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Abstract

We present a detailed study of the equilibrium properties and stochastic dynamic evolution of the

U(1)-invariant relativistic complex field theory in three dimensions. This model has been used to

describe, in various limits, properties of relativistic bosons at finite chemical potential, type II su-

perconductors, magnetic materials and aspects of cosmology. We characterise the thermodynamic

second-order phase transition in different ways. We study the equilibrium vortex configurations

and their statistical and geometrical properties in equilibrium at all temperatures. We show that

at very high temperature the statistics of the filaments is the one of fully-packed loop models. We

identify the temperature, within the ordered phase, at which the number density of vortex lengths

falls-off algebraically and we associate it to a geometric percolation transition that we characterise

in various ways. We measure the fractal properties of the vortex tangle at this threshold. Next,

we perform infinite rate quenches from equilibrium in the disordered phase, across the thermo-

dynamic critical point, and deep into the ordered phase. We show that three time regimes can

be distinguished: a first approach towards a state that, within numerical accuracy, shares many

features with the one at the percolation threshold, a later coarsening process that does not alter,

at sufficiently low temperature, the fractal properties of the long vortex loops, and a final approach

to equilibrium. These features are independent of the reconnection rule used to build the vortex

lines. In each of these regimes we identify the various length-scales of the vortices in the system.

We also study the scaling properties of the ordering process and the progressive annihilation of

topological defects and we prove that the time-dependence of the time-evolving vortex tangle can

be described within the dynamic scaling framework.
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I. INTRODUCTION

Three dimensional field theories with continuous symmetry breaking are relevant to de-

scribe a host of physical systems. These theories are used to model superfluid systems [1–4],

superconductors of type II [3, 5], nematic liquid crystals [6], magnetic samples [7], as well

as phase transitions in the early universe [8].

Phase transitions with spontaneous symmetry breaking lead to the formation of topolog-

ical defects of different kind: domain walls, strings or vortices, monopoles, etc. depending

on the type of symmetry that is broken. The topological defects we will be interested in

are line objects, be them vortices, disclinations or cosmic strings [9, 10]. These occur in,

e.g., a field theory with global U(1) symmetry in d = 3 dimensions. A field configuration

has a vortex centred at a given point in space if the field vanishes at this point and the

phase of the field changes by 2πn, with n a non-vanishing integer, along a contour around

this point. The field configuration deviates appreciably form the asymptotic value within

the finite-width core of the vortex. Therefore, thin tubes of the vanishing field, i.e. the

false vacuum, are enclosed within the core. This is most clearly understood in the context

of liquid crystals where the orientation of the molecules rotates by such an angle when fol-

lowing a closed path around a line disclination [6]. Line-type topological effects are also of

importance in the other branches of physics mentioned in the first paragraph. For example,

topological defects were predicted to form in the Universe via the Kibble mechanism and

strings were proposed to act as the source for density fluctuations at the origin of galaxy

formation and other potentially observable effects [8]. They also appear in quantum turbu-

lence [4, 11], complex-valued random wave fields [12, 13] used to model wave chaos [14] and

random optical fields [12, 13].

In this paper we study the statics and stochastic dynamics of a three-dimensional rela-

tivistic field theory with global U(1) symmetry. This model serves to describe, in different

limits, the physical systems mentioned in the previous paragraph as well as relativistic

bosons at finite chemical potential [15–18]. We mimic the coupling to an equilibrium bath

by adding dissipation and noise terms in the equations of motion. We use four slightly

different dynamic equations for the evolution of the fields that we call over-damped, un-

derdamped or relativistic - the Goldstone model, ultrarelativistic, and nonrelativistic - the

time-dependent Gross Pitaevskii model. The resulting Langevin-like equations do not con-
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serve the (complex) order parameter. Similar non-linear equations have been studied in the

literature [11, 19–22]. We show in an appendix that they lead to thermal equilibrium. We

solve them with numerical methods.

The equilibrium phase diagram and critical phenomenon of the 3d U(1) complex field

theory are well documented in the literature. In particular, the static critical exponents

have been estimated with Monte Carlo simulations combined with high temperature expan-

sions [23–26], and the ǫ expansion [23, 27]. Still, we revisit the equilibrium behaviour of the

system with our numerical algorithm with a double purpose. On the one hand, we validate

it by showing that it takes the system to thermal equilibrium and captures the expected

equilibrium properties. On the other, an important part of our analysis will be devoted to

the study of the vortex tangle in, but also out of, equilibrium. As the topological stable

strings must have no free ends and be closed in a space with periodic boundary conditions,

we will be talking about vortex loops. We use a cubic lattice discretisation of the field theory.

The construction of the vortex network on a lattice involves some ambiguity. Indeed, when

a branching point at which more than one vortex line enter and exit, some criterium has to

be used to decide upon the way the reconnection is done. We use here two well-documented

rules [28, 29]:

– The stochastic criterium (S) in which the vortex line elements are reconnected at random.

– The maximal criterium (M) in which the vortex line elements are reconnected in such a

way that one among the resulting vortex loops has the maximal possible length.

At each step of our analysis we compare the results obtained for the two rules. We pay

special attention to the geometric transition between a phase in which all loops are finite,

and another one in which some loops are infinitely extended. We also characterise in detail

the shape and statistics of the loops on both sides of the threshold and at the geometric

transition that, we show, does not coincide with the thermodynamic instability of the U(1)

complex field theory. We relate the statistical properties of the closed loops in their extended

phase to the one of fully-packed loop models in which each link on a lattice is covered by

part of one and only one loop [30]. These configurations will be the initial states for the

dynamics.

The relaxation dynamics across a second order phase transition proceeds by coarsening

and annihilation of topological defects [31, 32]. Analytic approximations to characterize the

scaling properties of the relaxation dynamics of models with continuous symmetry, after
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an infinitely rapid quench into the ordered phase, were developed in [33–37], see [31] for a

review. The dynamic exponent zd = 2 was predicted analytically [33–37], and a value close

to this analytic prediction was measured numerically [38–40] and experimentally in bulk

nematic liquid crystals [41, 42] from the analysis of space-time correlation functions and

dynamic structure factors. As far as we know, there is no detailed study of the dynamics

from the point of view of the topological defects themselves and we also develop it here.

Some details about the methodology that we use to investigate this problem are in order.

In the analysis of the phase transition and static vortex statistics we ensure that the system

reaches thermal equilibrium. In the analysis of the evolution after a deep instantaneous

quench below the ordering transition temperature we simply let the system evolve from a

chosen initial state under subcritical conditions. The vortex string network already present

in the initial state evolves after the quench and we characterise its evolution in full detail.

We identify various dynamic regimes and we explain what determines them in terms of the

changing vortex configurations. We base this analysis on the work in [43–54] where the

stochastic ordering dynamics of 2d spin models were analysed from a geometric perspective.

The paper is organised as follows. In Sec. II we introduce the model. In Sec. III we

describe the equilibrium properties and phase transition in the model; it can be read in-

dependently from the rest of the paper. In Sec IV we discuss the properties of the vortex

network in equilibrium. Section V is devoted to the analysis of the fast quench dynamics.

Finally, in Sec. VI we present our conclusions and some lines for future research. A short

account of some of our results appeared in [55].

II. THE MODEL

The Lagrangian density for relativistic bosons with finite chemical potential reads [56],

in terms of a scalar complex field ψ and its time derivative ψ̇ = ∂tψ,

L[ψ̇(x, t), ψ̇∗(x, t), ψ(x, t), ψ∗(x, t)]

=
1

c2
|ψ̇(x, t)|2 + iµ{ψ∗(x, t)ψ̇(x, t)− ψ̇∗(x, t)ψ(x, t)} − |∇ψ(x, t)|2

+ gρ|ψ(x, t)|2 − g

2
|ψ(x, t)|4,

(1)

where c is the speed of light and g and ρ are real parameters, g, ρ ∈ R, in the potential

energy density with Mexican hat form and a degenerate circle of minima at |ψ|2 = ρ. The
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parameters µ ∈ R and ρ receive different interpretations in different communities. The term

proportional to µ breaks the particle-antiparticle symmetry and in the high-energy literature

it is associated to a chemical potential, while ρ fixes the vacuum expectation value of the

U(1) symmetry breaking. In the condensed matter literature instead the chemical potential

is associated to ρ that fixes the particle density |ψ|2 in the system and µ is related to the

mass of the particles. The Lagrangian is real, L∗ = L.

A. Dynamic equation and vortex solutions

The equation of motion for ψ follows from the Euler-Lagrangian equation and reads

−
(

1

c2
∂2

∂t2
−∇2

)

ψ + 2iµψ̇ ≡ −�ψ + 2iµψ̇ = g(|ψ|2 − ρ)ψ. (2)

We consider two opposite limits: µ→ 0 and c→ ∞. In the former case, the complex field ψ

does not change under the Lorentz transformation (9), and we call it the “ultrarelativistic”

limit. The latter case is “nonrelativistic”. Under these two limits, Eq. (2) becomes

−�ψ = g(|ψ|2 − ρ)ψ, µ→ 0, (3a)

2iµψ̇ = −∇2ψ + g(|ψ|2 − ρ)ψ, c→ ∞, (3b)

which are known as the Goldstone and the Gross-Pitaevskii models respectively. The latter

describes the dynamics of gaseous Bose-Einstein condensates [2]. The former, on the other

hand, describes the dynamics of condensates in optical lattices which are close to the critical

point to the Mott insulator phase with integer fillings [57].

The static solutions to (2) that minimize the energy are ψ =
√
ρ eiχ with χ a constant.

The choice of χ breaks the U(1) symmetry. Vortex static solutions are also supported

by this equation [11, 21]. One such z-directed string is given by the axisymmetric field

configuration ψ(x) = f(r)einθ with f(r) a smooth function of r, the radial direction on the

plane perpendicular to the tube. It takes the extreme values f(0) = 0 and f(r → ∞) =
√
ρ

and varies over a typical length scale ≃ (gρ)−1/2 that determines the core of the vortex. n

is the winding number.

B. Symmetries
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The Lagrangian (1) has a large number of symmetries even in the presence of the term

accompanied by the parameter µ. We recall that a symmetry is a transformation under

which the Lagrangian change is just a total derivative, hence the invariance of the action

apart from possible border terms. These symmetries induce eleven Noether currents with

their associated conserved charges, as we now recall.

To start with, the theory is global U(1)-invariant as the Lagrangian density remains

unchanged under the global phase shift, ψ′(x, t) = eiδψ(x, t), and accordingly for ψ∗, with δ

a space and time independent real parameter. The associated charge is the particle number

Qδ(ψ̇, ψ̇
∗, ψ, ψ∗) =

∫

d3x

[

2µ|ψ|2 − i

c2
(ψ̇∗ψ − ψ∗ψ̇)

]

≡
∫

d3x qδ(ψ̇, ψ̇
∗, ψ, ψ∗) . (4)

This is an ‘internal’ symmetry.

Next come ten ‘space-time symmetries’ of the theory. The invariance of L under a

infinitesimal time-space translation t 7→ t + δt and x 7→ x + δx that changes the field as

ψ(x, t) 7→ ψ(x, t)−δt ψ̇(x, t)−δx·∇ψ(x, t) induces the conservation of the energy functional

E(ψ̇, ψ̇∗, ψ, ψ∗) =

∫

d3x

[

|ψ̇|2
c2

+ |∇ψ|2 − gρ|ψ|2 + g

2
|ψ|4

]

≡
∫

d3x e(ψ̇, ψ̇∗, ψ, ψ∗) (5)

and the momentum vector

P (ψ̇, ψ̇∗, ψ, ψ∗) =

∫

d3x

[

1

c2

(

ψ̇∗
∂ψ

∂xa
+
∂ψ∗

∂xa
ψ̇

)

+ iµ

(

ψ∗ ∂ψ

∂xa
− ∂ψ∗

∂xa
ψ

)]

≡
∫

d3x p(ψ̇, ψ̇∗, ψ, ψ∗) (6)

under the time evolution in Eq. (2).

Other symmetries of the Lagrangian are space rotations, xa 7→ Rabxb with R an orthogonal

matrix. Under such transformations the field changes as ψ(x, t) 7→ ψ(R−1
ab xb, t), a = 1, 2, 3,

and this gives rise to the conservation of the angular momentum

Qab(ψ̇, ψ̇
∗, ψ, ψ∗) =

∫

d3x
[

pa(ψ̇, ψ̇
∗, ψ, ψ∗)xb − pb(ψ̇, ψ̇

∗, ψ, ψ∗)xa

]

(7)

where the momentum density components pa are defined in Eq. (6).

The theory is also invariant under a Lorentz boost in a generic direction

t′ = γc

(

t− v · x
c2

)

, x′ = x− v

[

(1− γc)

v2
(v · x) + γct

]

, (8)
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with Lorentz factor γc = (1− v2/c2)−1/2, if the field transforms as

ψ(x, t) 7→ exp

{

− iµc2
[

(1− γc)t+
γcv · x
c2

]}

ψ(x, t) . (9)

The inverse Lorentz boosts are t = γc(t
′+v ·x′/c2) and x = x′+v [γct

′ − (1− γc)(v · x′)/v2]

and these imply

∂t′ = γc(∂t + v · ∇), ∇′ = ∇− v

[

(1− γc)

v2
(v · ∇) +

γc
c2
∂t

]

. (10)

For Lorentz boosts along the three Cartesian coordinates the conserved quantities read

Q0a(ψ̇, ψ̇
∗, ψ, ψ∗)=

∫

d3x
[

pa(ψ̇, ψ̇
∗, ψ, ψ∗)t+ e(ψ̇, ψ̇∗, ψ, ψ∗)

xa
c2

+ µqδ(ψ̇, ψ̇
∗, ψ, ψ∗)xa

]

(11)

Summarizing, there are eleven conserved quantities: particle number, energy, three mo-

mentum components, three angular momentum components, and three conserved charges

associated to the Lorentz boosts.

C. Statistical properties

Next, we consider the statistical properties of the system described by the U(1) complex

field at finite temperatures. In canonical equilibrium the statistical average of a real finite

functional of the fields f = f(ψ, ψ∗, ψ̇, ψ̇∗) reads

〈f〉eq ≡
∫

Dψ̇ Dψ̇∗ Dψ Dψ∗ f
e−E/T

Z
,

Z =

∫

Dψ̇ Dψ̇∗ Dψ Dψ∗ e−E/T ,

(12)

where T is temperature. We set the Boltzmann constant to kB = 1 in this paper. When f

depends only on ψ and ψ∗, i.e., f(ψ, ψ∗, ψ̇, ψ̇∗) → f(ψ, ψ∗), Eq. (12) can be simplified to

〈f〉eq =
∫

Dψ Dψ∗ f
e−E0/T

Z0
,

Z0 =

∫

Dψ Dψ∗ e−E0/T ,

(13)

with

E0(ψ, ψ
∗) =

∫

d3x

{

|∇ψ|2 − gρ|ψ|2 + g

2
|ψ|4

}

. (14)
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These are the kind of functionals that we consider in this paper, unless we specify a different

dependence.

At T = 0 the ground state is |ψ|2 = ρ and the U(1) symmetry of the energy functional

E0 for the phase shift of ψ is spontaneously broken. We therefore expect the temperature

at which the spontaneous breaking of this symmetry occurs to be the one for Bose-Einstein

condensation.

A simple and efficient method to sample the thermal averages defined above is to use the

overdamped Langevin equation

γLψ̇ = −δE0

δψ∗
+
√

γLT (ξ1 + iξ2) = ∇2ψ − g(|ψ|2 − ρ)ψ +
√

γLT (ξ1 + iξ2),

〈ξa(x, t)〉 = 0, 〈ξa(x, t)ξb(x′, t′)〉 = δ(t− t′)δ(x− x′)δa,b,

(15)

that ensures

1

t

∫ t

0

dt′ f [ψ(x, t′), ψ∗(x, t′)]
t→∞−→ 〈f〉eq. (16)

An alternative dynamic approach uses, instead of the energy functional in Eq. (5), the

Hamiltonian associated to the Lagrangian density (1)

H(ψ, ψ∗, φ, φ∗) =

∫

dx

{

c2(φ∗ − iµψ∗)(φ+ iµψ) + |∇ψ|2 − gρ|ψ|2 + g

2
|ψ|4

}

= E0(ψ, ψ
∗) + c2

∫

dx (φ∗ − iµψ∗)(φ+ iµψ)

(17)

with the generalized momentum φ

φ =
∂L
∂ψ̇∗

=
ψ̇

c2
− iµψ, (18)

and its complex conjugate φ∗. The underdamped Langevin equation

φ̇ = − δH

δψ∗
− γLc

2(φ+ iµψ) +
√

γLT (ξ1 + iξ2) (19)

becomes

−�ψ + (2iµ− γL)ψ̇ = g(|ψ|2 − ρ)ψ −
√

γLT (ξ1 + iξ2). (20)

See Refs. [58] for an alternative derivation of the dissipative term proportional to −γLψ̇. In
the ultrarelativistic and nonrelativistic limits, the Langevin equation (20) approaches

−�ψ = g(|ψ|2 − ρ)ψ + γLψ̇ −
√

γLT (ξ1 + iξ2), (21a)

(2iµ− γL)ψ̇ = −∇2ψ + g(|ψ|2 − ρ)ψ −
√

γLT (ξ1 + iξ2). (21b)
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Equation (21a) is the conventional underdamped Langevin equation corresponding to the

overdamped Langevin equation (15), whereas Eq. (21b) is known as the stochastic Gross-

Pitaevskii equation describing Bose-Einstein condensates at finite temperatures [17]. The

Hamiltonian (18) and the Langevin equation (20) give the same ensemble averages for equi-

librium states as those obtained using Eqs. (5) and (14),

〈f〉eq =
∫

Dψ Dψ∗ DφDφ∗ f
e−H/T

ZH
=

∫

Dψ Dψ∗ f
e−E0/T

Z0
,

ZH =

∫

Dψ Dψ∗ DφDφ∗ e−H/T ,

(22)

see App. A.

