluctuations in the
thermodynamic limit—absence of self averaging. When linking to second neighbors of the target
node can occur, the number of links asymptotically grows as N2 as N →∞, so that the network is
effectively complete as N →∞.

PACS numbers: 89.75.-k, 02.50.Le, 05.50.+q, 75.10.Hk

I. INTRODUCTION AND MODEL

A wide variety of complex networks grow by copying
mechanisms. As examples, copying and redirection are
key ingredients in the growth of the world-wide web, ci-
tation networks and other information networks [1–4].
In social networks, copying corresponds to triadic clo-
sure, that is, the formation of new social ties between two
friends of a given individual. This mechanism appears to
be important in driving social network dynamics [5, 6].
Copying also occurs in Nature. For example, the pro-
cess of gene duplication, which is essentially the copying
mechanism, plays a crucial role in evolution [7, 8]. Vari-
ous models for protein interaction networks are also based
on duplication and divergence [9–19].

From a modeling viewpoint, the copying mechanism
has the advantage of being local [20–22], as the creation
of new links only depends on the nearest neighborhood
of each node, in contrast to global rules, such as prefer-
ential attachment. Despite the simplicity of the copying
rule and the formulation of a number of models that are
based on copying, most of their properties have thus far
been studied primarily by numerical simulations and/or
qualitative arguments. As of yet, there has not been a
rigorous mathematical analysis of networks that are gen-
erated by copying mechanisms. The main purpose of this

paper is to fill this gap.
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FIG. 1: The copying model. A new node (filled circle) at-
taches to a random target (open circle) and independently to
each of the friends of the target (squares) with probability p.

We investigate networks that grow by an elementary
implementation of the copying mechanism, which de-
pends on only a single parameter—the copying proba-
bility p (Fig. 1). In our copying model, a network grows
by adding nodes sequentially. Each new node connects
to a randomly chosen target node and, in addition, in-
dependently to each of the neighbors of the target with
probability p. The simplicity of this growth mechanism
allows us to develop an analytical description of many of
the rich network properties that emerge.

Perhaps the most crucial structural change is the tran-
sition from sparse networks for p < 1

2 , where the number
of links LN in a network of N nodes grows linearly with
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FIG. 2: Realizations of the copying model for p = 0.1, 0.4, 0.7, and 1 for N = 100, and a summary of the dense regimes. For
simplicity, only the last of the structural transitions is shown (see Sec. IV.

N , to dense networks, where LN grows super-linearly
with N . In the sparse regime, the network is “normal”
in the sense that a typical realization of the network is
representative of the average behavior. In contrast, in
the dense regime, p > 1

2 , network growth is not self-
averaging; namely sample-to-sample fluctuations do not
vanish even when the number of nodes N is very large.
In addition, the copying model undergoes infinitely many
transitions at p = 2

3 ,
3
4 ,

4
5 , . . . where sudden changes arise

in the growth laws of the number of triangles and pro-
gressively higher-order cliques—complete subgraphs of m
nodes. Moreover, for intermediate values of p, the result-
ing networks appear to be highly clustered (Fig. 2).

This article is organized as follows. In the next Sec. II
we quantify the simplest global network characteristic,
the number of links LN . Specifically, we show that the
N -dependence of the average number of links has a tran-
sition point at p = 1

2 , while the variance of LN has tran-

sition points at p = 1
4 and at p = 1

2 . We then analyze
the degree distribution in Sec. III, and show that it has
a power-law tail with a non-universal exponent in the
sparse regime. In the dense regime, nearly all features
of the degree distribution are anomalous. In Sec. IV we
determine the growth laws for the average number of tri-
angles and higher-order m-cliques. Cliques undergo a
rich sequence of structural transitions as p increases. In
Sec. V, we analyze the clustering properties of the net-
work as a function of the copying probability p and argue
that maximal cluster occurs at an intermediate value of
p. In Sec. VI, we examine the probability distributions
for the number of links LN and triangles TN . In Sec. VII
we briefly discuss what happens if, in addition to con-
necting to the neighbors of the target node, connections
to second neighbors are also allowed. Finally in Sec. VIII,
we conclude and discuss some possible open questions.

II. NUMBER OF LINKS

A basic global characteristic of a network of N nodes is
the number of links LN . In many models, the dependence
of LN on N is trivial. For example, if each new node links
to m pre-exiting nodes, then LN = m(N−1). Hereinafter
we assume that the network starts with a single node,
so that L1 = 0. In the copying model, however, LN
is a random variable taking different values in different
realizations. The exceptions are the extreme cases of p =
0 and p = 1 where the number of links is deterministic. In
the former case the copying mechanism produces a tree
(more precisely, a random recursive tree), so LN = N−1.
When p = 1, the copying model leads to the complete
graph which has LN = N(N − 1)/2 links.

A. The average L(N)

The simplest characterization of the random quantity
LN is the average number of links L(N) ≡ 〈LN 〉. When a
new node is added, the average number of links increases
by 1 + p〈k〉, where 〈k〉 = 2L(N)/N is the average node
degree. The factor 1 accounts for direct linking and the
factor p〈k〉 accounts for copying events. Indeed, for a
target node of degree k, pk additional links are created
on average by copying (Fig. 1). Thus the average number
of links grows as

L(N+1) =
(

1 +
2p

N

)
L(N) + 1 . (1)

Since we assume that the network starts with a single
node, the initial condition is L(1) = 0.

The solution to the homogeneous version of recursion
(1) is elementary. Using this solution as a integrating
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factor, we solve the inhomogeneous equation (see Ap-
pendix A), from which the asymptotic behavior is

L(N) =


1

1− 2p
N p < 1

2 ,

N lnN p = 1
2 ,

A(p)N2p 1
2 < p ≤ 1,

(2a)

with

A(p) =
1

(2p− 1) Γ(1 + 2p)
, (2b)

where Γ(·) is the Euler gamma function.
Equation (2a) shows that as the copying probability p

is varied, there is a transition from sparse regimes arising
when p < 1

2 to dense regimes when p ≥ 1
2 . The average

degree remains finite as N → ∞ in sparse regimes and
diverges in dense regimes—logarithmically with N at the
transition point p = 1

2 and algebraically for p > 1
2 . The

change in the dependence of L(N) and many other net-
work properties as a function of p is a major feature of
the copying model.

