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Université Paris-Saclay, 91191, Gif-sur-Yvette, France

Abstract

In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few

noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-

optimal inference procedure for a model where the matrix to be recovered is a product of random

matrices. The results that we obtain using the replica method describe the state evolution of the P-

BiG-AMP algorithm, recently introduced in [J. T. Parker and P. Schniter, IEEE Journal of Selected

Topics in Signal Processing 10, 795 (2016)]. We show the existence of different two types of phase

transition and their implications for the solvability of the problem, and we compare the results of

our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the

asymptotic replica equations for matrix compressed sensing are the same as those for a related but

formally different problem of matrix factorization.
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I. INTRODUCTION

Recovering a sparse or a low-rank signal from as few observations as possible is a class

of problems that attracted considerable attention in statistics and signal processing. Well-

known members of this class include compressed sensing [1] and or matrix completion [2].

Another important member of this class is the problem of matrix compressed sensing, where

one aims to recover a low-rank matrix X from a few noisy linear measurements. We give a

formal definition of the problem in Sec. I A. The matrix compressed sensing problem has a

range of interesting applications, including quantum state tomography [3], face recognition

[4], sensor localization [5], and many others [6]. We briefly discuss the first three applications

below.

In quantum state tomography, a mixed quantum state is represented as a square positive

semidefinite matrix X with unit trace. A pure state yields a rank 1 matrix, and an ap-

proximately pure state yields a low-rank matrix. An important practical problem is that of

recovering X from a set of linear measurements. Since the size of X grows exponentially with

the number of particles in the system, compressed sensing is useful to reduce the number of

measurements [3]. In face recognition, one can exploit the fact that, ideally, all images of a

face under varying illumination live in a 9-dimensional subspace (and this would be exactly

true if faces were convex Lambertian bodies) [7]. Matrix compressive sensing thus makes

it possible to recover a representation of a given face from a relatively small set of linear

measurements, each under different (and unknown) illumination conditions [4]. Such repre-

sentations can then be used directly in compressed-sensing based face recognition [8]. For

sensor localization, one can exploit the fact that the matrix X of pairwise distances between

sensors in a D-dimensional space has a rank of at most D+ 2. Thus, to save bandwidth and

energy, sensors could transmit a few random combinations of the distances to their neigh-

bors, rather than the full distance vectors, to a gateway node that uses compressive sensing

to reconstruct the full X [5]. Several other applications of matrix compressed sensing are

discussed in [6].

The main line of theoretical work related to matrix compressed sensing is based on min-

imizing the nuclear norm of the matrix (i.e. the sum of its singular values) subject to the

constraint that a set of linear measurements agree with the measured values [9, 10]. Nuclear

norm minimization is algorithmically tractable and provably recovers the unknown matrix
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for an interesting range of parameters. The nuclear norm is a common type of regulariza-

tion that encourages low-rank solutions. A rank R matrix X of dimension M × P can be

written as a product of two matrices X = UV> of sizes M × R and R × P . However, the

nuclear norm minimization approach does not handle straightforwardly the case when there

are additional structures (such as sparsity) on the factors U and V.

In the present paper we study the generalized matrix compressed sensing problem, where

general linear projections of X are observed through a noisy, and possibly non-linear, scalar

output channel. Our analysis is restricted to a probabilistic setting where the components

of the ground-truth factors U and V are i.i.d. random variables of known probability

distribution, and where the probabilistic nature of the scalar output channel is known. Under

such assumptions, the model is amenable to exact analysis via the replica method developed

in statistical physics [11, 12]. The results stemming from the replica method are in general

known to be in one-to-one correspondence with the analysis of message passing algorithms

designed to solve the problem in an optimal way, as illustrated for the compressed sensing

problem in [13], for matrix factorization in [14] and a number of other related problems. For

the matrix compressed sensing problem, such a message-passing algorithm, called P-BiG-

AMP, was derived and tested recently in [6]. Results of the replica method can hence also

be viewed as an asymptotic analysis of the performance of this algorithm for the assumed

model. We compare the results of the replica analysis to the performance of P-BiG-AMP

and indeed observe excellent agreement, as expected from previous results for other models.