Although the above discussion applies in all dimensions, we concentrate in three-

dimensional systems in this paper. We close this section by making explicit the numerical

procedure that we used to solve eqs. (15), (20), (21a), and (21b) numerically. We first collect

time and space coordinates into a four component vector that we call x = (x0, x1, x2, x3)

with x0 = t and x = (x1, x2, x3) the space-like components. We discretize x using a

different mesh in the space and time directions: x1 = j∆x with j = 0, . . . , L − 1,

x2 = k∆x with k = 0, . . . , L − 1, x3 = l∆x with l = 0, . . . , L − 1, and x0 = i∆t with

i = 0, . . . We define the complex field ψ on the discretised space-time as ψx ≡ ψ(t,x) with

x ≡ (i∆t, j∆x, k∆x, l∆x). We call ê0, ê1, ê2, ê3 the orthonormal basis of unit vectors on the

vector x. The spatial gradient then becomes

|∇ψ|2 →
3

∑

a=1

|ψx − ψx−∆xêa|2
(∆x)2

, (23)

∇2ψ →
3

∑

a=1

ψx+∆xêa + ψx−∆xêa − 2ψx
(∆x)2

, (24)

and the spatial integral
∫

dx → (∆x)3
∑

j,k,l, with ∆x the lattice spacing. We use periodic

cubes with linear sizes L = 40, 60, 80, and 100. For the time evolution, we use the lowest-

ordered stochastic Runge-Kutta method for Eq. (15),

ψ(1)x = ψx − ∂E0[ψx, ψ
∗
x]

∂ψ∗
x

∆t

γL
+

√

T∆t

γL
(∆Wx,1 + i∆Wx,2),

ψ(2)x = ψx − ∂E0[ψx, ψ
∗
x]

∂ψ∗
x

∆t

2γL
+

√

T∆t

γL
(∆Wx,1 + i∆Wx,2),

ψx+∆tê0 = ψ(2)x −
∂E0[ψ(1)x, ψ

∗
(1)x]

∂ψ∗
(1)x

∆t

2γL
,

(25)
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and for Eq. (21b),

ψ(1)x = ψx +
∂E0[ψx, ψ

∗
x]

∂ψ∗
x

∆t

2iµ− γL
+

√

γLT∆t

2iµ− γL
(∆Wx,1 + i∆Wx,2),

ψ(2)x = ψx +
∂E0[ψx, ψ

∗
x]

∂ψ∗
x

∆t

2(2iµ− γL)
+

√

γLT∆t

2iµ− γL
(∆Wx,1 + i∆Wx,2),

ψx+∆tê0 = ψ(2)x +
∂E0[ψ(1)x, ψ

∗
(1)x]

∂ψ∗
(1)x

∆t

2(2iµ− γL)
,

(26)

and the lowest-ordered symplectic method for Eq. (21a)

ψx+∆tê0 = ψx + c2φx∆t,

φx+∆tê0 = φx −
(

∂E0[ψx, ψ
∗
x]

∂ψ∗
x

+ c2γLφx

)

∆t+
√

γLT∆t(∆Wx,1 + i∆Wx,2),
(27)

and for Eq. (20),

ψx+∆tê0 = ψx + c2φx∆t,

φx+∆tê0 = φx −
{

∂E0[ψx, ψ
∗
x]

∂ψ∗
x

+ c2(γL − 2iµ)φx

}

∆t

+
√

γLT∆t(∆Wx,1 + i∆Wx,2),

(28)

with 〈∆Wx,a〉 = 0 and 〈∆Wx,a∆Wx′,b〉 = δx,x′δa,b. As regards the numerical parameters,

we use c = 1, ρ = 1, g = 1, µ = 0.5, γL = 1, ∆x = 1 in all cases, and ∆t = 0.005 for Eq. (25)

and ∆t = 0.01 for Eqs. (26), (27), and (28). The number of spatial grid points is N = L3.

With these parameters, space and time are measured in units of the equilibrium correlation

length at T = 0 in the mean-field approximation, x0 ≡ 1/
√
gρ, and the corresponding

correlation time t0 ≡ γL/x
2
0. The order parameter is further measured in units of

√
ρ with

ρ the zero-temperature density. Then the velocity c, parameter µ, temperature T , and the

Langevin noise ξa are measured in units of x0/t0, t0/x
2
0, x

−2
0 , and

√

ρ/t0, respectively.

III. EQUILIBRIUM PROPERTIES

In this section, we focus on the equilibrium properties attained by the dynamical model.

As we will show, this model undergoes a second order phase transition at a critical point

below which the U(1) continuous symmetry is spontaneously broken. We confirm numer-

ically that the universality class it the same as the one of the usual U(1) complex field

theory [59–61]. This critical phenomenon has been studied with equilibrium methods in the
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past and the best estimates for the critical exponents are [24]

α = −0.0151(3), ν = 0.6717(1), η = 0.0381(2),

γ = 1.3178(2), β = 0.3486(1), δ = 4.780(1).
(29)

These have been obtained with finite-size scaling of Monte Carlo data for system sizes up

to L = 128 and high-temperature expansions. The ǫ-expansion RG method yields [27]

α = −0.011(4), ν = 0.6703(15), η = 0.0354(25),

γ = 1.3169(20), β = 0.3470(16), δ = 4.795(14).
(30)

These values are compatible with the ones given above within numerical error and also with

other numerical evaluations [26]. Since, the spontaneous breaking of the U(1) symmetry is

isomorphic to the one in the 3d XY -spin model, these critical exponents are expected to

be the same as the ones of this spin model. Experimental measurements in the superfluid

transition of 4He yield α = −0.0127(3) [62]. Other experimental results for this and other

critical exponents can be found in [23]. The dynamic critical exponent zeq was estimated

to be zeq ≃ 2.1 for periodic boundary conditions with numerical methods in [63, 64], see

also [61] for the RG prediction, and we will further discuss it below.

Our aim in this section is twofold. On the one hand, we test whether the three dynamic

formulations, given by the Langevin equations (15), and (20) in its two limits (21), capture

the equilibrium and critical phenomena correctly. In order to avoid long relaxation times and

reach equilibrium more quickly, we start all simulations from the completely ordered initial

state ψ(t = 0) =
√
ρ. We estimate the relaxation time to be τ . 900 for the parameters

explored, and we verify that the system reaches its asymptotic regime for t > 1000, see

Fig. 8. On the other hand, we characterize the equilibrium configurations at off-critical

and critical temperatures. We confirm that the percolation of the longest vortex loops in

equilibrium occurs at a temperature that is within the ordered phase and different from the

critical one [28, 29, 55]. We pay special attention to the geometric and statistical properties

of the vortex lines at the critical percolation point, as these are going to be of relevance to

our analysis of the relaxation dynamics. We also distinguish the statistical and geometrical

properties of the string networks obtained with the two reconnection conventions.

In this section, we perform a double average of data: we take an ensemble average by

taking the mean over 100 noise realisations for the same initial state ψ(t = 0) =
√
ρ,

and we average over 3000 different times at t = (1000 + i)∆t with 1 ≤ i ≤ 3000 for each

12



dynamical run. The total number of data contributing to each data point shown is, therefore,

100 × 3000 (although not all these data points are independent, especially near Tc where

the time correlation is of the order of 800, see Fig. 8). We write this ensemble average as

〈· · · 〉stat and we use this as the equilibrium ensemble average 〈· · · 〉eq. The lattice linear sizes
used are comparable to the ones utilized in Monte Carlo studies of the phase transition and

critical phenomena [24].
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FIG. 1. (Color online.) Temperature dependence of the order parameter m. (a) Comparison be-

tween the estimate for m(T ) obtained with different stochastic dynamics: overdamped Langevin

equation (15) (over), underdamped Langevin equation (20) (rel), ultrarelativistic limit of the under-

damped Langevin equation (21a) (ultrarel), and nonrelativistic limit of the underdamped Langevin

equation (21b) (nonrel). Systems with L = 100 linear size are used in all cases. (b) Finite size de-

pendence of m(T ) as obtained from the underdamped Langevin equation (20). In both panels, we

plot with a solid line the critical decay of the order parameter, m(T ) ∝ (Tc−T )β, at temperatures

T < Tc with Tc = 2.26 and β = 0.347. For details on these values see Figs. 2 and 4 (a), and the

corresponding discussion. In the inserts: zoom over the critical region.

A. The order parameter

There are three well-known definitions of the order parameter m for the spontaneous

breaking of the U(1) symmetry. In the usual one is statistical physics, m is calculated as

m ≡ limh→0〈ψh〉eq by applying a perturbation h that couples linearly to the field. In the

13



case of the model with Hamiltonian H this is achieved as

H = E0(ψh, ψ
∗
h) + c2

∫

dx {(φ∗
h − iµψ∗

h)(φh + iµψh)− h(ψh + ψ∗
h)}, (31)

where the sub-index h recalls that the complex fields ψh and φh are computed under the

external field h. The resulting Langevin equation becomes

−�ψh + (2iµ− γL)ψ̇h = g(|ψh|2 − ρ)ψh − h−
√

γLT (ξ1 + iξ2). (32)

In the context of Bose-Einstein condensation and superfluidity, however, the external field

h does not find an easy implementation and, instead, the following definition is considered:

m ∝
√

|C(r → ∞)|, C(r) =

〈

1

4πr2

∫

dΩr=r

∫

dx ψ∗(x)ψ(x+ r)

〉

eq

, (33)

where the integral 1/(4πr2)
∫

dΩr=r is the average over the solid angle at r = r. Numerically,

m is computed as m ∝
√

|C(r = L/2)|, and in order to improve the numerical accuracy of

the measurement of the integral over the spherical surface, 1/(4πr2)
∫

dΩr=r, we average

over all lattice sites falling within the shell [|r|, |r|+ 1). This definition corresponds to the

off-diagonal long-range order limr→∞〈ψ†(x)ψ(x+ r)〉 for the presence of the Bose-Einstein

condensate in a quantum-boson system.

In many numerical works, the definition

m ≡
〈∣

∣ψ
∣

∣

〉

eq
, ψ =

1

L3

∑

j,k,l

ψx. (34)

is instead used due to its numerical simplicity.

All definitions of m should give the same temperature dependence for sufficiently large

system size L. We adopt the definition (34) in this paper.

Figure 1 shows the temperature dependence of the order parameter, m, for the sponta-

neous breaking of the U(1) symmetry for different Langevin equations [Fig. 1 (a)] and for

different system sizes L [Fig. 1 (b)]. Different Langevin equations give the same ensemble

averages, within numerical accuracy. From this figure, we roughly calculate that the spon-

taneous symmetry breaking occurs at Tc ≃ 2.3 in the L→ ∞ limit. The dotted blue lines in

both panels represent the critical behaviour, m(T ) ≃ |T − Tc|β with Tc = 2.26 [see Eq. (36)]

and β = 0.347. They are very close to the numerical results. In the inset we zoom over the

critical region.

We end with a note on the difference between m and the particle number observable,

L−3
∑

jkl |ψx|, that is different from zero at all T (see the inset in Fig. 1 in [55]).
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B. The critical temperature

The critical temperature can be better evaluated from the Binder ratio, U1, and the ratio

of correlation functions, U2,

U1 ≡
〈∣

∣ψ
∣

∣

4〉

eq
〈∣

∣ψ
∣

∣

2〉2

eq

, U2 ≡
C(r = L/2)

C(r = L/4)
. (35)

U1 and U2 are expected to take fixed values independently of the system size L at the critical

temperature Tc.
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FIG. 2. (Color online.) Temperature dependence of the Binder ratio, U1, and the ratio of the cor-

relation function at different distances, U2, as obtained from the underdamped Langevin equation

(20), for different system sizes L given in the keys.

Figure 2 shows the temperature dependence of U1 (a) and U2 (b) obtained from the

underdamped Langevin equation (20). The estimated critical temperature is

Tc = 2.26± 0.02 . (36)

As well as for m, the other Langevin equations (15), (21a), and (21b) give almost the same

values of U1, U2 and Tc (not shown).

We also calculated the susceptibility

χ ≡
〈∣

∣ψ
∣

∣

2〉

eq
−
〈∣

∣ψ
∣

∣

〉2

eq

T
(37)

and the specific heat

C ≡ d〈E0〉eq
dT

, (38)
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FIG. 3. (Color online.) Temperature dependence of the susceptibility, χ, the two definitions of the

specific heat, C1 and C2, and the correlation length, ξeq, for a system with linear size, L = 100,

and the four stochastic dynamic equations. Inserts: zoom over the critical region.

that assuming the equilibrium ensemble average shown in Eq. (14), can also be written as

C =
〈E2

0〉eq − 〈E0〉2eq
T 2

. (39)

We implemented these definitions numerically as

C1 ≡
〈E2

0〉stat − 〈E0〉2stat
T 2

, C2 ≡
〈E0(T +∆T )〉stat − 〈E0(T −∆T )〉stat

2∆T
. (40)

The equilibrium correlation length ξeq was calculated by assuming that the connected corre-

lation length decays exponentially as C(r)−m2 → e−r/ξeq, from the corresponding small-k

behaviour or the structure factor

S(k) ≡
〈

1

4πk2L3

∫

dΩk=k |ψ̃(k)|2
〉

eq

, (41)
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with ψ̃(k) =
∫

dx ψ(x)e−ik·x the Fourier transformation of the field, estimated numerically

from

S(k = 2π/ξeq)

S(k → 0)
= 10−1, S(k → 0) ≡ 2S(∆k)− S(2∆k), (42)

where S(k → 0) is the linear interpolation from S(∆k) and S(2∆k) to the value at k = 0

with ∆k = 2π/L.

The panels (a)-(d) in Fig. 3 show the temperature dependences of χ, C1, C2, and ξeq for

L = 100. Their values are also almost independent of the type of Langevin equation used

even close to criticality at T ≃ Tc. The two specific heats C1 and C2 are almost the same

except for the slightly more jagged shape of C1. We note that both C1 and C2 converge to

the finite values C1 ≃ 1 and C2 ≃ 1 in the zero temperature limit, because of the continuous

U(1) symmetry breaking and the resulting Nambu-Goldstone modes. This unphysical result

can be cured by taking into account quantum effects.

C. Critical scaling

Finite-size scaling [65] states that m/L−β/ν , χ/Lγ/ν , C1/L
α/ν , C2/L

α/ν , and ξeq/L should

be universal functions of L1/ν [(T − Tc)/Tc] independently of L near the critical tempera-

ture Tc.

Figures 4 (a)-(d) show the expected universal functions for m, χ, C1, and ξeq, where we

used the critical exponents obtained from the ǫ-expansion [27]: α = −0.011, β = 0.3470,

γ = 1.3169, and ν = 0.6703. The scaling of m, χ, and ξeq are very satisfactory. The scaling

of C1 is not as good because |α| is so small that the logarithmic correction to the power-law

behaviour cannot be neglected, i.e., C1 behaves as C1 ∝ |T−Tc|−α only at temperatures very

close to Tc and it behaves as C1 ∝ log |T −Tc|+const otherwise. The logarithmic behaviour

of the specific heat near the critical temperature has been confirmed in liquid 4He [1].

The correlation function C(r)/L−1−η is also expected to be a universal function on r/L at

the critical temperature Tc. We can see this universality in Fig. 5 with η = 0.038, together

with the algebraic and complete analytic forms including the exponential cut-off due to the

finite size of the sample.
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FIG. 4. (Color online.) Finite-size scaling of the order parameter, m, the susceptibility, χ, the

specific heat, C1, and the correlation length, ξeq, all obtained from the underdamped Langevin

equation (20). The system sizes and colour code are given in the key. Inserts: zoom over the

critical region.