Parenthetically, we can obtain the asymptotics of (2a),
with the exception of the amplitude A(p), by considering
the continuum limit of (1). In this limit, we treat N
as a continuous variable and recast the exact difference
equation (1) into the differential equation

dL(N)

dN
= 1 + 2p

L(N)

N
, (3)

whose solution recovers the exact asymptotics given
by (1) for p ≤ 1

2 . In this range, the leading asymp-
totics are independent of L(0); the initial condition plays
no role. For p > 1

2 , the continuum solution has the cor-

rect N dependence, L ∼ N2p, but the amplitude depends
on L(1). The replacement of (1) by (3) is accurate only
when N � 1. The dependence on the initial condition in-
dicates that the behavior at small N affects the outcome
and hence the continuum approach cannot be trusted
whenever there is the dependence on L(1).

Logarithmic and power-law densifications given in (2a)
have been observed in citation graphs, the autonomous
systems graph, software networks, and other social and
information networks [1–3, 26]. Network densification
also occurs in models that are based on accelerated net-
work growth [27–30]. In these models, densification arises
by introducing a time-dependent attractiveness to the
nodes. Our approach is fundamentally distinct, as den-
sification is an emergent property of the dynamics.

B. The variance V (N)

We now study the variance V (N) ≡ 〈L2
N 〉 − 〈LN 〉2,

which characterizes the fluctuations in the random vari-
able LN . This variance exhibits a richer dependence on

N than the average number of links L(N), with a new
transition at p = 1

4 , in addition to the transition at p = 1
2 .

To determine the variance, we need to consider the copy-
ing process in more detail. When a new node attaches
to a randomly selected target node of degree k, it also
attaches to a of its neighbors by copying, where a is a
random variable that can range from 0 to k. Thus the
number of links changes according to

LN+1 = LN + 1 + a. (4)

Since connections to each of the neighbors of the target
occurs independently with probability p, the probability
Q(a|k) that a additional links are made to the neighbors
of a target of degree k is

Q(a|k) =

(
k

a

)
pa(1− p)k−a. (5)

Averaging (4) we obtain

L(N + 1) = L(N) + 1 + 〈ak〉. (6)

Here a denotes the average over all possible values of a for
a target node of degree k, and 〈. . .〉 denotes the average
over all target nodes and hence over all possible degrees.
Using (5) we compute

a =

k∑
a=0

aQ(a|k) = pk , (7)

and thus (6) reduces to (1), as it must.
We now extend this approach to compute the variance.

Squaring Eq. (4) gives

L2
N+1 = L2

N + 1 + a2 + 2LN + 2a+ 2LNa ,

which, after averaging, becomes

〈L2
N+1〉 = 〈L2

N 〉+ 1 +
〈
a2
〉

+ 2L(N) + 2〈a〉+ 2〈LNa〉.

To compute 〈a2〉 and 2〈LNa〉, we use (5) to obtain

a2 =

k∑
a=0

a2Q(a|k) = p2k2 + p(1− p)k . (8)

Therefore 〈
a2
〉

= p2〈k2〉+ p(1− p)〈k〉. (9)

Further

2〈LNa〉 = 2p〈LNk〉 =
2p

N

〈
LN

∑
k
〉
, (10)

where the sum is over all N nodes of the network. Since∑
k = 2LN we conclude that

2〈LNa〉 =
4p

N
〈L2

N 〉 (11)
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Using (9)–(11) and 〈k〉 = 2L(N)/N we find

〈L2
N+1〉 =

(
1 +

4p

N

)
〈L2

N 〉+ 1 + p2〈k2〉

+2
(

1 +
3p− p2

N

)
L(N) .

Subtracting the square of (1) from this equation, we
thereby find that the variance evolves according to

V (N+1) =
(

1 +
4p

N

)
V (N) + 2p(1− p) L(N)

N

−4p2

N2
L(N)2 + p2〈k2〉. (12)

Equation (12) is exact but not closed as it contains
〈k2〉. To close (12) we need to express 〈k2〉 as a function
of L(N) and V (N). We have not found such an expres-
sion and its existence seems doubtful. To make progress,
we first estimate the asymptotic behavior of (12) using
arguments that should apply asymptotically. As long as
we are merely interested in the dependence of V (N) on
N and not on amplitudes, we can replace (12) by the
differential equation

dV (N)

dN
=

4p

N
V (N) + 2p(1− p) L(N)

N

−4p2

N2
L(N)2 + p2〈k2〉. (13)

The first term on the right leads to superlinear growth,
V ∼ N4p, when p > 1

4 and linear growth for p < 1
4 .

At p = 1
4 , Eq. (13) becomes dV

dN = V
N + const; hence

the variance acquires an additional logarithmic correc-
tion: V ∼ N lnN . To summarize, we anticipate that the
asymptotic behavior of the variance is given by

V (N) ∼


N p < 1

4 ,

N lnN p = 1
4 ,

N4p 1
4 < p < 1 .

(14)

To derive V (N) in the regime p > 1
4 in a more princi-

pled way, we need 〈k2〉, as mentioned above. To derive
〈k2〉 requires information about the degree distribution
that will be discussed in Sec. III. Here we merely quote
the pertinent results that will be used to derive of V (N).

In the range p < p2 =
√

2 − 1, the second moment is
given by Eq. (20) in the next section. Using this result
in Eq. (13), the evolution of the variance is given by

dV (N)

dN
=

4p

N
V (N) +B(p) , (15)

with

B(p) =
2p(1− 5p+ 2p2)

(1− 2p)2
+

2p2

1−2p

3+2p−p2

1−2p−p2
. (16)

As long as p < p2, the rational function B(p) is finite and
positive. Solving (15) gives, for p < p2,

V (N) =


(1− 4p)−1B(p)N p < 1

4 ,

B(1/4)N lnN p = 1
4 ,

∼ N4p p > 1
4 .

(17)

These results improve on (14) because (17) gives the am-
plitude in the range p ≤ 1

4 . For p > 1
4 , the amplitude

cannot be computed within a continuum approach.
The behavior (17) is established for p < p2, but we can

extend the V (N) ∼ N4p asymptotic to the p > p2 range
by noticing that the second, third, and fourth terms on
the right-hand side of (13) are of order max[1, N2p−1],

max[1, N4p−2], and Np2+2p−1, respectively. [The last re-
sult follows from Eq. (42).] These terms are all subdom-
inant with respect to the first term on the right, which is
of order N4p−1. Thus we conclude that V (N) ∼ N4p for
all p > 1

4 .
The above results for the number of links and its vari-

ance lead us to the following conclusions:

1. When p < 1
4 , the variance V (N) grows linearly

with N . Fluctuations are asymptotically negligible
because

√
V (N)/L(N) → 0 as N → ∞. Thus

we anticipate that the distribution P (L,N) of the
number of links may be asymptotically Gaussian
when p < 1

4 .

2. The variance scales as N4p when p > 1
4 , thereby

suggesting that the distribution P (L,N) is non-
Gaussian when p > 1

4 .