We next consider the helicity modulus Υ defined as [66]

Υ ≡ lim
∆→0

F (∆)− F (0)

∆2
, (43)

where F (∆) is the free energy −T logZ0(∆) and Z0(∆) the partition function under the

twisted boundary condition along x-direction:

ψ(t, x+ L, y, z) = ψ(t, x, y, z)ei∆. (44)

We calculated Z0 = 〈e−E0/T 〉stat and we used ∆ = 0.01/L. We confirmed that Υ takes almost

same value for ∆ = 0.02/L and ∆ = 0.005/L.

Figure 6 (a) and (b) shows the dependence of Υ on T for different Langevin equations

[Fig. 6 (a)] and different system sizes L [Fig. 6 (b)]. The helicity modulus is not affected by
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FIG. 5. (Color online.) Finite-size scaling of the correlation function C(r) near the critical temper-

ature Tc = 2.26 obtained using the underdamped Langevin equation (20). The dashed line is the

analytic prediction (r/L)−1−η with η = 0.038 and the dotted line includes the exponential cut-off.
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FIG. 6. (Color online.) Temperature dependence of the helicity modulus Υ. (a) Data for different

Langevin equations with L = 100. (b) Data for different system sizes L as obtained from the

underdamped Langevin equation (20). Inserts: zoom over the critical region.

the Langevin dynamics. Compared to the order parameter m shown in Figs. 1 (a) and (b),

Υ has less dependence on the system size L and completely vanishes around the critical

temperature T ≃ Tc.

The Noether current for the phase shift ψ → ψeiδ given from the Lagrangian (1) is

jµ = i

{

∂L
∂(∂µψ∗)

ψ∗ − ∂L
∂(∂µψ)

ψ

}

= 2f 2

(

µ− θ̇

c2
,∇θ

)

, (45)

where f and θ are defined from ψ = feiθ. Equation (45) indicates that the twisted phase ∇θ
induces the current density 2f 2∇θ for the charge density 2f 2(µ− θ̇/c2). For non-zero µ, µf 2
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and f 2∇θ are regarded as the density and the supercurrent density of bosons respectively. A

non-vanishing helicity modulus Υ induced by the twisted phase implies a finite free-energy

cost for a finite supercurrent and the system enters the superfluid phase. Our results in

Fig. 6 show that superfluidity appears at the same critical temperature Tc ≃ 2.26 as the

one for the spontaneous symmetry breaking. In the ultrarelativistic limit, µ = 0, the charge

density induced by the twisted phase is the conventional Noether charge −f 2θ̇/c2, and there

is no relationship between the helicity modulus Υ and superfluidity. The helicity modulus

Υ is also expected to show critical behaviour characterised by the Josephson scaling relation

Υ ∝ (Tc − T )2β−νη at T < Tc. For finite sizes one therefore expects universal scaling

of Υ/L−(2β−νη)/ν as a function of (T − Tc)/L
−1/ν independently of L. We can see this

universality in Fig. 7.

0

10

20

30

40

50

60

70

80

−400 −300 −200 −100 0 100 200 300 400

0

5

10

15

20

25

−80 −40 0 40 80

Υ
/L

−
(2
β
−
ν
η
)/
ν

{(T − Tc)/Tc}/L−1/ν

L = 40
60
80
100

∝ (Tc − T )2β−νη

FIG. 7. (Color online.) Finite-size scaling of the helicity modulus Υ obtained from the under-

damped Langevin equation (20). The sizes used are given in the key and the dashed line represents

the critical behaviour close to the transition, see the text for a discussion.

D. The equilibrium relaxation time

The equilibrium relaxation time τ is defined as

〈

|ψ(t)|2
〉

relax
−
〈

|ψ|2
〉

stat

ρ

t→∞−→ e−t/τ , ψ(t = 0) =
√
ρ, (46)

where 〈f(t)〉relax is the noise average of f(t) at time t of evolution from the fully ordered

initial state ψ(t = 0) =
√
ρ.
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Being a dynamic parameter, the numerical τ can depend on the type of Langevin equation

used [Eqs. (15), (20), (21a), and (21b)]. We measure τ numerically by using the criterium

〈

|ψ(t = τ)|2
〉

relax
−

〈

|ψ|2
〉

stat

ρ
= 10−3. (47)

Figure 8 shows the dependence of the relaxation time τ for different Langevin equations

and L = 100 (a), and for different system sizes and one dynamic rule (b). The relaxation

time τ for the overdamped Langevin equation (15) and the ultrarelativistic limit of the

underdamped Langevin equation (21a) with µ = 0, and those for the underdamped Langevin

equation (20) and its nonrelativistic limit (21b) with µ = 1 take similar values, and the latter

ones are larger than the former ones.

We can evaluate τ within an approximation in which the noise term is “renormalised”

into the linear term originating in the potential energy by the replacement ρ → m2(T ).

Equation (20) then becomes

−�ψ + (2iµ− γL)ψ̇ = g(|ψ|2 −m2)ψ, (48)

and admits the stationary solution |ψ|2 = m2. Proposing a linear perturbation δψ on top of

the background m, ψ = m+ δψ, the equation governing ψ becomes

−�δψ + (2iµ− γL)δψ̇ = gm2(δψ + δψ∗) +O(δψ2). (49)

We now assume δψ ≪ m at the late stage t → ∞ of the relaxation and we neglect the

term O(δψ2) in the right-hand-side of this equation. Further rewriting the unknown as

δψ = uei(k·x−ωt) + v∗e−i(k·x−ω∗t), we obtain the Bogoliubov-de Gennes equation:




ω2/c2 − k2 + (2µ+ iγL)ω − gm2 −gm2

−gm2 ω2/c2 − k2 − (2µ− iγL)ω − gm2









u

v



 = 0. (50)

We now consider the k → 0 mode. Equation (50) has four solutions for the frequency,

ω = {ωN
±, ω

H
±}, and they are

ωN
+ = 0, ωN

− = −2igγLm
2

γ2L + 4µ2
+O(m3),

ωH
± = ±2µ

(

c2 +
gm2

γ2L + 4µ4

)

− iγL

(

c2 − gm2

γ2L + 4µ2

)

+O(m3),

(51)

where we implicitly assumed m ≪ 1 near the critical temperature. In the dissipation-less

limit γL → 0, ωN
± become gapless Nambu-Goldstone modes while ωH

± remain gapful Higgs
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modes. For finite γL, ω
N
− is the slowest relaxation mode and the relaxation time τ is evaluated

as

τ ∝ γ2L + 4µ2

2gγLm2
≃ γ2L + 4µ2

2gγL
|T − Tc|−2β. (52)
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FIG. 8. (Color online.) Temperature dependence of the relaxation time τ for different Langevin

equations with L = 100 (a) and for different system sizes L obtained from the underdamped

Langevin equation (20) (b).

However, close to Tc the approximation used to derive (52) breaks down and the relaxation

time τ is expected to show critical behaviour,

τ ∝ |T − Tc|−νzeq, (53)

with a new dynamical critical exponent zeq [67]. The numerical simulations in [39] suggest

zeq ≃ 2.2 while the ones in [63] yield zeq ≃ 2.1 for periodic boundary conditions, see also [64].

The equilibrium critical dynamical exponent of the classical O(N) model in d dimensions

with relaxational dynamics has been computed with an ǫ = 4− d expansion and reads [68]

zeq = 2 +
N + 2

(N + 8)2

(

3 ln
4

3
− 1

2

)

ǫ2 +O(ǫ3) (54)

For N = 2 in d = 3 one finds zeq = 2.0145.

We wish to have our own estimate for zeq. Since it is very hard to determine zeq from

the direct measurement of τ , we fix it from the universal scaling behaviour of τ/Lzeq as a

function of {(T − Tc)/Tc}/L−1/ν that should be independent of L. We then define

∆(zeq) =
∑

L1,L2

∫ T ′

max

−T ′

max

dT ′

∣

∣

∣

∣

∣

τ(L1, T
′(L1))

L
zeq
1

− τ(L2, T
′(L2))

L
zeq
2

∣

∣

∣

∣

∣

, (55)
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where T ′(L) ≡ {(T − Tc)/Tc}/L−1/ν , and τ(L, T ′) is the numerically obtained relaxation

time for a system with size L at temperature T = Tc(1 + T ′L−1/ν). Due to the scaling

argument for τ(L, T ′)/Lzeq, ∆(zeq) should be minimized for the exact zeq. We calculate

∆(zeq), summing over all pairs of systems sizes L1, L2 = 40, 60, 80, 100, with zeq = 1.9,

2.0, 2.1, 2.2, 2.3 and T ′
max = 0.05/20−1/ν , 0.1/20−1/ν , 0.2/20−1/ν (ν = 0.6703). We find that

∆(zeq) takes minimal values for zeq = 2.1 independently of T ′
max and the type of Langevin

equation used.
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FIG. 9. (Color online.) Finite-size scaling of the relaxation time τ obtained from (a) the over-

damped Langevin equation (15), (b) the underdamped Langevin equation (20), (c) the ultrarela-

tivistic limit of the underdamped Langevin equation (21a), and (d) the nonrelativistic limit of the

underdamped Langevin equation (21b). zeq = 2.1 and ν = 0.6703. The system sizes are given in

the keys. Inserts: zoom over the critical region.

Figure 9 (a)-(d) shows the finite size scaling of τ as obtained from Eqs. (15), (20), (21a),

and (21b), respectively. In these plots we use zeq ≃ 2.1 and we find acceptable scaling
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behaviour. The scaling seems to be less dependent on the type of Langevin dynamics than

the relaxation time τ itself, cfr. Fig. 8.

IV. THE VORTEX OBSERVABLES IN EQUILIBRIUM

In this section we study the statistical properties of the vortex-loop network in equilib-

rium. We start by recalling a number of known results on the statistical properties of line

ensembles under different conditions. Although we present data for equilibrium configura-

tions generated with the underdamped Langevin equation (20) only, the following results

are common to equilibrium data generated with all Langevin dynamics.

A. Random geometry of the vortex tangle - background

The relation between second order thermodynamic phase transitions and percolation

phenomena was established in the late 70s, by using the finite dimensional Ising model of

magnetism as a working example. In this system the most natural objects to consider are

the domains of neighbouring aligned spins. Although these percolate and become critical at

a threshold, their critical point does not necessarily coincide with the thermodynamic tran-

sition [69], and their scaling properties do not capture the thermodynamic critical properties

of the magnetic system. Instead, the thermodynamic instability coincides with a percolation

one, and the various critical exponents are linked to those of the geometric construction [70],

only if the spin clusters are constructed in a very specific way. The receipt demands to break

the bonds between parallel spins with a temperature dependent probability, and thus build

the so-called Fortuin-Kasteleyn clusters [71], with which one can fully characterise the ther-

modynamic phase transition. The extension of this construction to models with a continuous

O(N) symmetry has been discussed in [72, 73]. Apart from providing an alternative way

to attack critical phenomena, the language of random geometry has been very fruitful in

many different contexts, notably in polymer science [74], and it has helped reaching a better

understanding of the behaviour of many physical and mathematical problems at and away

from criticality.

In 3d models with continuous symmetry breaking as the one we study here, closed line

defects or closed vortices are the natural topological objects to consider. In this and other
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models with loops the lines undergo a geometric transition between a “localised” phase, with

only finite length lines, and an “extended” phase, in which a finite fraction of the lines have

diverging length in the thermodynamic limit. The actual scaling of their length with the

system size depends on the boundary conditions. For periodic boundary conditions lines

can wrap around the system many times. As in the Ising model, the line-defect geometric

transition does not inevitably coincide with the thermodynamic one. In our study we will

confirm that this is not the case for the U(1) relativistic field theory, as already shown in [28]

for the 3d XY model and [29] for the O(2) nonrelativistic field theory, contrary to claims

in [75] in general, in [76, 77] in the context of cosmological studies, and in [78, 79] in the

field of superfluidity and superconductivity of type II.

The tools to perform a geometric analysis of individual lines and ensembles of lines

are well established and have been very successful in the field of polymer science, see for

example [74]. At a critical point, be it thermodynamic or geometric, the clusters or lines

that characterise criticality satisfy several scaling relations. We recall some of them below.

The linear length along the loop, l, and the radius of the smallest sphere that contains

the loop, R, are related by [74, 80]

l ≃ RD (56)

in the limit l ≫ a with a a microscopic length-scale. R can also be the mean-square end-

to-end distance or the radius of gyration of the loop. D is the fractal Hausdorff dimension

of the line (D = 1 for a smooth line). In the thermodynamic limit the number density of

vortex loops with length l should behave as [81]

P (l) ≃ l−αLe−lmL , (57)

with mL the line tension and αL the so-called Fisher exponent. (This form should be

corrected by system-size dependent terms to capture finite size corrections.) The line tension

vanishes at criticality as

mL ≃ |T − TL|βL (58)

with βL another characteristic exponent. By requiring that the average number of loops per

unit area, with radius of the order of R, scales as n(R) ≃ R−d and equating this law to the

result of computing n(R) ≃
∫∞

RD ds s
−αL one finds [82]

αL = 1 +
d

D
. (59)
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Other scaling arguments, that use the algebraic decay of correlation functions at criticality,

allow one to relate D and αL to the anomalous dimension of the field in the field theory

that characterises the statistical properties at criticality. More precisely, D = (5− η)/2 and

αL = (11 − η)/(5 − η) [83], satisfying (59). (Another quantity that is often used in the

literature is the probability that a line that passes through a chosen link had length l, and

it is given by Plink(l) ≃ l1−αL at criticality.)

Some known values of the fractal dimension and exponent αL in three dimensions are:

• Gaussian random walks. D = 2 and αL = 5/2. This result was found in dense polymer

solutions [74] and the initial state of a cosmic string network as modelled in [84, 85].

• Self-avoiding random walks. In d = 3 the Flory approximation [86] yields D = 5/3

[D = 3/(d + 2) in general d] and αL = 14/5. The numerical values for this problem

are very close to these D ≃ 1.7 and αL ≃ 2.76 > 5/2 [87, 88].

• Self-seeking random walks. These are walks such that αL < 5/2.

• Coulomb phase in spin-ice. Loops that are shorter than L2 behave as Gaussian random

walks. Loops that are longer than L2 wrap around the system many times, occupy a

finite fraction of the system’s volume, and for them αL = 1 [89].

• Fully-packed loop models. These are general models on a lattice with various symme-

tries and loop fugacity (a colour variable), n, as a free parameter. Their field theory

representation is given by CPn−1 models for oriented loops [30, 83, 90–93]. These

models also present a crossover from Gaussian statistics for l ≪ L2 to a more complex

function of l and L for l ≫ L2 that depends on the symmetry of the model and n. For

n = 1 and l not too close to L3, αL = 1.

Interestingly enough, we will see some of these statistics emerging in different length and

time regimes of the U(1) model.

B. Plaquette vorticity

We consider all 3L3 unit plaquettes in the cube: L2 plaquettes along the yz-plane with

four corners at (x,x+∆x ê2,x+∆x ê2 +∆x ê3,x+∆x ê3), those along the zx-plane with
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vertices at (x,x+∆x ê3,x+∆x ê1+∆x ê3,x+∆x ê1) and those along the xy-plane (x,x+

∆x ê1,x+∆x ê1 +∆x ê2,x+∆x ê2). The quantity

v1
x
=

1

2π

(

[θx+∆x ê2 − θx]2π + [θx+∆x ê2+∆x ê3 − θx+∆x ê2]2π

+[θx+∆x ê3 − θx+∆x ê2+∆x ê3]2π + [θx − θx+∆x ê3]2π

)

(60)

measures the vorticity of the plaquette (x,x+∆x ê2,x+∆x ê2+∆x ê3,x+∆x ê3). The θ’s

are the phases of the field ψ at the corners of the plaquette and [α]2π is the angle α modulo

2π, i.e. [α]2π = α + 2πn with n an integer such that [α]2π ∈ (−π, π]. In this way, a dual

oriented linear object is assigned to each plaquette with v = 1 or −1. These oriented line

elements join to form closed vortex loops. In practice, we decide whether a vortex pierces

the plaquette by calculating the flux or winding number

v1
x
≡ 1

2π
Im

[

log

(

ψx+∆x ê2

ψx

)

+ log

(

ψx+∆x ê2+∆x ê3

ψx+∆x ê2

)

+ log

(

ψx+∆x ê3

ψx+∆x ê2+∆x ê3

)

+ log

(

ψx

ψx+∆x ê3

)]

(61)

where Im[log(ψB/ψA)] gives the phase difference θAB ≡ θB − θA + FAB for the two complex

values ψA,B ≡ |ψA,B|eiθA,B . The phases θA,B and the phase difference θAB are defined in the

range (−π, π] and the function FAB is given by

FAB =



















2π for −2π < θB − θA ≤ −π
0 for −π < θB − θA ≤ π

−2π for π < θB − θA < 2π

(62)

The flux v1
x
takes the form of v1

x
= (θAB + θBC + θCD + θDA)/(2π), and the phase difference

θDA in the range (−π, π] becomes

θDA =



























−2π − (θAB + θBC + θCD) for −3π < θAB + θBC + θCD < −π
−(θAB + θBC + θCD) for −π ≤ θAB + θBC + θCD < π

2π − (θAB + θBC + θCD) for π ≤ θAB + θBC + θCD < 3π

4π − (θAB + θBC + θCD) for π = θAB = θBC = θCD

(63)

The flux v1
x
equals −1, 0, 1, and 2 for the first, second, third, and fourth lines in Eq. (63),

respectively. The flux with v1
x
= 2 quite rarely arises because three phase differences θAB,

θBC , and θCD should be equal to π for this to occur, as shown in Eq. (63). In the cubic
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lattice geometry, it is impossible to have more than two unit fluxes threading a plaquette.

In other rare cases, the flux v1
x
can take fractional values 0 < |v1

x
| < 1 when vortex cores

just touch one of the four vertices or the sides of plaquettes. We have never encountered

the values v1
x

= 2 and 0 < |v1
x
| < 1 in our simulations. In the same way, we define

the fluxes v2
x
and v3

x
for the plaquettes (x,x + ∆x ê3,x + ∆x ê1 + ∆x ê3,x + ∆x ê1) and

(x,x+∆x ê1,x+∆x ê1 +∆x ê2,x+∆x ê2), respectively.

When va
x
takes the value 1, a vortex element with length ∆x along the êa-direction pierces

the centre of the plaquette from (x+∆x/2, y +∆x/2, z +∆x/2)−∆xêa to (x+∆x/2, y +

∆x/2, z +∆x/2). The direction of the vortex line is reversed in the case va
x
= −1.

C. Averaged vortex density

The total vortex length in the system is, therefore, proportional to the total number of

plaquettes with non-vanishing flux,
∑

j,k,l

∑3
a=1 |vax| 6= 0, and the averaged vortex density

ρvortex is defined as

ρvortex ≡
1

3L3

〈

∑

j,k,l

3
∑

a=1

|va
x
|
〉

stat

. (64)

(Note that this quantity depends on the size of the space discretisation used, ∆x, see App. B

and [28, 94], for example.)

Figure 10 shows the dependence of the averaged vortex density ρvortex on (a) temperature

and (b) inverse temperature in linear and linear-log scales, respectively. ρvortex monotonically

increases as a function of temperature. From panel (a) one could argue that ρvortex(T )

changes concavity at Tc. (We have checked that this feature does not change with a different

value of ∆x, although the values of the critical temperature, vortex density and activation

energy do change, for example, for ∆x = 2, Tc ≃ 2.67, ρvortex(Tc) ≃ 0.18, ε ≃ 8.85.) The

value ρvortex(Tc) ≃ 0.2 is close to the value 0.16 measured in [28] for the 3d XY model at its

thermodynamic instability. We expect the averaged vortex density to approach ρvortex → 1/3

in the infinite temperature limit, T → ∞, at which the phase of the complex field ψ is

completely random in time and space, see App. C. We checked this claim numerically

obtaining ρvortex ≃ 0.3332 for ∆x = 1 and ρvortex ≃ 0.3333 for ∆x = 2 at T = 20 Tc.

(Vachaspati and Vilenkin [84] find a different vortex density, ρvortex = 0.29, for a random
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FIG. 10. (Color online.) Dependence of the averaged vortex density ρvortex on (a) temperature and

(b) inverse temperature for different system sizes L. The critical temperature Tc is indicated with

a vertical dotted line in both panels. In the inset to panel (a) we zoom over a temperature interval

around Tc. The meaning of the temperatures T
(M)
L and T

(S)
L will be explained below. The fitting

parameter ε ≃ 6.63 for ρvortex ∝ e−ε/T is the thermal activation energy for small vortex rings that

describes ρvortex at small T , shown with a dashed line in panel (b). The equilibrium configurations

used in this and all other figures in this subsection are generated with the underdamped Langevin

equation (20).

configuration since they use a “clock” model in which the phase takes only three values and

are assigned at random on each lattice site.) We observe that ρvortex depends very little on

the system size L. At low temperature, the behaviour is activated, with ρvortex ∝ e−ǫ/T and

ǫ ≃ 6.63, see panel (b).

Also interesting is to examine the number of recombinations, defined as the number of

cubes containing more than 4 plaquettes with nonzero flux excluding the crossing case for

which there is no ambiguity in the connectivity of the lines entering the cube. (We counted

twice the cubes containing 6 plaquettes with nonzero flux.) The density ρrecombination is then

the ratio between this total number and the total number of cubes = N3 in the simulation

box. The data are shown in Fig. 12 and they show a dependence on T that is very similar

to the one of the vortex density itself, cfr. Fig. 10.
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FIG. 11. (Color online.) Example of a unit cube comprising four plaquettes with (shaded) and two

plaquettes without (not shaded) non-zero flux, respectively. The vortex elements are shown with

arrows and their directions indicate the sign of the fluxes. When four vortex elements pierce a unit

cube (left), we face an ambiguity in the two ways of connecting them (mid and right images). Two

ways of resolving this ambiguity are explained in the text and in Fig. 13.
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FIG. 12. (Color online.) The density of recombination as a function of temperature, in equilibrium.

D. The vortex line lengths

We now consider the length l of vortex loops. As we discussed above, we place straight

vortex line elements at the centres of all plaquettes with non-zero flux |va
x
| = 1 and we

connect them with the constraint of not crossing the lines. The length of each loop is even

in units of ∆x and the minimal length is 4∆x. When four or more plaquettes in one unit

cube have non-zero flux, i.e., four or more vortex elements pierce the cube, we have to decide

how to connect the vortex elements. This is shown in Fig. 11. Several criteria to connect

vortex elements are discussed in Refs. [28, 29]. We adopt the maximal and stochastic ones.

The connection is uniquely done so that the vortex loops are joined as much as possible to
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(a) (b)

(c) (d)

FIG. 13. (Color online.) Reconnection of vortex elements using the maximal criterium. Black, and

grey coloured circles show the centers of the unit cubes with a pair of ingoing and outgoing vortex

elements while the white circles show those with just one ingoing and one outgoing arrow. In the

case of the black circles there are two possible ways of connecting the two ingoing and two outgoing

vortex elements (see Fig. 11 and panel (c)), whereas in the case of the grey circles the connection

is unique since crossing vortex lines is not allowed (see panel (d)). In practice, we first draw all

vortex line elements passing through the centres of the cubes (see panel (a)), and we then select

the connection of elements at all black circles in such a way that the length of the total vortex loop

is maximised (panel (b)). At the grey vertices there is no choice (see panel (d)) and the connection

may lead to the separation into two loops, as shown in the example in panels (a) and (b).

form a long vortex loop in the maximal criterion, see Fig. 13, while the connection is done

at random with equal probability among all possible ways to connect them in the stochastic

criterion. These crossings give rise to vortex recombination. We verified that all vortices

take the form of a closed loop as we expect from the topological prospect for vortices.

Figures 14 (a)-(d) show snapshots of equilibrium system configurations where the vortex
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(a) (b) (c) (d)

FIG. 14. (Color online.) Equilibrium snapshots of the system configurations at temperatures (a)

T = 0.6 Tc, (b) T = 0.8 Tc, (c) T = Tc, and (d) T = 1.2 Tc in a system with size L = 40. The

vortex line elements are connected with the maximal criterion (upper panels) and the stochastic

criterion (lower panels) and they are shown in grey (blue) in the black background. The longest

vortex lines in each image are highlighted in light grey (yellow).

line elements at the centre of the plaquettes with non-zero flux are highlighted. The tem-

peratures of the different snapshots are T = 0.6 Tc, T = 0.8 Tc, T = Tc, and T = 1.2 Tc,

from left to right. Upper and lower panels show the same configurations with the vortex

elements connected with the maximal criterion (upper panels) and the stochastic criterion

(lower panels). At low temperatures, the way in which the elements are connected is irrel-

evant as the vortex rings are very short, as shown in Fig. 14 (a). We checked that these

vortices are rapidly created by thermal fluctuations as small vortex rings and they are soon

annihilated. It should be hard to experimentally observe such vortices due to the fact that

their dynamics occur in very short time scales. Accordingly, ρvortex is well-fitted by the

Arrhenius law ρvortex ∝ e−ε/T with the activation energy ε ≃ 6.63 as shown in Fig. 10 (b).

At higher temperature, the vortex loops are longer and the method used to connect the

vortex elements becomes important. The comparison between the upper and lower snapshots

in Fig. 14 (b)-(d) demonstrate that the longest vortex loop is much longer with the maximal
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FIG. 15. (Color online.) Equilibrium vortex length number at various temperatures below and

above Tc in (a) and (c) and approaching Tc from below in (b) and (d), for a system with linear size

L = 100. Upper (lower) panels account for the maximal (stochastic) criteria for connecting vortex

elements. We take a mean over 100 noise realisations and we further average over 1000 different

times for each dynamical run. The dashed line in panels (b) and (d) represent the algebraic decay

l−2.17. The two power laws in (c) are l−5/2, and l−1 as indicated in the key.

than with the stochastic connection rule.

The fact that the vortex loops are longer at higher temperature can also be seen from

Fig. 15. Panels (a) and (c) show the number of vortex loops with length l, N (M)(l) cal-

culated with the maximal criterion (upper panel) and N (S)(l) with the stochastic criterion

(lower panel) for connecting vortex lines, at four temperatures around the critical one,

T = 0.8 Tc, Tc, 1.2 Tc, 2 Tc. At T = 0.8 Tc the number density decays exponentially, see also

panel (a) in Fig. 16, irrespectively of the reconnection method used. (This quantity can be
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turned into a probability distribution with its normalisation by the total number of loops in

the system,
∫

dl N (M,S)(l) = N
(M,S)
loop . As in the dynamic study we will see that this quantity

depends on time, we avoid imposing this normalisation.)

As temperature increases from 0.8 Tc, longer loops appear and the size of the longest loop

increases, as shown by the fact that the support of N (M,S)(l) extends further away on the

horizontal axis. With the maximal rule, N (M)(l) gets close to a power-law, N (M)(l) ∼ l−2.17

at T ≃ 0.95 Tc and a sharp peak at very large value of l starts developing at this temperature

(see the solid line in panel (b) where data for more values of T approaching Tc from below are

shown). This bump suggests the existence of very long vortex rings that could wrap around

the system many times, see Fig. 16 (b) where the system size dependence of the bump is

shown explicitly (we will address this issue in detail below). At still higher temperature

T > 0.95 Tc the weight of the finite size loops decreases but the bump remains and gets

thinner as less loops with length of the order of the system size exist but their length

fluctuates less. It may become possible to observe such large-scale vortices as a macroscopic

fluctuation of the fluid vorticity.

We also stress the difference between N (M)(l) and N (S)(l). At temperatures far below

Tc (T = 0.8 Tc in Fig. 15 (a)), there is basically no difference between the data for the

two reconnection rules. However, the statistics of the strings strongly depends on the re-

connection rule at temperatures close and above Tc. The power law l−2.17 is close to the

data for finite loops approaching Tc from below for both reconnection rules (panels (b) and

(d)) but the behaviour of the distribution at larger scales are totally different. A bump

structure in N (M)(l) is sharp and clearly seen (panels (a) and (b)), whereas the statistics

of long closed strings at high temperature as obtained with the stochastic criterium crosses

over between two power-law decays. At T = 2 Tc, for ∆x≪ l ≪ L2 the chains are Gaussian

and N (S)(l) ≃ l−5/2 while for l ≫ L2 the fact that the loops can wrap around the cubic box

changes this decay and makes it be N (S)(l) ≃ l−1. These two powers are shown with a dashed

and dashed lines in panes (c) and (d) where the second power law regime is just incipient

at T = 0.99 Tc. The first power law was also observed in the random phase clock model

studied in [84, 85] and it is well-known in the field of polymer science [74]. The cross-over to

the second decay was observed and explained in [89] where a fully-packed loop model arising

in the ice phase of a frustrated magnetic system on the pyrochlore lattice was studied and,

in more general terms, in [30, 90]. Although our system is not fully-packed with loops, the
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density of vortex elements is very high at high temperature (e.g. ρvortex ≃ 0.25 at T = 2 Tc)

and the behaviour is quite similar.

The qualitative change of the vortex line length distribution and its dependence on the

connecting criteria can already be seen in Figs. 14 (a)-(d) where the longest vortex line

is highlighted in light grey (yellow online). On the one hand, in panels (a) and (b), at

temperatures well below Tc, the longest vortex loop is very short compared to the system

size. On the other hand, in panels (c) and (d), at temperatures at and above Tc, respectively,

most vortex line elements belong to the longest vortex loop, the spatially dominating scale

of which is comparable to the system size. The longest vortex determined by the maximal

criterion is much longer than the one obtained with the stochastic criterion. Indeed, the

longest vortex loop obtained with the maximal criterion contains almost all vortex line

elements, and contributes to the sharp bump in N (M)(l) at large l. With the stochastic

convention, instead, there are many long vortex loops besides the longest one, making N (S)(l)

broader. What is the fraction of vortex mass in an infinite loop is a question of interest in

cosmology [85].

We now compare the length number density per unit volume N (M,S)(l)/L3 in systems

with different size. Figures 16 shows this quantity at temperatures T = 0.8 Tc (a) and

(c), and T = Tc (b) and (d). At T = 0.8 Tc, there is no finite size dependence and there

are no long vortices with size comparable to the system size. At T = Tc, on the other

hand, the weight of the number density clearly depends on the system size, suggesting the

existence of very long vortex loops with lengths comparable and increasing with the system

size. With the maximal convention the tail of the number density, before the bump, bends

down and, clearly, it is not algebraic. With the stochastic one, the data at Tc suggest a

smooth crossover from l−2.17 at short length scales to a different behaviour at long length

scales; we will discuss this issue in the next paragraph where we will study the percolation

phenomenon in detail and we will find that the percolation threshold with the stochastic

convention although very close to Tc is not at Tc.
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FIG. 16. (Color online.) Equilibrium vortex length distribution per unit volume N(l)/L3 at

T = 0.8 Tc in (a) and (c), and T = Tc in (b) and (d) for systems with linear sizes L = 40, 60, 80,

and 100. Upper (lower) panels account for the maximal (stochastic) criteria for connecting vortex

elements. In panels (a) and (c), the dashed straight line represents the exponential decay e−0.026 l

and e−0.052 l, respectively. Although the data in panel (d) may suggest that the system is at its

line percolation threshold, at Tc it is already beyond it, see the text for a discussion.

E. The randomly reconnected data in the infinite temperature limit

We consider now the infinite temperature data and the string length derived with the

stochastic criterium in more detail and we compare it to predictions for fully-packed loop

models of different kind.

It was shown in [89, 90] that the number density of loop lengths in quite generic fully-

packed loop models behaves as

lN(l)

L3
≃







l−d/2 for ∆x≪ l ≪ L2

L−3 for L2 ≪ l ≪ L3
(65)

36



as the fractal dimension of the loops at the largest scale is 3 in our case. (Corrections to the

power in the second line should be taken into account for l ≃ L3 and these depend on the

model [90].) Gaussian statistics for l ≪ L2 was also found numerically in the nodal statistics

of 3d complex random wave fields [12, 13].

In Fig. 17 we show N (S)(l) against l (a) and N (S)(l) against l/L2 (b). Data for different

system sizes are gathered in the two panels. We see in (a) that the data do not depend

on L for lengths that are shorter than L2 while they do for longer scales. In (b) the data

for l ≪ L2 keep the Gaussian statistics (dashed lines) and what remains scales well with

the proposed scaling variable. The dotted curve is the expected l−1 decay in Eq. (65). The

scaling of the second tail data with the fractal dimension 3 is good, and an analogue between

N (S)(l) in the T → ∞ limit and loop soups is thus confirmed.
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FIG. 17. (Color online.) Stochastically reconnected loop length number density at infinite tem-

perature against l (a) and N (S)l against l/L2 (b).

F. Vanishing line-tension characteristic temperature

There are several ways to discuss line percolation in this kind of systems and they do not

yield the same threshold [28, 29]. For this reason, we will be specially careful here.