3. In the dense phase (p > 1
2 ) the magnitude of fluctu-

ations is the same as the average:
√
V (N) ∼ L(N).

The last point implies that the number of links does
not self-average. This feature leads to a wide diversity
between individual realizations of the network. In partic-
ular, the first few steps of the network growth are crucial
to shaping its asymptotic evolution.

III. DEGREE DISTRIBUTION

We now study the degree distribution, both because
of its fundamental nature in characterizing the network
and because the second moment of this distribution is
an essential ingredient in the variance V (N) from the
previous section. We will argue that the copying model
leads to dramatically different degree distributions in the
sparse (p < 1

2 ) and dense (p ≥ 1
2 ) regimes. In the sparse

regime, the degree distribution has an algebraic tail and
we can also write the number of nodes of degree k in the
scaling form Nk = Nnk, which simplifies the analysis. In
the dense regime, the degree distribution is anomalous in
nearly all respects and thus far defies a complete analyt-
ical description. Finally, we will use the second moment
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of the degree distribution to provide a more complete
derivation of V (N).

In what follows, we assume that N is sufficiently large
that we can employ a continuum approach. Let Nk(N)
be the number of nodes of degree k in a network of N
nodes. The degree distribution evolves according to

dNk
dN

=
Nk−1 −Nk

N
+p

(k − 1)Nk−1 − kNk
N

+mk. (18a)

The first two terms on the right account for the contri-
butions due to attachment to a randomly selected target
node, the next two terms account for attachment to the
neighbors of the target node, and the last term

mk =
∑
s≥k−1

ns

(
s

k−1

)
pk−1(1− p)s−k+1 (18b)

is the probability that the new node acquires a degree k.
Each term in the above sum accounts for the contribution
due to a target node of degree s in which the new node
attaches to the k− 1 neighbors of this target. Here ns ≡
Ns/N denotes the fraction of nodes of degree s.

Notice that the rate equations (18a) satisfy two ba-
sic sum rules:

∑
k nk = 1, i.e., the network contains N

nodes, and the value of
∑
k knk is consistent with the

total number of links growing according to (3). The first
sum rule is verified by summing Eq. (18a) over all k ≥ 1.
The first four terms on the right trivially give zero. For
the last term, we use

∑
s≥1 ns = 1 and the binomial

identity,
∑

0≤a≤s
(
s
a

)
pa(1 − p)s−a = 1, to conclude that∑

k≥1mk = 1, thus giving
∑
k nk = 1. In a similar spirit,

multiplying (18a) by k and summing over k ≥ 1 gives (3).

A. Sparse regime

In the sparse regime, we make the standard assump-
tion [21] that the fractions nk = Nk/N are independent
of N for N � 1. With this ansatz, we recast Eq. (18) as

[2 + p(k + 1)]nk+1 = [1 + pk]nk

+
∑
s≥k

ns

(
s

k

)
pk(1− p)s−k . (19)

While this is not a recurrence, we can use this equation
to determine the behavior of low-order moments of the
degree distribution. For instance, multiplying (19) by
k(k + 1) and summing over all k ≥ 0 gives, after some
straightforward steps,

〈k2〉 =
∑
k≥1

k2nk =
2

1− 2p

3 + 2p− p2

1− 2p− p2
. (20)

Thus 〈k2〉 is finite for p < p2, where p2 =
√

2 − 1 is the
positive root of the polynomial 1− 2p− p2 = 0. We used
(20) in deriving (15)–(16) and establishing (17) for p ≤ 1

4 .

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

n
k

k

N = 10
2

N = 10
3

N = 10
4

N = 10
5

N = 10
6

N = 10
7

N = 10
8

(a)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

10
3

10
4

n
k

k

N = 10
2

N = 10
3

N = 10
4

N = 10
5

N = 10
6

N = 10
7

N = 10
8

(b)

FIG. 3: The scaled degree distributions in the sparse regime
for (a) p = 0.1 and (b) p = 0.4, For each N , the number of
realizations is 1010/N .

We also note that (20) reduces to 〈k2〉 = 6 for p = 0. This
last result can be verified by recalling that the copying
model reduces to random recursive trees when p = 0,
and the degree distribution for random recursive trees is
nk = 2−k.

To extract the asymptotics of nk from Eq. (19), first
notice that for large k, the summand on the right
is sharply peaked around s ≈ k/p and thus reduces
to [12, 15]

nk/p
∑
s≥k

(
s

k

)
pk(1− p)s−k = p−1nk/p ,

where we use a binomial identity [31] to compute the sum.
Thus the equation for the degree distribution reduces to

[2 + p(k + 1)]nk+1 = [1 + pk]nk + p−1nk/p . (21)

This is now a non-local recurrence, as the value of nk+1

depends both on nk and nk/p, where the index k/p is
generally much larger than k itself.

While we have not found a systematic way to solve
such a recurrence, we make the assumption (justifiable a
posteriori) that nk decays slower than exponentially in
k. This allows us to replace differences by derivatives in
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(21) to give

d

dk
[1 + pk]nk = p−1 nk/p − nk . (22)

This ordinary differential equation is still non-local, but
it nevertheless admits the algebraic solution nk ∼ k−γ

for k � 1. Substituting this ansatz in (22) gives the fol-
lowing transcendental relation for the degree distribution
exponent

γ = 1 + p−1 − pγ−2 . (23)

Equation (23) has two solutions in the (γ, p) plane.
One, γ = 1, is unphysical because it violates the sum rule∑
k≥1 nk = 1. The other applies for 0 ≤ p < 1

2 . In this

case, the exponent γ = γ(p) is a monotonically decreasing
function of p, with γ(0) =∞ and γ( 1

2 ) = 2. The feature
that γ is always greater than 2 is consistent with the
sparseness of the network, in which 〈k〉 =

∑
k≥1 knk is

finite.
Numerical results for the degree distribution in the

sparse regime show that for small k, the nk quickly con-
verge to a stationary limit as a function of N (Fig. 3).
For larger k, the degree distribution slowly converges to
a power-law asymptotic tail whose exponent is consis-
tent with the prediction given in (23). This convergence
becomes progressively slower as p approaches 1

2 . This
slow approach to the asymptotic behavior was previously
observed in a related model for protein interaction net-
works [12], and seems to stem from the non-locality of
the equation for the degree distribution.

B. Dense regime

The degree distribution has a very different nature in
the dense regime. Instead of a power-law tail, the degree
distribution has a well-defined peak (Fig. 4) whose loca-
tion is determined by the mean degree, which grows as
N2p−1, see Eq. (2a). An important feature of the degree
distribution in the dense regime is that the fractions of
nodes of degree k, nk, are no longer stationary. To show
that the distribution is not a power law as well as the
lack of stationarity, let us assume the converse and de-
rive a contradiction. We thus assume that nk ∼ k−γ and
that nk is independent of N . Using this form for nk, the
number of links in a finite network is given by

L =
N

2
〈k〉 =

N

2

kmax∑
k=1

knk ∼ Nk2−γmax , (24)

where kmax denotes the largest expected degree in a
network of N nodes. We estimate this maximal de-
gree by the standard extremal condition (see, e.g., [32])
N
∑
k≥kmax

nk = 1; namely, that there is of the order
of a single node whose degree is kmax or greater. This
relation gives kmax ∼ N1/(γ−1), so that (24) reduces to

L ∼ Nk2−γmax ∼ N1/(γ−1) . (25)
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FIG. 4: The degree distributions in the dense regime for: (a)
p = 0.6, (b) p = 0.75 and (c) p = 0.9. For each N , the number
of realizations is 1010/N .

On the other hand, Eq. (3) gives L ∼ N2p. These two
results are consistent only when 2p(γ − 1) = 1, and this
consistency condition agrees with (23) only at p = 1

2 .

Thus we conclude that for p > 1
2 , the degree densities nk

must depend on N , and further, that the degree distri-
bution is not algebraic in k.

Because of the non-locality of Eq. (18) and the non-
stationary nature of the solution, we have not found an
analytical solution for the degree distribution in the dense
regime. We therefore report on simulation results. Fig-



7

 0

 30

 60

 90

 120

 0  1000  2000  3000  4000

N
k

k

FIG. 5: The degree distributions for two representative real-
izations of the copying model for p = 0.75 for a network of
N = 105 nodes. The data are averaged over a 20-point range.

ure 4 shows the degree distribution, averaged over many
realizations, for representative values of p, with N rang-
ing between 102 and 106. For each N , the number of
realizations is 1010/N . These data clearly show that the
degree densities are not stationary and that scaling the
degree by the average degree 〈k〉 does not collapse the
data onto a single universal curve for networks with 106

nodes or less. It is also worth noting that the degree dis-
tributions all exhibit a single peak, so that nodes of small
degrees do not exist for N →∞. This behavior contrasts
sharply with the sparse regime where the degree distribu-
tion is dominated by the smallest-degree nodes. Finally,
the degree distribution is non self-averaging in the dense
regime, as there is a wide disparity in the degree distri-
butions of individual network realizations (Fig. 5).

IV. CLIQUES AND OTHER MOTIFS

As p is increased, it becomes increasingly likely that
triangles are generated when each node is introduced.
With this increased frequency for triangles, there is a
concomitant increased propensity for the appearance of
m-cliques — complete subgraphs of m nodes. To investi-
gate this feature, we extend the approach of Sec. II for the
number of links, to first account for the average number
of triangles, and then the average number of m-cliques
for general m.

A. Triangles

We begin by giving a (trivial) lower bound for the num-
ber of triangles TN in a network of N nodes. If there was
no copying, the number of links LN would equal N − 1
in the resulting tree network, so that no triangles would
exist. For each copying event, the number of links in-
creases by 1 while the number of nodes remains fixed,
and at least one triangle is created. This reasoning gives

the bound

TN ≥ LN − (N − 1) . (26)

For p < 1
2 , this bound, together with (2a), gives, for the

average number of triangles,

T (N) ≡ 〈TN 〉 ≥
2pN

1− 2p
.

We will see that the average number of triangles grows
linearly with N when p < 1

2 , while for p > 1
2 , the growth

of T (N) is superlinear in N .
In each successful copying event a triangle is gener-

ated that consists of the new node, the target node and
the neighbor that receives a copied link. We term this
triangle-generating mechanism as direct linking. If links
to two neighbors of the target are created, then two tri-
angles necessarily arise by direct linking. Additional tri-
angles may be created by a process that we term induced
linking : when links to two neighbors of the target are
created and these neighbors were previously linked, then
a third triangle is created (shaded in Fig. 6).

FIG. 6: Counting triangles. The target node (open circle)
has five neighbors (squares), two of which are joined by ‘clus-
tering’ links (heavy lines). When a new node (filled circle)
is introduced, three copying links (dashed) create three new
triangles (one is hatched for illustration) and one new triangle
by induced linking (shaded).

To determine T (N), we need to account for both of
these mechanisms. Suppose that the target node has
degree k and that its neighbors are connected via c ‘clus-
tering’ links (Fig. 6). If a links to the neighbors are made
by copying, the number of triangles increases on average
by

∆T = a+
a(a− 1)

2

c

k(k − 1)/2
. (27)

The first term on the right accounts for direct linking
and the second for induced linking. For the latter, we
count how many of a(a − 1)/2 possible links between a
neighbors of the target, which also connect to the new
node, are actually present. We now average (27) with
respect to the binomial distribution (5) for a. This el-
ementary calculation, together with the already-known
result a = pk from Eq. (7), gives

a(a− 1) =

k∑
a=0

a(a− 1)Q(a|k) = p2k(k − 1),
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from which we obtain the compact result

∆T = pk + p2c. (28)

The term p2c in Eq. (28) can be understood by noting
that two previously connected neighbors also get con-
nected to the new node with probability p2 since linking
to each node occurs independently.

We now express the average degree 〈k〉 via L(N) and
the average number of clustering links 〈c〉 via T (N). The
former relation is known, while to determine the latter we
note that c equals the number of triangles that contain
the target node. Thus

〈k〉 =
2L(N)

N
, 〈c〉 =

3T (N)

N
. (29)

Using (29), we average the increment of the number of
triangles in (28) to obtain 〈∆T 〉 = 2pL/N + 3p2T/N
each time a new node is added. Therefore the number of
triangles evolves according to

T (N+1) =

(
1 +

3p2

N

)
T (N) + 2p

L(N)

N
. (30)

Solving this recurrence equation (see Appendix B) gives
the asymptotic behaviors

T (N) =



2p

(1−2p) (1−3p2)
N p < 1

2 ,

4N lnN p = 1
2 ,

A(p)

1−3p/2
N2p 1

2 < p < 2
3 ,

4
3A
(
2
3

)
N4/3 lnN p = 2

3 ,

C(p)N3p2 2
3 < p ≤ 1,

(31a)

with A(p) given by (2b) and

C(p) =
2

(3p− 2) (3p2 − 1) Γ(3p2 + 1)
. (31b)

Notice that for N � 1, the recursion (30) reduces to the
differential equation

dT

dN
= 3p2

T

N
+ 2p

L

N
,

whose solution coincides with (31a), except for the am-
plitude in the regime p > 2

3 , which cannot be determined
within the continuum approach.