We adopted the method based on the number density N (M,S)(l). Below and close to its

threshold, in the infinite system size limit, N (M,L)(l) should behave as in Eq. (57)

N (M,S)(l) ∝ l−α
(M,S)
L e−lm

(M,S)
L (66)

37



with the “Fisher” exponent α
(M,S)
L = 1 + d/D

(M,S)
L being related to the fractal dimension,

D
(M,S)
L , of the vortex lines, and the “mass” m

(M,S)
L that vanishes at the threshold. Following

Ref. [28], we call this temperature the line-tension point T
(M,S)
L .
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FIG. 18. (Color online.) (a) Temperature dependence of the mass parameter m
(M,S)
L in the fit

(66) to the vortex length number densities. The insets show m
(M,S)
L as a function of T

(M,S)
L − T

with T
(M)
L = 0.94 Tc and T

(S)
L = 0.98 Tc in double logarithmic scale together with an algebraic

dependence with β
(M,S)
L = 1.7. (b) Equilibrium vortex length number per unit volume N (M,S)(l)/L3

at the line-tension point T
(M,S)
L . Upper (lower) panels account for the maximal (stochastic) criteria

for connecting vortex elements.

In Fig. 15 (b) we show the length number density N (M)(l) at T = 0.93 Tc, 0.94 Tc, 0.95 Tc,

0.96 Tc, and 0.97 Tc with the maximal line-reconnection criterion (upper panel), and N (S)(l)

at T = 0.95 Tc, 0.96 Tc, 0.97 Tc, 0.98 Tc, and 0.99 Tc with the stochastic line-reconnection

criterion (lower panel) for the largest system size that we simulated, L = 100. At 0.94 Tc

(0.98 Tc) the data are close to algebraic with an incipient bump at the largest scales in the
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upper (lower) panel. The short length-scale, say 102 . l . 103, behaviour of N (M,S)(l) is

rather well fitted by

N (M,S)(l) ∝ l−α
(M,S)
L with α

(M,S)
L ≃ 2.17 . (67)

Figure 18 (a) shows the mass m
(M,S)
L extracted from fits with the full function (66) with

the exponent α
(M,S)
L fixed to α

(M,S)
L = 2.17. From the data fits the mass m

(M)
L (m

(S)
L ) vanishes

at T ≃ 2.13 ≃ 0.94 Tc (T ≃ 2.22 ≃ 0.98 Tc). We therefore estimate the temperature at

which N (M,S)(l) is purely algebraic as

T
(M)
L ≃ 2.13 ≃ 0.94 Tc, T

(S)
L ≃ 2.22 ≃ 0.98 Tc, (68)

and they do not coincide with the one for the thermodynamic instability Tc, see the analysis

in Sec. III. In the temperature range 0.05 ≤ T
(M,S)
L − T ≤ 0.1, the masses m

(M,S)
L for the

system sizes L = 80 and L = 100 are rather well fitted by

m
(M,S)
L ∝ (T

(M,S)
L − T )β

(M,S)
L with β

(M,S)
L ≃ 1.7 . (69)

This value hardly depends on the criteria for connecting vortices and is consistent with the

results obtained with Monte Carlo simulations of the 3d XY -model [28] and this model [29].

Figure 18 (b) shows the length number density per unit volume N (M,S)(l)/L3 for systems

with different linear sizes at the vortex line-tension point T
(M,S)
L . Except for the bump

structure in the region of long l, N (M,S)(l)/L3 at T = T
(M,S)
L does not depend upon L.

Finally, we note that simulations with different ∆x give different values for Tc, T
(M)
L , and

T
(S)
L , but the algebraic behaviour at the vortex line-tension point hardly depends on ∆x

with the same exponents α
(M,S)
L ≃ 2.17 and β

(M,S)
L ≃ 1.7 within our numerical accuracy.

G. The bump

We consider now the bump structure in the number density N (M,S)(l). A bump in the

number density N (M,S)(l) at large value of l starts to develop at T
(M,S)
L and is due to the finite

size of the system. To describe it one should write a finite system size additive correction [81]

to the vortex length distribution N (M,S)(l) in (66):

N
(M,S)
finite size corr(l) = N

(M,S)
L

(

l̃(M,S)
)

, l̃(M,S) ≡ l/LD
(M,S)
L (70)

39



with N
(M,S)
L

(

0
)

= 0. Equation (70) states that the finite size correction to the number density

N (M,S)(l) should be a universal function of l̃(M,S) ≡ l/LD
(M,S)
L with D

(M,S)
L = d/(α

(M,S)
L − 1) ≃

2.56 the fractal dimension of the lines and d = 3 the dimension of space.

Figures 19 (a) and (b) show
(

l(M,S)
)α

(M,S)
L N (M,S)(l) as a function of l̃(M,S), at T

(M,S)
L and Tc,

respectively, and for the system sizes L = 40, 60, 80, 100. After multiplying by
(

l(M,S)
)α

(M,S)
L

the finite length contribution should become just an irrelevant additive constant and all the

variation is due to the finite system-size correction. The universal behaviour of the bump

structure as shown in Eq. (70) holds at T
(M,S)
L and it does not at Tc, confirming the fact that

line percolation occurs at T
(M,S)
L .
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FIG. 19. (Color online.) Finite-size scaling of the bump structure in N
(M,S)
L at (a) the vortex

line-tension point T
(M,S)
L and (b) the critical temperature Tc. Upper (lower) panels account for the

maximal (stochastic) criterium for connecting vortex elements. The scaling variables are l̃(M,S) =

l/LD
(M,S)
L and the fractal dimensions are fixed to D

(M,S)
L = 2.56, see the text for a discussion. Their

is data collapse in (a) but not in (b).
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H. Mean number of vortex loops

Figure 20 shows the temperature dependence of the mean number of vortex loops

N
(M,S)
loop ≡ 〈total number of vortex loops〉stat (71)

normalized by the size of the simulation box L3. N
(M)
loop is consistently smaller than N

(S)
loop.

Both figures show no L dependence. At low temperatures, N
(M,S)
loop is an increasing function

of temperature. Above a temperature that is slightly lower than T
(M,S)
L , N

(M,S)
loop reaches

a maximum and next decreases with increasing temperature, suggesting that many small

vortex rings merge to form longer loops, as ρvortex is still increasing with temperature. The

fact that N
(M)
loop decreases faster than N

(S)
loop with temperature is due to the fact that more

vortex elements are joined to the longest vortex loop with the maximal than with the

stochastic rule. Notably, the curvature of the curves changes at Tc but we do not see any

special feature at T
(M,S)
L .
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FIG. 20. (Color online.) Temperature dependence of the mean number of vortex loops connected

with the maximal rule N
(M)
loop (a) and with the stochastic rule N

(S)
loop (b) in both cases normalized

by the system size. Several system sizes were used and are given in the key. In the insets, zooms

over the peaks.

I. Wrapping vs. contractible loops

As discussed above, the scaling of the bump in N (M,S)(l), and the peak and tail in N (M)(l)

and N (S)(l) at high temperature, suggest the existence of very long vortex loops with length
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of the order of, or even much longer than, L. In order to distinguish loops that wrap around

the system from long but contractible loops, we define and calculate two quantities.

The first observable just focuses on the size of the vortices, that we define as the maximal

side of the rectangular parallelepiped covering the vortex loop in the x, y, and z-directions

(see Fig. 21). The size is the length the string would have after smoothing out all small

scale irregularities (and it yields a length scale similar to R in Eq. (56)).

We then count the number of vortex loops, the size of which is larger than the system

size L, and we calculate the statistical average:

N
(M,S)
system−size ≡ 〈Number of vortex loops, the size of which is larger than L〉stat. (72)

Figure 22 (a) shows the temperature dependence of the fraction N
(M)
system−size/N

(M)
loop. It de-

taches from zero at T ≃ 0.59 ≃ 0.26 Tc (while ρvortex detaches from zero at T ≃ 0.32 ≃
0.14 Tc) and has a peak at a temperature that is very close to the value of T

(M)
L found with

the analysis of N (M)(l) in the infinite system size limit.

The behaviour of N
(S)
system−size shown in Fig. 22 (c) is quantitatively different from the one

of N
(M)
system−size: it does not have a peak and it detaches from zero at a temperature slightly

lower than T
(S)
L found with the analysis of N (M)(l). At a temperature very close to T

(S)
L ,

N
(S)
system−size loses its size dependence and N

(S)
system−size ≃ 1.07. In the limit of infinite system

size L → ∞, one may expect a sharp transition from N
(S)
system−size = 0 to N

(S)
system−size > 1

at T
(S)
L .

x

y
z

vortex line element
vertex connecting vortex line elements

minimal rectangular parallelepiped
covering the vortex loop

FIG. 21. (Color online.) The size of a vortex loop explained with an example. A vortex loop is

shown with a broken solid line made of straight vortex line elements. The minimal rectangular

parallelepiped that covers the loop in the x, y, and z-directions is also shown. The size of the

vortex loop is defined as the maximal linear length of the faces of the covering parallelepiped. In

the case in the figure, the three linear sizes of the rectangular parallelepiped are 3, 2, and 2, and

the size of the vortex loop is max(3, 2, 2) = 3.
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FIG. 22. (Color online.) Temperature dependence of the number of vortices satisfying different

conditions. (a) Ratio between the number of vortex loops larger than the system size N
(M)
system−size

and the total number of vortex loops N
(M)
loop. In the inset, a zoom over the peak. (b) Averaged

number of non-contractible vortex loops N
(M)
non−contract. (c) Number of vortex loops larger than

the system size N
(S)
system−size. (d) Number of non-contractible loops. In (a) and (b) the maximal

criterium is used. In (c) and (d) the stochastic one is used. The system sizes are given in the keys.

With the second method we count only non-contractible loops that are topologically

distinct from contractible ones due to the periodic boundary condition. We can check

whether a vortex loop is non-contractible or not in the following way. We set the winding

numbers along the x, y, and z-directions to zero, wx = wy = wz = 0. We then start from a

point on the loop and we follow the loop path. When the loop jumps from (0, y, z) ((L, y, z))

to (L, y, z) ((0, y, z)), we change wx → wx+1 (wx → wx−1). In the same manner we update

wy and wz when going across the system’s “boundary” in the y and z directions. After going

back to the starting point, at least one of the three winding numbers wx, wy, and wz take
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non-zero value when the loop is non-contractible.

FIG. 23. (Color online.) Examples of contractible and non-contractible vortex loops. In panel (a)

there is one contractible vortex loop, the size of which is larger than the system size. In panel

(b) there are two non-contractible vortex loops. The two vortex configurations in panels (a) and

(b) can be continuously transformed one into the other through the reconnection of two vortex

elements.

We define Nnon−contract as

Nnon−contract ≡ 〈Number of non-contractible vortex loops〉stat. (73)

We should note that the summation of winding numbers for all vortex loops vanishes iden-

tically:

∑

loops

(wx, wy, wz) = (0, 0, 0) (74)

showing that there is no net rotational flow. Another property is that N
(M,S)
system−size ≥

N
(M,S)
non−contract. Figure 23 shows examples of contractible and non-contractible vortex loops.

In Fig. 23 (a), there is one long contractible vortex loop, the size of which is larger than

the system linear size. Through the reconnection of two vortex elements in the loop, the

contractible vortex loop splits into two non-contractible vortex loops as shown in the panel

(b) in the same figure.

Figure 24 (a)-(c) shows the longest vortex loops in three equilibrium configurations at

T = T
(S)
L . The vortex elements were connected using the stochastic criterion. In panel (a),

the size the vortex loop is smaller than the system size L. Although the sizes of vortex

loops are larger than the system size in panels (b) and (c), the vortex loop in panel (b) is

contractible while the one in panel (c) is non-contractible in the vertical direction.
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(a) (b) (c)

FIG. 24. (Color online.) Three equilibrium snapshots of the system at T = T
(S)
L . We show in light

grey (yellow) the longest vortex loop obtained with the stochastic criterion for the connection of

vortex elements. In panel (a) the size of the vortex loop is smaller than the system size L. In panel

(b) the size of the vortex loop is longer than the system size L both in the horizontal and vertical

directions, but it is contractible. In panel (c) the vortex loop is non-contractible in the vertical

direction.

Figure 22 (b) shows the temperature dependence of N
(M)
non−contract (upper panel) and

N
(S)
non−contract (lower panel). With the maximal criterium for connecting vortex elements,

we have N
(M)
non−contract = 0 and there are no non-contractible vortex loops. This a priori

surprising results is due to the fact that with the maximal criterium all non-contractible

vortex loops get connected to neighboring ones to form a large contractible vortex loop (see

Fig. 23: the configuration in panel (a) is preferred because the length of the single vortex loop

is longer than the one of the two non-contractible vortices in panel (b)). With the stochas-

tic criterium for connecting vortex elements, we have a finite number of non-contractible

vortex loops N
(S)
non−contract > 0. As well as N

(S)
system−size in (c), N

(S)
non−contract in (d) loses its

size dependence at T
(S)
L (within our numerical accuracy) and N

(S)
non−contract ≃ 0.532. In the

limit of infinite system size L → ∞, we expect a sharp transition from Nnon−contract = 0 to

Nnon−contract > 0 at a temperature close to T
(S)
L , which suggests that one vortex loop larger

than the system size L at T = T
(S)
L is non-contractible with a probability close to 0.532.

From the fact that the number of vortex loops larger than the system size N
(S)
system−size

and the number of non-contractible loops N
(S)
non−contract obtained with the stochastic criterium

(see Figs. 22 (c) and (d)) are size independent at the vortex line-tension point T = T
(S)
L , we

can expect them to be universal functions of (T
(S)
L − T )/L−νL ((T − T

(S)
L )/L−ν′L) with some
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FIG. 25. (Color online.) In panels (a) and (b) the finite-size scaling of the data in Fig. 22 (c) for the

number of vortex loops larger than the system size N
(S)
system−size. In panels (c) and (d) the finite-size

scaling of the data in Fig. 22 (d) for the number of non-contractible vortex loops N
(S)
non−contract.

The stochastic rule for connecting vortex elements was used. The system sizes are given in the

keys. From the scaling analysis, we obtain the exponent νL = 0.76 for T < T
(S)
L in panels (a) and

(c), and ν ′L = 0.34 for T > T
(S)
L in panels (b) and (d).

exponents νL (ν ′L) at temperatures T < T
(S)
L (T > T

(S)
L ). Figures 25 (a) ((b)) and (c) ((d))

show N
(S)
system−size and N

(S)
non−contract as functions of (T

(S)
L − T )/L−νL ((T − T

(S)
L )/L−ν′L) with

νL = 0.76 (ν ′L = 0.34). The data show good collapse on both sides of the line-tension point

TL. In Fig. 26 we show the finite size scaling behaviour of m
(S)
L using two exponents νL and

β
(S)
L for the mass parameter m

(S)
L (see the inset in Fig. 18 (a)).
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FIG. 26. (Color online.) Finite-size scaling of the mass parameter m
(S)
L . The sizes used are given

in the key and the dotted (blue) line represents the critical behaviour close to the transition.

J. Discussion

In this Section we analysed the statistical properties of the vortex tangle in equilibrium.

The full vortex configuration is independent of the reconnection method and boundary

conditions in the low temperature regime. The distribution of vortex lengths is simply

exponential.

Different percolation thresholds can be identified by working with different vortex-related

observables [28, 29]. A natural characterisation of the loop ensemble is given by their length

distribution, from which a critical point is identified as the temperature at which the mass

parameter vanishes, the so-called line-tension point. Even more convincing evidence for the

fact that T
(M,S)
L < Tc is given by Figs. 22 and 25. The result T

(M,S)
L < Tc shows that the

spontaneous breaking of the U(1) symmetry is not directly connected to the percolation of

vortex lines, which is consistent with previous work for the 3d XY model [28] and the O(2)

model [29], and contrary to claims in [75–79]. The fact that T
(M)
L < T

(S)
L is reasonable since

strings are longer in the former than in the latter case. The critical properties of finite loops

remain independent of the reconnection rule and the size of the mesh used to discretize space

(within numerical accuracy).

At T
(M,S)
L we find the Fisher exponent α

(M,S)
L ≃ 2.17, and from this value we deduce

D
(M,S)
L ∼ 2.56. Moreover, α

(M,S)
L < 2.5 suggests that vortices at the line tension point behave

as a self-seeking random walk. Bittner et al [29] found αL ≃ 2.26 − 2.27 in the continuous

O(2) field theory and Kajantie et al [28] αL ≃ 2.11 in Monte Carlo simulations of the 3d XY
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model, both with the stochastic reconnection rule and at the percolation point. Similarly,

Ortuño et al. computed α
(M,S)
L = 2.184(3) at the critical point of a network model for the

disorder-induced localisation transition. We recall that [28] also showed that the percolation-

observable critical properties may also depend upon the reconnection rule adopted.