Equation (31a) exhibits several striking features. First,
the triangle density (the average number of triangles
per node) converges to a non-vanishing value for all
0 < p < 1

2 , as observed in many empirical complex net-
works. This linearity arises because for any p > 0 a
non-zero number of triangles are typically created when
each node is added. Second, the average number of tri-
angles T (N) undergoes phase transitions at p = 1

2 and

at p = 2
3 . Although there is change in the N dependence

at p = 1
2 , the average number of triangles continues to

scale linearly with the number of links for any p < 2
3 .

However, beyond p = 2
3 , the number of triangles grows

faster than the number of links.

B. Cliques

We can extend the above considerations to treat com-
plete subgraphs, or motifs, of arbitrary size m (with links
and triangles corresponding to motifs of size 2 and 3 re-
spectively). Let Km(N) be the average number of such
motifs in a network of N nodes, with K2(N) ≡ L(N) and
K3(N) ≡ T (N).

To determine the number of quartets—cliques of size
four—we use similar reasoning that led to Eq. (28). We
thus find that adding a node gives, for the average in-
crease ∆K4 in the number of quartets:

∆K4 = p2c+ p3d. (32)

Here d is the number of triangles whose vertices are all
neighbors of the target node. Using 〈c〉 = 3T/N and
〈d〉 = 4K4/N , we find that in the large-N limit the aver-
age number of quartets evolves according to

dK4

dN
= 3p2

T

N
+ 4p3

K4

N
, (33)

whose solution is

K4(N) ∼


N 0 < p < 1

2 ,

N2p 1
2 < p < 2

3 ,

N3p2 2
3 < p < 3

4 ,

N4p3 3
4 < p ≤ 1.

(34a)

At the transition points p = 1
2 , 2

3 , and 3
4 , the correspond-

ing algebraic factor is multiplied by lnN .
We can refine the above results by incorporating the

exact asymptotic behaviors about triangles from (31a),
to obtain the exact amplitudes in the range 0 ≤ p ≤ 3

4 :

K4(N) =



6p3

(1−2p)(1−3p2)(1−4p3)
N p < 1

2 ,

6N lnN p = 1
2 ,

3pA(p)

(2− 3p)(1− 2p2)
N2p 1

2 < p < 2
3 ,

12A
(
2
3

)
N4/3 lnN p = 2

3 ,

C(p)

1− 4p/3
N3p2 2

3 < p < 3
4 ,

27
16C

(
3
4

)
N27/16 lnN p = 3

4 ,

∼ N4p3 3
4 < p ≤ 1.

(34b)
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To obtain the amplitude in the range 3
4 < p < 1 range

requires an analysis of an exact recurrence for K4(N).
More generally, the average number of cliques of m

nodes, Km(N), satisfies

dKm

dN
= (m− 1)pm−2

Km−1

N
+mpm−1

Km

N
. (35)

Solving (35) recursively gives

Km =
N

1−mpm−1
m−2∏
j=1

(j + 1)pj

1− (j + 1)pj
(36a)

in the sparse phase (p < 1
2 ), while in the dense phase

Km ∼ N (j+1)pj for
j

j + 1
< p <

j + 1

j + 2
, (36b)

with j = 0, 1, 2, . . . ,m − 1 (the last asymptotic for
j = m− 1 holds when 1−m−1 < p < 1). The N depen-
dence of the average number of cliques of size m therefore
undergoes transitions at p = 1− 1/n with n = 2, . . . ,m.
Thus the dense regime of the copying model can be par-
titioned into progressively finer subintervals where there
are distinct N dependences for the number of m-cliques.

C. Star Subgraphs

Another simple motif within a complex network is a
star graph. Part of the reason to study star graphs is that
they are simply related to the degree distribution itself.
Let Sj denote the number of star graphs with j leaves
(nodes of degree 1). A node of degree k is thus a central

node in
(
k
j

)
subgraphs of type Sj . As a consequence, the

number of star graphs and the degree distribution in a
given network are related by

Sj =
∑
k≥j

(
k

j

)
Nk . (37)

We denote by Sj(N) the average number of subgraphs of
type Sj in a network of N nodes. From (37), there is a
simple relation between the average number of stars and
the falling factorial moments of the degree distribution:

Sj(N) =
1

j!
Nµj , µj = 〈k(k− 1) . . . (k− j + 1)〉 . (38)

Using the evolution equation for the degree distribution,
Eq. (18a), the falling factorial moment, which is a func-
tion of p and N , evolves according to

N
dµj
dN

= (pj+jp−1)µj+j[1+(j−1)p+pj−1]µj−1 . (39)

From (39), each factorial moment µj ≡ µj(p,N) re-
mains finite, limN→∞ µj(p,N) ≡ µj(p), when p < pj ,
where pj is the positive root of

pj + jp− 1 = 0 . (40)

When p < pj , Eq. (39) yields the recurrence

µj(p) = j
1 + (j − 1)p+ pj−1

1− jp− pj
µj−1(p) ,

from which

µj(p) = j!λj(p), (41)

where we define the shorthand notation

λj(p) ≡
j∏
i=1

1 + (i− 1)p+ pi−1

1− ip− pi
.

Generally

µj =


j!λj(p) p < pj ,

j! Λj lnN p = pj ,

∼ N jp+pj−1 pj < p ≤ 1 ,

(42)

where Λj = [1 + (j − 1)pj + pj−1j ]λj−1(pj). As a con-

sistency check, notice for the case j = 1, equation (42)
reproduces the average degree µ1 = 〈k〉 = 2L(N)/N .

Combining (38) and (42), the number of stars asymp-
totically behaves as

Sj(N) =


λj(p)N p < pj ,

ΛjN lnN p = pj ,

∼ N jp+pj pj < p ≤ 1 .

(43)

Overall, the numbers of star subgraphs have a simpler
N dependence than cliques because the former undergo
a single transition for each j at an irrational value of pj
whose first few values are:

p2 =
√

2− 1 ,

p3 = −
[
2/(1 +

√
5)
]1/3

+
[
(1 +

√
5)/2

]1/3
,

p4 =

[√
2
√

2− 1− 1

]
/
√

2 ,

etc. From (40), the asymptotic behavior of the threshold
values are given by pj → 1/j − 1/jj+1 for j � 1. In
contrast, the phase transition points for complete-graph
motifs Km(N) are all rational and at the same location
for every m—only the number of transition points is vari-
able, with m− 1 transition points.

V. CLUSTERING

For intermediate values of p, we have seen that the
copying model gives rise to non-trivial motifs, and we
now investigate whether their appearance corresponds to
the emergence of significant network clustering, as might
be surmised visually in Fig. 2. There are two popular
measures of network clustering: (i) the transitivity, or
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global clustering coefficient, and (ii) the local clustering
coefficient (see e.g., [33]). The transitivity τG for a con-
nected, undirected, and simple (no multiple links between
two nodes) graph G is defined as

τG = 3× #(triangles in G)

#(twigs in G)
. (44)

Here, a twig is a node with two neighbors and thus looks
like: • • •. By definition, the transitivity is already
averaged over all network nodes.