We do not see any special feature in the density of vortex elements or the mean number

of vortex lines at the line tension point. However, signatures of the vanishing line tension

point are seen in other quantities. We see a maximum in the ratio between the number of

loops that are longer than the system size and the total number of loops when the maximal

criterium is used (though the height of the maximum decreases with L increasing and we

cannot exclude that this effect disappears in the thermodynamic limit). (This feature is not

shared by the numerator in this ratio.) The number of vortex loops that are longer than the

system size and that are non-contractible constructed with the stochastic criterium behave

similarly to an order parameter for the geometric transition. No quantity of this kind for

the maximal rule behaves as an order parameter. Interestingly enough, the thermodynamic

threshold Tc seems to appear as the temperature at which ρvortex andN
(M,S)
loop change concavity.

At high temperature the influence of the reconnection method becomes very important

as there are loops with length of the order of the linear size of the system or longer. The

boundary conditions also become important. As in the quench dynamic analysis we will

use the equilibrium state at high temperature as the initial configuration, it is specially

important to characterise the vortex tangle at very high temperature. With the maximal

criterium we found that one line carries most of the vortex mass in the sample at very

high temperature. With the stochastic criterium we found that the statistics of loops with

length l ≪ L2 is Gaussian while even longer loops exist and their number density falls-off

as (l/L3)−1.

Vachaspati & Vilenkin [84] used a simple Z3−symmetric model to generate the putative

initial conditions of the field theory that should describe the state of the universe before

undergoing a phase transition. This is a clock model with three phase values attributed at

random with equal probability on each vertex of a regular cubic lattice with open boundary

conditions. They used the stochastic rule to reconnect the vortex elements on a cell. Strobl

& Hindmarsch increase the number of discrete angles from 3 to 255 in a formally infinite

lattice [85]. They both found the statistics of a Gaussian random walk (D = 2) as for a dense

polymer network [74]. At very high temperature the statistics of our loop ensemble, when
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treated with the stochastic reconnection rule, and for length scales such that l ≪ L2, also

approaches this result. Instead, the statistics is very different with the maximal reconnection

criterium or beyond the crossover at L2.

We note that the behaviour of vortex loops in the three-dimensional model is quite dif-

ferent from the one of the topological defects in the Kosterlitz-Thouless transition of the

two-dimensional system. In the latter, the phase transition occurs at the same temper-

ature at which the vortex pairs unbind. In the former, percolation occurs at a different

temperature from Tc. This is similar to what happens in the Ising model of magnetism:

in two-dimensions the percolation of geometric clusters occurs at the critical temperature

while in three-dimensions this is not the case. The fact that percolation of geometric objects

does not always occur at the thermodynamic critical phenomenon has been known since the

work in [69].

V. FAST QUENCH DYNAMICS

In this section, we consider the stochastic dynamics following an instantaneous quench

from equilibrium at T = 2 Tc to T = 0. The analysis in the previous section allowed us to

characterise the vortex configurations at the initial state at high temperature in full detail.

Here we will be particularly concerned with the evolution of these states after an infinitely

fast deep quench. We will show that during the low temperature dynamics vortex lengths

with statistics and fractal dimension numerically identical to the one at the percolation

threshold T
(M,S)
L will be relevant, although the quench protocol does not spend any time at

nor even close to it. These features exist for all microscopic dynamic rules.

A. The initial state

Whether the initial state has an order parameter ψ that vanishes or not, can have a

highly non-trivial influence on the subsequent dynamics. This fact was derived by Toyoki

and Honda [35] and later confirmed numerically [38, 39]. Here, we use equilibrium initial

states such that the vortex configuration, see Fig. 27 (a), is characterised by the density

ρvortex ≃ 0.25 in Fig. 10 and the distribution of vortex loop lengths shown in Fig. 15 (a). At

T = 2 Tc, the order parameter suffers from finite size corrections and we measure ψ ≃ 0.030
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for L = 20, ψ ≃ 0.016 for L = 30, ψ ≃ 0.010 for L = 40, and ψ ≃ 0.0073 for L = 50. These

values are small enough for the dynamics to be regarded as subsequent to a zero average

field initial condition, i.e., ψ ∼ 0. This is also confirmed by the fact that the scaling regime

is reached independently of the system size L, see Figs. 28 (a)-(d) and Figs. 29 (a)-(d).

(In some references, e.g. [39], such quenches are named “critical”. In the statistical physics

context a “critical quench” is a quench to the critical temperature Tc, so we rather not use

this terminology here.)

The statistical and geometrical properties of the vortex loops at high temperatures were

characterised in detail in Sec. IV and we will use this information here.

B. The initial stage of evolution

1. Instability

Let us consider the dynamics in the initial stage of evolution within the mean-field frame-

work. By approximating the initial high temperature state as ψ(t = 0) ≃ 0 and the time-

dependent field as ψ = δψ = uei(k·x−ωt) + v∗e−i(k·x−ω∗t), the Bogoliubov-de Gennes equation

becomes

{ω2/c2 − k2 + (2µ+ iγL)ω + gρ}u+O(δψ2) = 0,

{ω2/c2 − k2 − (2µ− iγL)ω + gρ}v +O(δψ2) = 0.
(75)

The solution to the linear set of equations is

ω±
1 (k) =

−ic2(γL − 2iµ)± c
√

4k2 − c2(γL − 2iµ)2 − 4gρ

2
,

ω±
2 (k) =

−ic2(γL + 2iµ)± c
√

4k2 − c2(γL + 2iµ)2 − 4gρ

2
.

(76)

ω−
1,2(k) are rapidly decaying modes for all k and vanish in the nonrelativistic limit c → ∞,

while ω+
1,2(k) are slowly growing modes for k .

√
gρ and decaying modes for k &

√
gρ. In the

first stage of the ordering process, ω+
1,2(k .

√
gρ) are the most important modes. The time

scale of the growth is t0 ∼ (Im[ω+
1,2(k)])

−1 ∼ (gρ−k2)−1/2 and the mean-field approximation

breaks down beyond it.
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2. Irrelevance of the reconnection rule

Figure 27 shows the vortex loop configurations at four instants soon after the quench.

One sees from the pictures that the reconnection rule used to build the vortex loops becomes

irrelevant relatively soon, as the configurations in the upper and lower panels in the column

(c) are very similar and in (d) are identical.

(a) (b) (c) (d)

FIG. 27. (Color online.) Snapshots of the vortex configurations at (a) t = 2, (b) t = 3, (c) t = 4,

and (d) t = 5, after an instantaneous quench at t = 0 from equilibrium at 2 Tc. We plot all

vortex line elements at the centers of plaquettes with non-zero flux (the total system linear size

is L = 40). The vortex line elements are shown in grey (blue) in the black background and the

longest vortex lines in each image are highlighted in light grey (yellow). The configurations are

generated with the underdamped Langevin equation (20) running at T = 0. The maximal and

stochastic line reconnection criteria were used in the upper and lower panels, respectively. We note

that while they influence the vortex tangle at the initial state, the rule used to link the vortex

elements becomes irrelevant after a very short time scale, t ≃ 4.
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C. The dynamic correlation length

After a transient, the system is expected to enter a dynamic scaling regime [31] char-

acterised by a growing length scale, ξd(t) ≃ t1/zd . How soon or not this is achieve will

be discussed in the following subsections; for the moment we assume the scaling regime

established and we study global correlation functions and observables within its framework.

The dynamic exponent in the low temperature phase, zd, is different from the one found

in quenches to the critical point that, in turn, coincides with the equilibrium critical one zeq

discussed in Sec. IIID. We will now determine zd.

The dynamic growing length, ξd(t), can be measured in different ways by exploiting

the dynamic scaling hypothesis [31]. Under this assumption, in the infinite size limit, the

space-time correlation function and the dynamic structure factor after a quench to very

low-temperatures should scale as

S(k, t) ≃ ξdd(t) Φ(kξd(t)) C(r, t) ≃ f

(

r

ξd(t)

)

. (77)

with Φ and f two scaling functions.

Figures 28 (a)-(d) show the dynamical correlation length ξd obtained from

S(k = 2π/ξd(t))

S(k → 0)
= 10−1, S(k → 0) ≡ 2S(∆k)− S(2∆k), (78)

a similar definition to the one used for the equilibrium correlation length ξeq in Eqs. (42). In

the algebraic regime, ξd(t) ≃ t1/zd , the estimated inverse dynamic exponents, 1/zd, are 0.43

for the overdamped Langevin equation (15), 0.50 for the underdamped Langevin equation

(20), 0.50 for the ultrarelativistic limit of the underdamped Langevin equation (21a), and

0.50 for the nonrelativistic limit of the underdamped Langevin equation (21b). We have not

observed an appreciable change in the value of zd by varying the increments in space and

time ∆x and ∆t in our algorithm for the overdamped evolution.

As we will show in Sec. VD, the exponents characterising the vortex density ρvortex decay,

and the growth of the dynamical correlation length ξd, are well related by ξd ∝ 1/
√
ρvortex

within numerical accuracy. Again, we obtain a weak discrepancy between our result for the

overdamped Langevin equation and the prediction; ξd ∝ t1/2 [36], and good agreement for

the other three underdamped Langevin equations. The slight disagreement with theory in

the numerical data for the overdamped dynamics was also observed in [38, 39]. We will give

a possible reason for it in Sec. VD.
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FIG. 28. (Color online.) The dynamical correlation length ξd against time t obtained from the

overdamped Langevin equation (15) (a), the underdamped Langevin equation (20) (b), the ultra-

relativistic limit of the underdamped Langevin equation (21a) (c) and the nonrelativistic limit of

underdamped Langevin equation (21b) (d) in systems with different system sizes given in the key.

The dashed line is t1/2 and the dotted line in (a) is t0.43 that executes an unexpected better fit to

the data at the measuring times.

At sufficient long times and for finite system sizes the growing length saturates. Satura-

tion is observed in the curves for L ≤ 100 when the curves depart from the power law and

reach a plateau. For L = 500 the saturation is pushed beyond the numerical time window.

We postpone the finite-size scaling analysis of the dynamic correlation length to Sec. VE.

D. Time-dependent vortex density

We now examine the phase ordering process from the point of view of the vortex dy-

namics. In Figs. 27 (a)-(d), we show snapshots of the vortex elements in the initial stage of
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evolution; 0 ≤ t ≤ 5. The two rows compare the loop configurations for the two reconnection

conventions for the same field configurations. We have already noted that while the loop

configurations are different at very short times, t = 2, 3, they are the same at the two latest

times, t = 4, 5. In both cases, the longest vortex present in the initial configuration breaks

up generating shorter vortex loops, the shortest vortex rings on the scale of the grid are

rapidly annihilated, and loops of finite but long length are still present during the evolution.
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FIG. 29. (Color online.) The time-dependent vortex density ρvortex(t). (a) overdamped Langevin

equation (15), (b) underdamped dynamics (20), (c) ultrarelativistic limit of the underdamped

Langevin equation (21a), and (d) nonrelativistic limit of the underdamped Langevin equation

(21b). The different curves in each panel are for different system and mesh sizes. The dashed

lines are t−1 and the dotted line in (a) is t−0.86 that, consistently with what we obtained for ξd(t),

provides a better fit to the data measured with overdamped dynamics.

Our next task is to examine how do the vortex dynamics depend on the evolution equa-

tion. Figures 29 (a)-(d) show the t-dependence of the averaged vortex density ρvortex as
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obtained from the Langevin equations (15), (20), (21a), and (21b), respectively. We calcu-

late ρvortex(t) from Eq. (64) by replacing the ensemble average 〈· · · 〉stat by an average over

1000 independent initial states in equilibrium at T = 2 Tc.

In the initial stage of evolution for 0 . t . 5, inertial effects are apparent in the behaviour

of ρvortex(t) for the underdamped dynamics and the ultrarelativistic limit independently of

the system size, as shown in Figs. 29 (b) and (c). These are absent in Figs. 29 (a) and (d)

with c→ ∞.

After a short transient of the order of t ≃ 5 for our system sizes, the vortex density enters

the proper scaling regime in which ρvortex(t) should be proportional to t−1 [31, 36]. The

numerical exponents are, however, weakly dependent on the type of Langevin equation; we

measure −0.86 for the overdamped Langevin equation (15) (a) (for comparison, the algebraic

decay t−1 is also shown in this figure), −1.0 for the underdamped Langevin equation (20)

(b), −1.0 for the ultrarelativistic limit of the underdamped Langevin equation (21a) (c),

and also −1.0 for the nonrelativistic limit of the underdamped Langevin equation (21b) (d).

The value −0.86 for the overdamped Langevin equation is similar the value −0.90(2) found

in [38, 39] using a cell-dynamics integration scheme. On the other hand, the underdamped

Langevin equation and its ultrarelativistic and nonrelativistic limits give values that are

much closer to the analytic ones.

We have calculated the dynamic correlation length and the vortex density using other

values of the time and space discretisation parameters and we found essentially the same

estimates for the exponent zd with deviation from the expected value zd = 2 for the over-

damped dynamics. We may ascribe the origin of this difference to the fact that with this

kind of dynamics the vortices are very soon diluted in the sample, for times 0 ≤ t . 1 see

Fig. 31, accordingly the dynamic growing length is much larger in this case than for the

other microscopic dynamics, and they cannot properly reach their own scaling regime.

The various curves in each panel in Fig. 30 correspond to different linear system sizes

given in the keys. The time lapse over which the dynamics remain in the dynamic scaling

regime is no more than a decade for L ≤ 100 and finite size effects are causing the departure

of these curves from a master one and their rapid bending down. This effect is pushed

beyond the maximal time simulated for the largest system size, L = 500.

The two complementary panels in Fig. 31 make manifest the differences induced by the
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(a) (b) (c) (d)

FIG. 30. (Color online.) Dynamic scaling regime. Snapshots of the vortex configurations at (a)

t = 5, (b) t = 10, (c) t = 15, and (d) t = 20, after an instantaneous quench at t = 0 from

equilibrium at 2 Tc. We plot all vortex line elements at the centers of the plaquettes with non-zero

flux (the total system linear size is L = 60). The vortex line elements are shown in grey (blue)

in the black background and the longest vortex lines in each image are highlighted in light grey

(yellow). The configurations are generated with the underdamped Langevin equation (20) running

at T = 0. The reconnection criterium is not important at this time scale.
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FIG. 31. (Color online.) Very short time scale dynamics. Differences induced by the various

microscopic dynamics in the vortex density and dynamic correlation length.

dynamic equations in the initial instants. The short-time evolution of ρvortex and ξd are the

fastest for the overdamped dynamics (15), intermediate for the nonrelativistic limit of the

underdamped equation (21b) and the slowest for underdamped (20) and ultrarelativistic

limit of this same equation (21a) that yield undistinguishable curves on these plots.

Figures 30 (a)-(d) display snapshots of the vortex elements in a system with linear size

L = 60 at times t = 5, 10, 15, 20, in the early stages of the dynamic scaling regime. In
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FIG. 32. (Color online.) Time-dependent number of vortex loops that are larger than the system

size N
(M,S)
system−size and time-dependent number of non-contractible vortex loops N

(M,S)
non−contractible. (a)

Overdamped Langevin dynamics (15), (b) underdamped dynamics (20), (c) ultrarelativistic limit

of the underdamped Langevin equation (21a), and (d) nonrelativistic limit of the underdamped

Langevin equation (21b). The interval over which the algebraic decay of ρvortex is apparent (see

Figs. 29 (a)-(d)) is shown in each panel.

all panels the longest vortex loop is highlighted. The percolation across the system of these

vortices is confirmed by counting the number of vortex loops the size of which is larger

than the system size N
(M,S)
system−size and the number of non-contractible loops N

(M,S)
non−contract.

Figures 32 (a)-(d) show N
(M,S)
system−size and N

(M,S)
non−contract in a system with linear size L = 100.

The power-law behaviour is apparent at 7 . t . 85 for the overdamped dynamics (panel (a)),

9 . t . 90 for the underdamped dynamics (panel (b)), 8 . t . 95 for the ultrarelativistic

limit of the underdamped dynamics (panel (c)), and 9 . t . 150 for the nonrelativistic

limit of the underdamped dynamics (panel (d)). In these power-law regimes, there is little

difference between the results for the maximal and stochastic criteria for connecting vortex-
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line elements. We also see that 1 or 2 vortices contribute to N
(M,S)
system−size and N

(M,S)
non−contract.