To define the local clustering coefficient, first consider
an arbitrary node n of degree k in the network. The k
neighbors of n could potentially be connected by up to(
k
2

)
edges. The clustering coefficient of node n is then de-

fined as c(n)/
(
k
2

)
, where c(n) denotes the actual number

of connections between the neighbors of n. Finally, the
local clustering coefficient CC(N) is obtained by averag-
ing the node clustering coefficient over all nodes:

CC(G) =
1

N

∑
n∈G

c(n)(
k
2

) . (45)

If G is a tree, the above clustering coefficients vanish,
while if G is the complete graph, both clustering coeffi-
cients equal one (which explains the choice of the numer-
ical factor in the definition (44)). We now examine the
dependence of the clustering coefficients on the copying
probability. Each network realization leads to distinct
values for the clustering coefficients. In fact, the tran-
sitivity is non-self-averaging when p > 1

2 . In this dense
region, however, the transitivity vanishes as N → ∞ so
that the lack of self averaging does not pose any difficul-
ties. Conversely, for sufficiently small p, where the tran-
sitivity is non-zero in the N → ∞ limit, the transitivity
is self-averaging and is determined from

τ(N) ≡ 〈τG〉 =
3T (N)

S2(N)
, (46)

where T (N) is the average number of triangles and S2(N)
is the average number of twigs.

To determine the transitivity in the limit N → ∞,
we need the average number of triangles T (N), which
is given by Eq. (31a) and the average number of twigs
S2(N). The latter is given by specializing (43) to j = 2:

S2(N) =



2(1 + 2p)

(1−2p)(1−2p−p2)
N p < p2,

2
1 + 2p2
1− 2p2

N lnN p = p2,

∼ N2p+p2 p2 < p ≤ 1.

(47)

With these results, the transitivity is (Fig. 7)

τ(∞) =


3p(1− 2p− p2)

(1 + 2p)(1− 3p2)
0 ≤ p ≤ p2,

0 p2 < p < 1,

1 p = 1,

(48)
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FIG. 7: The transitivity τ(N) (solid symbols) and the local
clustering coefficient CC(N) (open symbols) versus the copy-
ing probability p for networks of different sizes. The solid
smooth curve is the analytical expression (48). The dotted
curves are guides to the eye.

where p2 =
√

2 − 1 is again the positive root of the
quadratic equation p2 + 2p− 1 = 0.

A perplexing feature of the transitivity is its non-
monotonic dependence on p, with a maximum deep in
the sparse regime (at p ≈ 0.2181). We also emphasize
that when p2 ≤ p < 1, the transitivity vanishes in the
thermodynamic limit N → ∞. However, the simula-
tions show that even for large networks the transitivity
is non-zero and approaches zero very slowly as N in-
creases (Fig. 7). This features can be understood theo-
retically. For instance, in the marginal case of p = p2,
Eq. (46), in conjunction with (31a) and (47), shows that
the transitivity exhibits a slow inverse logarithmic decay:
τ(N) ∼ (lnN)−1.

VI. DISTRIBUTION OF LINKS AND CLIQUES

Because a varying number of links are added to the
network each time a new node is introduced, the distri-
butions of the number of links and the number of cliques
are non-trivial quantities. Here we investigate the asymp-
totic properties of these link and clique distributions by
numerical simulations, as well as basic probabilistic and
extreme statistics arguments.

A. Link Distribution

Let P (L,N) be the probability that a network of N
nodes contains L links: P (L,N) = Prob(LN = L). As a
function of p, this distribution exhibits a wide range of
behaviors (Fig. 8). For p � 1, the distribution P (L,N)
is visually symmetric and Gaussian in appearance. As
p is increased, P (L,N) broadens considerably and is en-
hanced at large argument. Visually, P (L,N)) is maxi-
mally broad for p ≈ 0.7, while for larger p, the distribu-
tion progressively narrows and develops an enhancement
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at small argument.
Each time a new node is introduced, the number of

links increases by 1 + a, where the random variable a is
the number of copying links that are created (Eq. (4)). In
the sparse phase, where the degree distribution reaches a
stationary limit with the algebraic tail k−γ (Eq. (23)), the
increment in the number of links 1+a is also drawn from
this same distribution. For γ > 3, which occurs when
p <

√
2 − 1, the second moment 〈a2〉 is finite. Because

the first two moments of the link increment are finite, one
might anticipate that the central limit theorem applies,
from which P (L,N) would asymptotically be Gaussian.

10-4

10-2

100

102

0.2 0.6 1 1.4 1.8
L / L(N)

p = 0.1
p = 0.3
p = 0.5
p = 0.7
p = 0.9

P(
L

,N
)

FIG. 8: Semi-logarithmic plot of the distribution P (L,N) ver-
sus the scaled number of links for N = 104 and representative
values of p. Data collected over 106 realizations for p up to
0.7 and 105 realizations for p = 0.9.

However, the increments 1+a when each node is intro-
duced are not statistically independent. A particularly
fruitful copying event for a high-degree target node in-
creases the degrees of many neighboring nodes, which,
in turn, affects the increment in the number of links in
later node additions. Thus the growth in the number
of links is governed by a correlated random-walk process
and the central-limit theorem is not applicable to infer
the asymptotic form of P (L,N).

From Eqs. (2a) and (17), the ratio of the square
root of the variance to the average number of links,√
V (N)/L(N) decays as N−1/2 for p < 1

4 and slower

than N−1/2 for larger p. This behavior suggests that
p = 1

4 might be the point where P (L,N) changes in char-
acter from Gaussian to non Gaussian. We also test the
Gaussianity of P (L,N) by measuring its skewness, µ3/σ

3

where µn is the nth central moment and σ is the stan-
dard deviation of the probability distribution, and excess
kurtosis, µ4/σ

4 − 3. Both these quantities are zero for
the Gaussian distribution. Numerically, we find that for
p < 1

4 , the skewness and excess kurtosis do approach zero

as N → ∞, while for p > 1
4 , these quantities are both

non-zero as N →∞ (Fig. 9). These results indicate that
the distribution P (L,N) is non Gaussian for p > 1

4 .

When p > 1
2 , the standard deviation in the number of
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FIG. 9: Skewness (solid symbols) and excess kurtosis (open
symbols) of the link distribution as a function of N .
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FIG. 10: The scaled distribution of the number of links for
the copying model with p = 0.7.

links
√
V (N) grows as L, and this suggests that P (L,N)

approaches the single-parameter scaling form,

P (L,N) ' 1

L(N)
Φ(L) with L = L/L(N) , (49)

as confirmed in Fig. 10. In many processes that are gener-
ated by a random-walk-like process, the scaling function
Φ(L) has the limiting forms [48–50]

− ln Φ(L) ∼

{
Lδ+ L� 1,

(1/L)δ− L� 1 .
(50)

We now give heuristic arguments for the tail exponents
δ± by considering the extreme cases where L is: (i) as
large as possible, and (ii) as small as possible, and match-
ing the distribution P (L,N) in these extreme cases to the
hypothesized limiting form of the full distribution.

The maximal number of links Lmax = N(N − 1)/2
corresponds to generating a complete graph. The proba-
bility C(N) to construct a complete graph is

C(N) = p p2 p3 . . . pN−2 ' exp
(
1
2N

2 ln p
)
. (51)
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Each factor pn gives the probability that the addition
of a node to a complete graph of n + 1 nodes leads to
a complete graph of n + 2 nodes. In the dense regime
L(N) = A(p)N2p [see Eq. (2a)], so that the maximal
value of the scaling variable is Lmax = Lmax/L(N) ∼
N2(1−p). Using this value of Lmax and matching (50)
with (51), we obtain [N2(1−p)]δ+ ∼ N2, from which we
extract the large-L tail exponent

δ+ =
1

1− p
.

Conversely, the smallest possible L arises if no copy-
ing connections are made, so that the resulting network
is a tree with L = Lmin = N − 1. The probability
that no copying connections are made when a new node
attaches to a node of degree k is (1 − p)k. Thus the
probability to generate a tree is (1 − p)

∑
k, where the

sum runs over the degrees of all selected target nodes.
The upper bound (1−p)N−1 arises in the situation when
only leaves (nodes of degree 1) have been selected dur-
ing the network creation. Generally one still anticipates
that

∑
k ∼ N and hence ln Φ(Lmin) ∼ N ln(1 − p).

Since Lmin = Lmin/L(N) ∼ N1−2p the matching gives
[N2p−1]δ− ∼ N leading to the left tail exponent

δ− =
1

2p− 1
.

To summarize, the tails of the distribution of the num-
ber of links are given by

ln Φ(L) ∼ −

{
L1/(1−2p) L� 1 ,

L1/(1−p) L� 1 .
(52)

B. Triangle Distribution

One can also investigate the distributions of other
cliques. For triangles, for example, the corresponding
probability distribution is P (T,N) ≡ Prob(TN = T ).
We make that ansatz that in the dense phase the distri-
bution P (T,N) approaches the single-parameter scaling
form,

P (T,N) ' 1

T (N)
Ψ(T) with T = T/T (N) . (53)

As in the case of the link distribution, we postulate that
the large-argument tail of the scaled distribution has the
form ln Ψ(T) ∼ −Tδ for T � 1, which we expect will
be valid in the dense phase p > 1

2 . We now estimate
the large-argument tail of the triangle distribution by
again considering the extreme case where the number of
triangles is as large as possible. The largest possible value
of T arises when a complete graph is generated. In this
case, T = Tmax =

(
N
3

)
and using Eq. (31a) the scaling

variable T is given by

T ∼

{
N3−2p 1

2 < p < 2
3 ,

N3−3p2 p > 2
3 .

(54)

On the other hand, from Eq. (51), the probability to
construct a complete graph is given by exp( 1

2N
2 ln p).

This form matches (53) if the T � 1 tail of the triangle
distribution is given by

ln Ψ(T) ∼ −

{
T2/(3−2p) 1

2 < p < 2
3 ,

T2/(3−3p2) 2
3 < p < 1 .

(55)

This same line of reasoning can be straightforwardly
adapted to obtain the large-argument tail of the distri-
bution of m-cliques.

VII. SECOND-NEIGHBOR CONNECTIONS

Suppose that in addition to connecting to the neigh-
bors of the target with probability p, a new node also
connects to the second neighbors of the target with prob-
ability q. Such a mechanism naturally arises in social
media, such as Facebook, where we are sporadically en-
couraged to make connections to friends of our friends.
The surprising outcome of second-order linking is that
the probability that the network is complete with non-
zero, albeit may be very small, for any q > 0 probability.

To estimate this completeness probability, suppose
that as the network is complete when it containsN nodes.
Then the probability that the network remains complete
when the (N + 1)st is introduced is

C(N) =

N∑
k=0

B(N, k, p)
[
1− (1− q)k

]N−k
, (56)

where B(r, k, p) =
(
r
k

)
pk(1− p)r−k is the binomial prob-

ability. The factor B(r, k, p) gives the probability that
there are k first-neighbor connections from the new node,

while the remaining factor
[
1− (1−q)k

]N−k
gives the

probability that the remaining N − k nodes are linked
to the new node by second-neighbor connections.

We now argue that C(N) approaches to 1 sufficiently
quickly as N increases, so that the product of these fac-
tors converges to a non-zero value. In the large-N limit,
the binomial factor becomes a Gaussian distribution that
is sharply peaked about k = Np, with a width that
is of the order of

√
N . Over this range of k, the fac-

tor
[
1− (1−q)k

]N−k
in Eq. (56) is nearly constant. We

therefore replace k by its most probable value Np in the
above expression. After doing so, this factor can be writ-
ten as

C(N) '
[
1− (1− q)Np

]N(1−p)

' exp
{
−N(1− p) exp

[
Np ln(1− q)

]}
.

The probability that the network of N nodes is com-
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FIG. 11: Numerical evaluation of the probability for network
completeness, C(N) from Eq. (57), for fixed p = 1
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and rep-

resentative values of q. The saturation is obvious, C(∞) > 0
for all q > 0. The ultimate values of C(∞) can be very small
for small q.
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FIG. 12: The N dependence of the number of links for second-
neighbor copying with q = p2.

plete, C(N), is then given by

C(N) =
∏

j≤N−1

C(j)

' exp
{
−
∫ N

j(1−p) exp
[
j p ln(1−q)

]
dj
}
. (57)

Because the integral in the exponent converges as N →
∞, the completion probability is necessarily non-zero.

Numerical numerical evaluation of (57) shows that the
completion probability C(N) indeed converges to a non-
zero, albeit extremely small, value as N →∞. Figure 11
shows this evaluation for the case of p = 1

2 and vari-
ous q. A more relevant criterion is not defect-free com-
pleteness, but whether the number of links eventually
scales as N2/2, as in the complete graph. Simulations
show that for representative values of p and q, the av-
erage number of links L(N) initially grows linearly with
N but then crosses over to growing as N2/2 (Fig. 12).
Thus second-order copying generically leads to networks
that are effectively complete—eventually each individual
knows almost everybody. Moreover, Fig. 12 illustrates

the macroscopic differences between individual network
realizations. Thus copying leads to non-self-averaging in
the dense regime—unpredictable outcomes when start-
ing from a fixed initial state. This intriguing feature also
arises in empirical networks and related systems [41–43],
and intellectually originates with the classic Pólya urn
model [44–46].