(a) (b) (c) (d)

FIG. 33. (Color online.) Late epochs. Snapshots of the vortex configurations at (a) t = 50, (b)

t = 100, (c) t = 150, and (d) t = 200, after an instantaneous quench at t = 0 from equilibrium

at 2 Tc. We plot all vortex line elements at the centers of the plaquettes with non-zero flux. The

system linear size is L = 100. The vortex line elements are shown in grey (blue) in the black

background and the longest vortex lines in each image are highlighted in light grey (yellow). The

configurations are generated with the underdamped Langevin equation (20) running at T = 0. At

these times the reconnection rule is irrelevant.

Figures 33 (a)-(d) show snapshots of the vortex elements in a system with linear size

L = 100 at four later times in the interval 50 ≤ t ≤ 200, that is to say, in the late stages

of the dynamic scaling regime and the final approach to equilibrium. At t = 50, panel (a),

ρvortex(t) enters the power-law t−1 regime. At t = 100, panel (b), the dynamics exit this

scaling regime. In panels (a) and (b) the size of the longest vortex loop is larger than the

system size. At t = 150 and 200 (panels (c) and (d)), ρvortex(t) decays faster than t
−1, and

there are only finite size contractible vortices left, which just shrink via the viscosity.

E. Finite-size scaling of ξd and ρvortex

Here, we discuss the finite-size scaling properties of the vortex density ρvortex(t) and the

dynamic correlation length ξd(t).

Since the dynamic correlation length grows in time as ξd(t) ∝ t1/zd in the infinite system

size limit, ρvortex(t) and ξd(t) are expected to be universal functions of t/Lzd in the late
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stages of evolution of finite size systems:

ξd
L

= fξ

(

t

Lzd

)

and ρvortex = fρ

(

t

Lzd

)

. (79)

Figures 34 (a) and (b) show ρvortex(t) and ξd(t) as functions of t/L
zd with zd = 2 obtained

from the underdamped Langevin equation at T = 0. Except for the initial stage of evolution

where another scaling variable characterising the approach to a percolating structure may

also be necessary [50], the universal behaviour is good.

We note that similar good universal properties have been obtained using the ultrarel-

ativistic limit of the underdamped Langevin equation (21a), and the nonrelativistic limit

of the underdamped Langevin equation (21b) at T = 0 with the same dynamical critical

exponent zd.

With the overdamped Langevin dynamics (15) at T = 0, we measured a different inverse

dynamical exponent 1/zd ≃ 0.43 in Fig 29 (a) for the vortex density and Fig. 28 (a) for the

dynamic correlation length. We then compare the scaling with the two inverse dynamical

exponents 1/zd = 0.5 and 0.43. Figure 35 shows ρvortex(t) (panels (a) and (b)) and ξd(t)

(panels (c) and (d) as functions of t/Lzd with zd = 2 (panels (a) and (c)) and 1/zd = 0.43

(panels (b) and (d)) and these dynamics. As expected, in Figs. 29 (a) and 28 (a), we find

better universal behaviour with 1/zd = 0.43, although the analytic expectation for 1/zd

is 0.5.
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FIG. 34. (Color online.) Finite-size scaling plots for (a) the vortex density ρvortex(t) and (b) the

dynamic correlation length with the dynamical exponent zd = 2 obtained from the underdamped

Langevin equation (20) at T = 0. The dashed lines show the power laws t−1 (a) and t1/2 (b).
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FIG. 35. (Color online.) Finite-size scaling plots of the vortex density ρvortex(t) (panels (a) and (b))

and the dynamic correlation length (panels (c) and (d)) obtained from the overdamped Langevin

equation (20) at T = 0. The dashed lines in panels (a), (c) and (d) are the predictions with the

dynamical exponent zd = 2 while the dotted lines in panels (c) and (d) display the algebraic growth

with exponent 1/zd = 0.43. Note the different scaling with L in the horizontal axis in the first and

second column.

F. Number densities of string lengths

We now analyse the statistics of vortex lengths in the course of time. We have already

identified three time regimes from the study of the growing length and vortex density:

transient, dynamic scaling, and saturation. We therefore study the vortex length statistics

in each of these regimes separately.
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1. Short-time transient

We first focus on the short-time transient, say t ≤ 7, just before ρvortex enters the scaling

regime in which the space-time correlation scales with the growing length and the vor-

tex density ρvortex relaxes algebraically. As already observed in the analysis of ρvortex the

reconnection rule and microscopic dynamics affect the observations during this transient.

Accordingly, we present the data for the stochastic and maximal criteria separately.
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FIG. 36. (Color online.) Early stages of evolution. Time dependent length number density

N (M)(l, t) in the initial stage of evolution, t = 1, 3, 5, 7 of the (a) overdamped Langevin dynamics

(15), (b) underdamped dynamics (20), (c) ultrarelativistic limit of the underdamped Langevin

equation (21a), and (d) nonrelativistic limit of the underdamped Langevin equation (21b). The

maximal reconnection rule was used here to identify the vortex loops. The linear system size is

L = 100. The dashed line is the power law l−α
(M)
L with α

(M)
L = 2.17, the dotted line the power l−1,

and the almost vertical peaks at the far right of the plot correspond to length scales that diverge

with the system size.
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Figure 36 shows the number of vortex loops with length l, i.e. N (M)(l, t), in the initial

stage of evolution obtained with the maximal criterium for vortex reconnection. We recall

that initially N (M)(l) is given by the (blue) data in Fig. 15 (a) with an exponential decay

for finite size loops and a very sharp peak at l ≃ L3.

First, we confirm that the dependence on the microscopic dynamics is very strong during

this initial period but it disappears at around t ≃ 7.

Second, we can see that the peak at long l is progressively washed out as the very long

loops break up into smaller ones.

Third, we observe that the curves at t ≃ 7 have three distinct length regimes with smooth

crossovers between them:

- an incipient smooth increase at very short lengths, say l . 20,

- an algebraic decay, ≃ l−2.17, at 20 . l . 200 and

- a slower algebraic decay, ≃ l−1, at 200 . l.

A very interesting feature of these curves is that the algebraic dependence after l & 20

for t = 3 − 7 strongly resembles the power-law decay of the number densities N (M,S)(l) at

the percolation temperature T
(M,S)
L shown in Fig. 18, N (M,S)(l, t) ∝ l−2.17, see the dashed

line included as a guide-to-the-eye in all panels. This fact suggests that the early dynamics

spontaneously takes the system close to a percolating state similar to the equilibrium one

at the percolation threshold T
(M)
L .

Another fact to remark is the disappearance of the peak at very large l (a feature of

the initial condition treated with the maximum rule that is absent from the data analysed

with the stochastic one) and the generation of the l−1 tail characteristic of fully-packed loop

models (that was absent initially for this recombination rule).

In order to check the scenario of the spontaneous approach to the percolating state, we

study the scaling of the large vortex loop weight as done in Fig. 19 with the same scaling

variable l̃(M) = l/LD
(M)
L and the fractal dimension D

(M)
L = d/(α

(M)
L − 1) ≃ 2.56 (see [50] for

a similar analysis of the quench dynamics of the 2d Ising model). Just after the quench,

around t = 1, the number density N (M)(l, t) is not universal with strong size-dependence. As

time elapses, the size-dependence gets weaker, and a scaling behaviour at large l establishes

at t ≃ 10 as shown in panel (d). We can therefore conclude that the system enters the

scaling regime around t ∼ 10, and that this value does not strongly depend on the exact

form of the Langevin equation. We note that the data for linear system size L = 40 slightly
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FIG. 37. (Color online.) Early stages of evolution. Finite-size scaling of the number density

N (M)(l, t) at (a) t = 1, (b) t = 4, (c) t = 7, and (d) t = 10 of the underdamped dynamics (20),

with the maximal reconnection rule to identify the vortex loops. The data are presented in a way

that selects the weight at very long l. The scaling variable is l̃(M) = l/LD
(M)
L .

deviates from the scaling behaviour.

Figure 38 shows N (S)(l, t) calculated with the stochastic criterium for vortex reconnec-

tions. We recall that initially, N (S) is given by the (blue) data in Fig. 15 (c) with a broken

algebraic decay with exponents 5/2 (Gaussian, lengths shorter than L2) and 1 (fully-packed,

very long). All panels demonstrate the development of three length-scale regimes in the

data-sets; again, very short lengths, l . 20, intermediate lengths, 20 . l . 200, and very

long lengths, l & 200, as for the maximal criterium. In the course of time, the very long-tail

remains proportional to l−1, as in the equilibrium data at high T . The intermediate regime

very soon acquires an algebraic decay that is numerically indistinguishable from the one at

the critical percolation point T
(S)
L , given by the exponent αL ≃ 2.17. The weight of the

number density at short loops is different, it increases with l and decreases with t, as for
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FIG. 38. (Color online.) Early stages of evolution. Time dependent length number densities

N (S)(l, t) in the initial stage of evolution, t = 1, 3, 5, 7 with (a) overdamped Langevin dynamics

(15), (b) underdamped dynamics (20), (c) the ultrarelativistic limit of the underdamped Langevin

equation (21a), and (d) the nonrelativistic limit of the underdamped Langevin equation (21b). In

all cases the stochastic reconnection rule was used to identify the vortex loops. The linear system

size is L = 100. The dark dashed line is the power law l−α
(S)
L with α

(S)
L = 2.17, the light dotted

line is the power law l−1 characterising the large scale statistics at high temperatures, and the

dashed-dotted line is the power law l−5/2 of the Gaussian random walks that characterise the finite

size loops at high temperature.

the maximal criterium. We reckon that already at t = 1 the Gaussian statistics of long

loops with l ≪ L2 present in the initial condition has disappeared and the algebraic one has

replaced it.

We end the analysis of the early dynamics by stating that, apart from the very specific

peak at very long l in the initial state with the maximum criterium that is soon erased

dynamically, the dynamic vortex tangle built with the two rules has the same statistical and
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geometric properties. The quantitative analysis of the system-size dependence of the time

needed to achieve the percolation structure at the intermediate length scales [50, 52] (that

we very roughly estimated to be a few time units here) is beyond the scope of this paper.
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FIG. 39. (Color online.) Dynamic scaling regime. Time dependent length number densities N(l, t)

in the early stages of the scaling regime, t = 10, 15, 20, 30 of the (a) overdamped Langevin

dynamics (15), (b) underdamped dynamics (20), (c) ultrarelativistic limit of the underdamped

Langevin equation (21a), and (d) nonrelativistic limit of the underdamped Langevin equation

(21b). We use here the maximal reconnection rule to identify the vortex loops, although this

choice is irrelevant in this regime. The dashed line is the power law l−αL with αL = 2.17, the

dotted line is the power law l−1, and we also include a line proportional to l for the statistics of

the shortest loops.
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2. Scaling regime

We now turn to the scaling regime in which the growing length and vortex density grow

and decay algebraically, respectively. As the recombination rule becomes irrelevant in this

time-regime, we simply omit the upper-scripts (M) or (S).
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FIG. 40. (Color online.) Dynamic scaling regime. Time dependent length number densities scaled

as t2N(l, t) as a function of l/t1/2 in the early stages of the scaling regime, t = 10, 15, 20, 30 of the

(a) overdamped Langevin dynamics (15), (b) underdamped dynamics (20), (c) ultrarelativistic limit

of the underdamped Langevin equation (21a), and (d) nonrelativistic limit of the underdamped

Langevin equation (21b). (The maximal reconnection rule was used here although this choice is

irrelevant at these times.)

Figure 39 shows the number density of vortex loops N(l, t) during the early stages of the

dynamic scaling regime 10 ≤ t ≤ 30. The short length scales, that we will see are bounded

from above by ξd(t), are weighted in such a way that N(l, t) ≃ l and the pre-factor decreases

with time. The algebraic behaviour N(l, t) ∝ l−2.17 at intermediate l, ξd(t) ≤ l ≤ L2, gets
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narrower as time elapses, while the l−1 tail at long l as seen in N (S)(l) in equilibrium at

high temperature, see Fig 15 (c), remains. At t = 30 and after, see Fig. 41, the algebraic

behaviour of N (M)(l, t) ∝ l−2.17 is almost totally wiped out while the N(l, t) ∝ l−1 tail has

support over shorter lengths than initially.
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FIG. 41. (Color online.) Late epochs - saturation. Time dependent length number densities N(l, t)

in the late stages of the scaling regimes t = 100, 200, 300, 400 of (a) overdamped Langevin dynamics

(15), (b) underdamped dynamics (20), (c) ultrarelativistic limit of the underdamped Langevin

equation (21a), and (d) nonrelativistic limit of the underdamped Langevin equation (21b), with

the maximal reconnection rule to identify the vortex loops, although this choice is irrelevant at

these times. In the insets the total number of loops and the number of non-contractible loops as

functions of time. The linear system size is L = 100.

The small l weight is clearly time dependent. In Sec. VG we conjecture that it is given

by

N(l, t) ≃ l

t5/2
. (80)

In Fig. 39 we included a straight line with the linear dependence l that gives a very good
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description of the data. In Fig. 40 we present data at times 10 ≤ t ≤ 30 in the form t2N(l, t)

against l/t1/2 and we check that the time dependence in Eq. (80) is also very well verified.

3. Late-time regime

Finally we study the very late regime in which just a few vortices are left in each sample,

see Fig. 33 (c) and (d), and dynamic scaling will soon break down.

Figure 41 shows the number of vortex loops N(l, t) at t = 100, 200, 300 and 400. At 100,

ρvortex is still in the power-law regime (see Fig. 29) while at longer times it has definitely left

it. The intermediate algebraic regime with power −2.17 has already disappeared. A region

slightly narrower than a decade with the power −1 remains at t = 50 and long lengths.

At t > 100 this power has also disappeared and there remains a (very noisy) single peak

structure, which reflects the existence of just a few rapidly shrinking vortex loops in the

samples. The insets display the total number of vortices and the number of non-contractible

vortex loops that decay in time towards zero in both cases.

G. Analytic derivation of the vortex-length number density

We now focus on the dynamics after the transient and before finite size effects lead to

saturation of the growing length (7 ≃ tp < t < tS ≃ 100).

We assume that after the transient tp, the length of each vortex is reduced at the same

rate as the dynamic correlation length ξd grows

l(t, lp) ≃ γv
√
ta − t , (81)

with γv a parameter, ta = tp + l2p/γ
2
v the annihilation time at which l(ta) = 0, and lp the

length of the vortex ring at tp, the time at the end of the transient (say, tp ≃ 7 in the

previous Section, but note that this time could be a function of the system size, as occurs

in the 2d Ising model [50, 54, 103] or the 2d voter model [52]).

We suppose that the vortices are sufficiently long and far apart that they evolve indepen-

dently of each other. Neglecting the fact that they break up and disappear in the course of

evolution we use

N(l, t) ≃
∫

dlpN(lp, tp) δ(l− l(t, lp)) (82)
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to obtain

N(l, t) ≃ l N(
√

γ2v(t− tp) + l2, tp)

[γ2v(t− tp) + l2]1/2
(83)

The key point is to keep the full form of the N evaluated at tp appearing in the numerator,

in such a way to include the two power laws. The double algebraic decay at t = 0 or tp are

well approximated by

N(l, tp) ≃ l−αL [cn1 (t) + cn2 (t)l
(αL−1)n]1/n . (84)

A sharp cross-over between the two power laws is obtained for large n (n = 6 is sufficient,

see Fig. 38). The cross-over takes place at l∗(t) ≃ [c1(t)/c2(t)]
1/(αL−1). If αL = 5/2, as for the

initial state, c1(0) ∝ L3 and c2(0) is a finite constant that ensure l∗(0) ≃ L2 and the limit

forms in Eq. (65). At tp the weight of the loops with l > l∗(tp) is not modified with respect

to the initial one, and c2(tp) = c2. The total number of loops diminishes in time but remains

O(L3) until the very late epochs [55]. For N as in Eq. (84), to leading order in L, and

ignoring constants, Nloop(t) =
∫

dl N(l, t) ≃ c1(t)
∫ l∗

l0
dl l−αL + c2(t)

∫ L3

l∗
dl l−1 ≃ c1(t)l

1−αL
0

that scales as L3 if c1(t) = L3c1(tp). According to Fig. 38, l∗(tp) < l∗(0).