VIII. OUTLOOK

We introduced and investigated the properties an ex-
ceedingly simple growing network model that is based on
the mechanism of node copying. Each new node that
joins the network attaches to a randomly selected tar-
get node and also to each of the neighbors of the target
with an independent copying probability p. In spite of its
deceptive simplicity, the structure of the network that re-
sults from this growth mechanism is extremely rich. One
of the fundamental outcomes of our copying model is that
a transition from a sparse to dense regime occurs as the
copying probability p increases beyond 1

2 . Dense net-
works are characterized by a mean degree that increases
with the number N of nodes in the network, a feature
that appears in a variety of empirical networks [3], as
well as by large fluctuations between individual network
realizations. For these reasons alone, it is important to
understand this densification process.

The bulk of our analysis focused on the analytical de-
scription of various global network quantities, such as
the N dependence of the average number of links L(N)
and the number of m-cliques, Km(N). We found that
L(N) ∼ N for p < 1

2 and L(N) ∼ N2p for p > 1
2 . Anal-

ogously, for triangles, we found that K3(N) ∼ N for

p < 1
2 , K3(N) ∼ N2p for 1

2 < p < 2
3 , and K3(N) ∼ N3p2

for p > 2
3 . For general m, there are m − 1 transitions

points where the N dependence of the m-clique density
suddenly changes. Given the richness of our predictions,
it would be worthwhile to reanalyze the densifying net-
works have have been observed empirically [3] to test
whether they can be accounted for within the framework
of the copying model.

Although a range of models based on the copying
mechanism have been proposed in the past and various
empirical results have been obtained, our investigation
work offers a systematic and relatively complete analyti-
cal derivation of their structural properties. Our analyt-
ical treatment provides insights on how to generate net-
works with controllable densities of specific motifs. Such
an initiative might aid in the design of controlled envi-
ronments to explore how the network topology affects the
diffusion of an innovation or the spread of a virus in a
social system.

The copying model could also serve as benchmark to
test the veracity and the robustness of various types of al-
gorithms, such as community detection [39, 40], by gener-
ating more realistic structural properties [51] than those
of random benchmarks [52]. For example, in stochastic



14

block models [53], edges are, by construction, condition-
ally independent random variables [54]. In contrast, in
growing models like the one presented here, the system
evolves organically and the presence of edges at one time
may cause the creation of edges at future times, as is the
case in real-world systems. Another basic unanswered
question is: What are the spectral properties of networks
generated by the copying model? This question is partic-
ular intriguing in the dense regime where there are large
fluctuations between individual network realizations.
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Appendix A: Exact behavior of L(N)

To determine the exact solution of Eq. (1), we first
solve the homogeneous version of this equation and use
this solution as an integrating factor. The homogeneous
solution is

N−1∏
j=1

(
1 +

2p

j

)
=

Γ(2p+N)

Γ(2p+ 1) Γ(N)
.

We thus we seek a solution to Eq. (1) of the form

L(N) = U(N)
Γ(2p+N)

Γ(2p+ 1) Γ(N)
.

This ansatz allows us to recast Eq. (1) into the recurrence

U(N + 1) = U(N) +
Γ(2p+ 1) Γ(N + 1)

Γ(2p+N + 1)
. (A1)

Solving Eq. (A1) subject to the initial condition U(1) = 0
(recall that L1 = 0), we find

L(N) =
Γ(2p+N)

Γ(N)

N∑
j=2

Γ(j)

Γ(2p+ j)
. (A2)

To determine asymptotic properties, we will often use the
well-known feature of the gamma function

Γ(2p+ x)

Γ(x)
→ x2p x� 1. (A3)

When p < 1
2 , the sum on the right-hand side of (A2)

diverges. Thus we can use (A3) to give

L(N)→ N2p
∑
j≤N

j−2p → N

1− 2p
,

leading to the result quoted in (2a). For p = 1
2 the exact

solution to (A2) is

L(N) = N(HN − 1) , (A4)

where HN =
∑

1≤j≤N j
−1 is the N th harmonic number.

From the asymptotics of the harmonic numbers [31] we
obtain

L(N) = N(lnN+γ−1)+
1

2
− 1

12N
+

1

120N3
+ . . . (A5)

where γ = 0.57721566 . . . is the Euler-Masceroni con-
stant. Keeping only the leading term in Eq. (A5) gives
the result quoted in (2a). For p > 1

2 , the sum on the
right-hand side of Eq. (A2) converges. Hence

L(N)→ N2p
∞∑
j=2

Γ(j)

Γ(2p+ j)
≡ A(p)N2p (A6)

with A(p) given by Eq. (2b). The sum on the right-hand
side of Eq. (A6) is found by specializing the identity [31]

∞∑
k=0

Γ(a+ k)

Γ(c+ k)
=

Γ(a)

(c− a− 1) Γ(c− 1)
(A7)

to a = 2, c = 2p+ 2.

Appendix B: Exact Behavior of T (N)

To find the amplitude C(p) quoted in (31a), we need to
solve the recurrence (30). Following the same approach
as that used for the number of links, we first solve the ho-
mogeneous version of (30) and use this the homogeneous
solution as an integrating factor

T (N) = R(N)
Γ(3p2 +N)

Γ(N)
(B1)

We use this substitution together with the exact solution
(A2) to recast (30) into recurrence

R(N + 1) = R(N) + 2p
Γ(2p+N)

Γ(3p2 + 1 +N)

N∑
j=2

Γ(j)

Γ(2p+ j)

which is solved to give

R(N) = 2p

N−1∑
j=2

Γ(j)

Γ(2p+ j)

N−1∑
n=j

Γ(2p+ n)

Γ(3p2 + 1 + n)
. (B2)

When p > 2
3 , both sums in (B2) are convergent. Hence

(B1) asymptotically becomes T (N) = R(∞)N3p2 , where
we additionally used (A3). Thus the amplitude C(p) in
Eq. (31a) is equal to R(∞); that is,

C(p) = 2p

∞∑
j=2

Γ(j)

Γ(2p+ j)

∞∑
n=j

Γ(2p+ n)

Γ(3p2 + 1 + n)
. (B3)

Using the identity (A7) twice, we compute the sums in
(B3) and arrive at the result for C(p) quoted in Eq. (31b).
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