Let us first focus on long length scales. From the numerator in Eq. 83 one estimates a

crossover at a dynamic length l∗(t), that is advected towards smaller scales as time evolves,

l∗(t) ≈
√

(c1(tp)/c2)1/(αL−1) − γ2v(t− tp) , (85)

as observed in the numerical data. We recover

N(l, t) ≃ c2 l
−1 at l ≫ l∗(t) (86)

independently of time. Instead, for l < l∗(t) we need to correct Eq. (83) to take into account

the annihilation of vortices with short length that implies Nloop(t) ≃ t−ζ , see the insets in

Fig. 41, and the consequent reduction of the averaged length size 〈l〉 ≃ t−ζ+1/2. We enforce

this scaling heuristically, by simply multiplying Eq. (83) by (γ2vt)
−ζ . Proceeding in this way,

and taking t≫ tp,

(γ2vt)
ζ+αL/2 N(l, t) ≃ c1(tp) l/(γ2vt)

1/2

[1 + l2/(γ2vt)]
(1+αL)/2

. (87)

Finally, this regime can also be split in two

(γ2vt)
ζ+

αL
2
N(l, t)

L3
≃







[l/(γ2vt)
1/2] l ≪ ξd(t)

[l/(γ2vt)
1/2]

−αL l ≫ ξd(t)
(88)
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For αL ≃ 2.17 and ζ ≃ 1.1, the exponent in the left-hand-side is close to 2, the value used

in the scaling checked in Fig. 40, as well as the linear growth of N as a function of l for

length-scales that are shorter than ξd, that is highlighted with a dashed line in Fig. 39.

This argument is crude as it treats the vortices as being independent. Still, it gives a

rather accurate description of the data in the intermediate time regime, see Fig. 40, for

lengths that are l ≪ L2.

VI. CONCLUSIONS

We presented a detailed study of the equilibrium properties and stochastic dynamic evo-

lution of relativistic bosons at finite chemical potential in three dimensions. We modelled

the system with a U(1)-invariant complex field theory and its dynamics with various non-

conserved order parameter equations of Langevin type. These models have been used to

describe, in various limits, properties of type II superconductors, magnetic materials and

aspects of cosmology and are thus of interest to a vast variety of physicists.

Let us start by listing what we have done in this paper and later briefly discuss our

results.

(i) We used four Langevin-like equations to study the statics and dynamics of the U(1)

complex field theory in three dimensions.

(ii) We characterised the geometrical and statistical properties of the vortex tangle in

equilibrium at all temperatures, paying special attention to the influence of the microscopic

dynamics and the two reconnection criteria.

(iii) We analysed the out of equilibrium relaxation after an infinitely rapid quench from

equilibrium above the thermodynamic instability to zero temperature and we analysed our

results in terms of dynamic scaling and the geometric structure of the evolving vortex net-

work.

The main conclusions drawn from the analysis above are the following.

(i) We demonstrated that the four microscopic dynamic equations show no difference

in the equilibrium states reached. Indeed, we revisited the equilibrium properties of the

model to establish the second order phase transition and its critical properties with the four

dynamic algorithms and we checked that they are all very accurate in finding the correct

criticality.

70



(ii) We explained the influence that the reconnection criteria can have on the statistical

properties of the vortex network.

(iii) We showed that at high temperatures the equilibrium vortex loop configurations

share the statistics of fully-packed loop models, with lines shorter than L2 behaving as

Gaussian random walks, and longer lines appearing with a weight proportional to l−1.

(iv) Moreover, we confirmed [28, 29] that the thermodynamic transition does not coin-

cide with the threshold for line percolation. We found that this geometric threshold and

independently of the reconnection rule, the algebraic decay of the number density of vor-

tex lengths is characterized by the exponent α
(M,S)
L ≃ 2.17 implying the fractal dimension

D
(M,S)
L = d/(α

(M,S)
L − 1) ≃ 2.56, the same values for the maximal and stochastic rules.

Next we turned to the analysis of the evolution after sudden quenches.

(v) We used the dynamic scaling hypothesis to extract the dynamic growing length from

the analysis of the dynamic structure factor. We found that all dynamic evolutions yield

data in good agreement with the expected dynamic exponent 1/zd = 1/2 apart from the

over-damped Langevin equation that obtains a smaller value 1/zd ≃ 0.43 for the length and

time-scales used. The fact that this equation overestimates zd had already been found in [39]

and we do not have a simple explanation for it.

Our main results concern the out of equilibrium evolution of the vortex tangle.

(vi) We showed that the network present in the initial state evolves towards a situation

in which the strings present three length-scale regimes: loops that are shorter than the

growing length ∆x ≪ l ≪ ξd(t) = t1/2, loops that are longer than the growing length but

still shorter than L2, ξd(t) ≪ l ≪ L2, and very long loops L2 ≪ l, behave very differently.

In the first length-scale regime the lines feel the microscopic dynamics, they are smooth

curves in 3d space, and the length distribution satisfies dynamic scaling with respect to

the growing length ξd ≃ t1/zd . In the intermediate length regime the length statistics is

very close, actually indistinguishable from, the one at the geometric threshold (although the

evolution is done at zero temperature) and the lines behave as self-seeking random walks,

in the sense that their fractal dimension is smaller than 2. In the very long length regime

the statistics is the one of the longest loops in fully-packed loop models.

(vii) Finally, we gave a (rough) analytic argument to derive the functional form of the

number density of vortex lengths during the time-evolution of the system.

We close this part by stressing that we presented an exhaustive comparison between the
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evolution engendered and stationary state reached by the four dynamic equations explained

in the Introduction that we called overdamped, relativistic, ultrarelativistic and non rela-

tivistic. Other possibilities for the microscopic equations are also interesting. Instead of

the standard Langevin dynamics that we used, for which the charges listed in Sec. II B are

no longer conserved, one could use other kinds of dynamic equations that conserve some

of these. For instance, one could use an adaptative thermostat that conserves the energy.

For these dynamics the equilibrium properties must be the same but the dynamics should

be different. Other kinds of conserved dynamics, engineered to conserve conserved charges

could also be worth investigating.

This work suggests a number of possible lines for future research. The shape of the

individual filaments could be examined by computing, for example, the local curvature and

torsion (see, e.g., [13] for this kind of analysis in random superposition of waves). We did

not give a quantitative estimate of the system-size dependence of the time needed to reach

the regime in which vortices with intermediate lengths have algebraic statistics, numerically

indistinguishable from the ones at the percolating threshold (as did in [50] for the 2d Ising

model or in [52] for the voter model where the critical percolation state is reached after a

time tp ≃ Lzp with zp an exponent that in these cases depends on the microscopic dynamics

and the lattice geometry, and satisfies zp < zd with, for instance, zp = 1/2 for the 2d Ising

model with Glauber dynamics on the square lattice). This possibly diverging time-scale

would give rise to a new length-scale to take into account in corrections of dynamic scaling,

as applied to the description of correlation functions [50]. In the present case, we may guess

that the time needed to reach the critical statistics seen in the numerics, also depends on

the microscopic dynamics with different behaviour in the over damped case compared to the

other three cases [95]. In a separate publication we will present the analysis of the dynamics

after finite-rate quenches [96]. We will follow the analysis in [97, 98] to characterise the

number of topological defects and their statistical properties out of equilibrium. Quenched

randomness is known to modify the relaxation dynamics of single (directed) elastic lines [99,

100] and ensembles of such lines in interaction [101, 102]. The effect of quenched disorder

on the dynamics of domain walls in 2d coarsening systems [45, 103] has interesting universal

properties with respect to the clean limit. An investigation of the effect of random fields

and energies in models with loops is also an interesting line of research. The effect of

external potentials, as the ones used to Bose-Einstein condensates, should also be a relevant
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case of study [104, 105]. Finally, we think that these results are prompt for experimental

observation [22, 106, 107].

Appendix A: Fokker-Planck

Here, we prove that the (uncommon) underdamped Langevin equation (19) takes the sys-

tem to the equilibrium ensemble average in Eq. (22). We consider the general real functional

f(ψ, ψ∗, φ, φ∗). The Ito’s lemma gives

df =
δf

δψ
dψ +

δf

δψ∗
dψ∗ +

δf

δφ
dφ+

δf

δφ∗
dφ∗ + 2γLT

δ2f

δφδφ∗
dt. (A1)

Introducing the probability density functional P (ψ, ψ∗, φ, φ∗, t) we obtain

∂

∂t

∫

Dψ Dψ∗ DφDφ∗ fP

=

∫

Dψ Dψ∗ DφDφ∗

{

c2
δf

δψ
(φ+ iµψ) + c2

δf

δψ∗
(φ∗ − iµψ∗)

− δf

δφ

[

δH

δψ∗
+ γLc

2(φ+ iµψ)

]

− δf

δφ∗

[

δH

δψ
+ γLc

2(φ∗ − iµψ∗)

]

+ 2γLT
δ2f

δφδφ∗

}

P

=

∫

Dψ Dψ∗ DφDφ∗ f

{

− c2(φ+ iµψ)
δ

δψ
− c2(φ∗ − iµψ∗)

δ

δψ∗
+ 2γLc

2

+

[

δH

δψ∗
+ γLc

2(φ+ iµψ)

]

δ

δφ
+

[

δH

δψ
+ γLc

2(φ∗ − iµψ∗)

]

δ

δφ∗
+ 2γLT

δ2

δφδφ∗

}

P.

Imposing that this relation holds for arbitrary f , we obtain the Fokker-Planck equation

∂P

∂t
=

[

− c2(φ+ iµψ)
δ

δψ
− c2(φ∗ − iµψ∗)

δ

δψ∗
+ 2γLc

2

+

{

δH

δψ∗
+ γLc

2(φ+ iµψ)

}

δ

δφ
+

{

δH

δψ
+ γLc

2(φ∗ − iµψ∗)

}

δ

δφ∗
+ 2γLT

δ2

δφδφ∗

]

P,

with the steady solution P ∝ e−H/T .

Appendix B: Dependence on the discretisation mesh

Under the scale transformation x → λx the energy functional (14) changes as
∫

ddx

{

|∇ψ|2 − gρ|ψ|2 + g

2
|ψ|4

}

dx→λdx−→ λd−2

∫

ddx

{

|∇ψ|2 − λ2gρ|ψ|2 + λ2g

2
|ψ|4

}

(ψ(x) → ψ(λx)). Therefore, we obtain the same statistical properties for a model with

space rescaled as x → λx, and parameters transformed as g → g/λ2, and T → λ2−dT .
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In the main text we called ∆x the space discretization mesh. The equilibrium correlation

length at T = 0 in the mean-field approximation is ξ = (gρ)−1/2. In the limit in which the

ratio between these two parameters squared, σ = ∆x2/ξ2 = (∆x)2gρ, approaches infinity,

the continuum model approaches the 3d XY model in which the modulus of the field is

fixed to ρ [29]. The effective temperature felt by the model is ∆x2−dT . This model was

simulated in [28] where it was found that the vortex density ρvortex is an increasing function

of temperature T at fixed lattice spacing ∆x. Therefore, ρvortex should also increase for finer

spatial resolution at fixed temperature. We expect the same effect for the field theory at

finite σ.

Appendix C: Averaged vortex density in the infinite temperature limit

Here, we consider the averaged vortex density ρvortex in the limit of infinite temperature

T → ∞. The flux vP across the square plaquette P , with vertices at the points A, B, C, D,

is

vP =
1

2π

[

Im log

(

ψB

ψA

)

+ Im log

(

ψC

ψB

)

+ Im log

(

ψD

ψC

)

+ Im log

(

ψA

ψD

)]

≡ 1

2π
(θAB + θBC + θCD + θDA),

(C1)

with the complex field ψX ≡ |ψX |eiθX at the positions X = A, B, C, and D. θXY is the

phase differences θXY ≡ θY − θX + FXY = Im log(ψY /ψX) of the complex field ψ at the

positions X and Y . The phases θX and θY are defined in the range (−π, π]. The function

FXY has the same form as FAB in Eq. (62) and the phase difference θXY is also defined in the

range (−π, π]. In the limit of infinite temperature T → ∞, the phases −π < θX,Y ≤ π take

uniformly distributed random values between −π and π, i.e., PθX(θX) = PθY (θY ) = 1/(2π),

independently of the positions X and Y , where PθX (θX) (PθY (θY )) is the probability density
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for θX (θY ). The probability density PθXY
(θXY ) for the phase difference θXY becomes

PθXY
(θXY ) =

∫ π

−π

dθX PθX (θX)

∫ min[π+θX ,π]

max[−π+θX ,−π]

dθY PθY (θY )δ(θXY + θX − θY )

+

∫ π

0

dθX PθX (θX)

∫ min[−π+θX ,π]

max[−2π+θX ,−π]

dθY PθY (θY )δ(θXY − 2π + θX − θY )

+

∫ 0

−π

dθX PθX (θX)

∫ min[2π+θX ,π]

max[π+θX ,−π]

dθY PθY (θY )δ(θXY + 2π + θX − θY )

=
1

4π2

{

∫ 0

−π

dθX

∫ π+θX

−π+θX

dθY δ(θXY + θX − θY )

+

∫ π

0

dθX

∫ π+θX

−π+θX

dθY δ(θXY + θX − θY )

}

=
1

2π
.

(C2)

As a result, the phase differences θXY also take uniformly distributed random values be-

tween −π and π independently of the positions X and Y . (Note that PθXY
(θXY ) =

(2π − |θXY |)/(4π2) when the range of θXY is not −π < θXY ≤ π but −2π < θXY ≤ 2π

with FXY = 0 for arbitrary θX and θY .)

We now consider the flux vP in Eq. (C1). Since θDA takes the form in Eq. (63), the

condition vP = 0, i.e., that no vortex pierces the plaquette, is −π ≤ θAB + θBC + θCD < π,

and it occurs with probability

P (vP = 0) =

∫ π

−π

dθAB PθAB
(θAB)

∫ π

−π

dθBC PθBC
(θBC)

∫ min[π−(θAB+θBC),π]

max[−π−(θAB+θBC),−π]

dθCD PθCD
(θCD)

=
1

8π3

{

∫ π

−π

dθAB

∫ −θAB

−π

dθBC

∫ π

−π−(θAB+θBC)

dθCD

+

∫ π

−π

dθAB

∫ π

−θAB

dθBC

∫ π−(θAB+θBC)

−π

dθCD

}

=
2

3
. (C3)

The averaged vortex density ρvortex equals the probability that a vortex pierces a plaquette,

and ρvortex = 1− P (vP = 0) = 1/3, in the limit of the infinite temperature.

ACKNOWLEDGMENTS

We thank I. Carusotto, J. T. Chalker, P. Comaron, F. Larcher, M. Picco, N. P. Proukakis

and H. Takeuchi for very useful discussions. This research was supported in part by the

75



National Science Foundation under Grant No. PHY11-25915 and by KAKENHI (22740219,

22340114, and 22103005), Global COE Program “the Physical Sciences Frontier”, the Pho-

ton Frontier Network Program, MEXT, Japan, and the IRSES European Project “SoftAc-

tive”. LFC is a member of the Institut Universitaire de France.

[1] G. Ahlers, Chap. 2 in K. H. Bennemann and J. B. Ketterson (ed.): The Physics of Liquid

and Solid Helium, Part I (1976, John Wiley & Sons).

[2] A. Griffin, Excitations in a Bose-condensed liquid (Cambridge University Press, Cambridge,

1993).

[3] P. Minnhagen, The two-dimensional Coulomb gas, vortex unbinding, and superfluid-

superconducting films, Rev. Mod. Phys. 59, 1001 (1987).

[4] S. Nemirovskii, Quantum turbulence: theoretical and numerical problems, Phys. Rep. 524,

85 (2013).

[5] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Vortices

in high-temperature superconductors, Rev. Mod. Phys. 66, 1125 (1994).

[6] P.-G. de Gennes and J. Prost, The physics of liquid crystals (Clarendon Press, Oxford, 1993).

[7] G. Bertotti, I. Mayergoyz, and C. Serpico, Nonlinear magnetization dynamics in nanosystems

(Elsevier, Amsterdam, 2009).

[8] M. B. Hindmarsh and T. W. B. Kibble, Cosmic strings, Rep. Prog. Phys. 58, 477 (1995).

[9] Topological defects and the non-equilibrium dynamics of symmetry breaking phase transitions,

Y. M. Bunkov and H. Godfrin eds. (Kluwer Academic Publishers, 1999).

[10] A. Vilenkin and E. P. S. Shellard, Cosmic strings and other topological defects, (Cambridge

Monographs on Mathematical Physics, Cambridge, 1994).

[11] M. Tsubota, K. Kasamatsu, and M. Kobayashi, Quantized vortices in superfluid helium and

Bose-Einstein condensates, Novel Superfluids, ed. K. H. Bennemann and J. B. Ketterson,

Vol. 1, chapter 3, p. 156-252 (Oxford Univ. Press, Oxford, 2013).

[12] K. O’Holleran, M. R. Dennis, F. Flossmann, and M. J. Padgett, Fractality of lights darkness,

Phys. Rev. Lett. 100, 053902 (2008).

[13] A. J. Taylor and M. R. Dennis, Geometry and scaling of tangled vortex lines in three-

dimensional random wave field, J. Phys. A 47, 465101 (2014).

76



[14] M. V. Berry, Regular and irregular semiclassical wave functions, J. Phys. A 10, 2083 (1977).

[15] G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, and D. Vautherin, The transition temperature
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