Our analysis reveals a striking connection between the matrix compressed sensing problem

and the problem of matrix factorization as studied in [14–16]. These are two different

inference problems. In matrix compressed sensing we observe a set of linear projections

of the matrix X, whereas in matrix factorization we observe the elements of the matrix

X directly. Yet the replica analysis of the two problems yields equivalent equations and

hence the asymptotic behaviors of the two problems, including their phase transitions, are

closely linked. Similar links were already noticed between the nuclear-norm minimization

approaches to matrix compressed sensing and matrix denoising in [10], and between matrix

compressed sensing and matrix completion in [17].

Another main result of our work is establishing the existence of a large “hard but possible”

phase corresponding to very sparse U and V. This may come as a surprise, because in

compressed sensing, perfect recovery from very sparse signals is achievable from random
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initializations at very low measurement rates. We show that, in matrix compressed sensing,

only informed initializations allow perfect reconstruction at low measurement rates, even

with very sparse signals.

A. Definition of the problem

Let X ∈ RM×P be a matrix of low rank R < min(M,P ). It can thus be written as a

product of two smaller matrices: U ∈ RM×R and V ∈ RP×R,

X = UV>. (1)

The low-rank matrix compressed sensing problem consists in recovering X from a few noisy

linear combinations of its entries. We call A : RM×P → RL the linear operator, where

Z = A(X) ∈ RL (2)

and we call Y the measured version of Z after passing through a component-wise measure-

ment channel:

Y ∼ p0
Y |Z(Y|Z). (3)

This setting is shown in Fig. 1. The goal is to reconstruct U and V (or sometimes only X)

from the knowledge of Y.

We can rewrite (2) in the component-wise manner

∀l ∈ [1, L], zl =
M∑
µ=1

P∑
p=1

Aµpl xµp, (4)

where the coefficients Aµpl parameterize A. Notice that these coefficients define a 3-way

tensor A.

1. The probabilistic model and assumptions of our analysis.

In order to enable the asymptotic analysis (i.e. when M,P, L → ∞) via the replica

method we introduce the following probabilistic model for matrix compressed sensing.
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Sensing
pY |Z

X ∈ RM×P Z ∈ RL

Y ∈ RL

Z = A(X)

known

unknown

A : RM×P → RL

V ∈ RP×R

U ∈ RM×R

X = UV>
Product Mixing

FIG. 1. The setting of generalized matrix compressed sensing. A low-rank matrix X can be

decomposed into a product of two smaller matrices U and V. A linear operator A is applied to X,

producing an intermediary variable Z. A measurement Y of Z is obtained through a noisy channel.

The problem is closely linked to other inference problems: dropping the “mixing” block, one

recovers a generalized matrix factorization problem. Dropping the “product” block, one recovers

a generalized linear model.

• We assume that elements of U and V are sampled independently at random such that

U ∼
∏
µs

p0
U(uµs), V ∼

∏
ps

p0
V (vps). (5)

We assume the distributions p0
U and p0

V to have zero mean and respective variances

Q0
u and Q0

v of order one. These distributions might not be known exactly: instead,

we use zero-mean priors pU and pV believed to be close to p0
U and p0

V (in terms of

Kullback-Leibler divergence).

• We assume the output distribution p0
Y |Z to be separable

p0
Y |Z =

∏
l

p0
Y |Z(yl|zl) . (6)

In the inference we use a distribution pY |Z we believe to be close to p0
Y |Z (in terms of

Kullback-Leibler divergence).

• We assume the tensor A of the linear operator A to be normally distributed i.i.d.

elements with zero mean and variance 1/(RMP ), such that the elements of Z have

zero mean and variance Q0
uQ

0
v. A similar assumption is often made in compressed

sensing, which differentiates the problem from matrix factorization, in which A is the

identity.
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• We assume the dimensions M , P and L to be large, but their following ratios to be of

order one

αU =
L

RM
, αV =

L

RP
. (7)

On the other hand, R can be small.

2. Measures of recovery and symmetries of the problem

Given the estimates (Û, V̂, X̂) that an algorithm returns for (U,V,X), the following

mean squared errors quantify how close the estimates are from the real values:

MSEu =
‖U− Û‖2

F

MR
, MSEv =

‖V − V̂‖2
F

PR
, MSEx =

‖X− X̂‖2
F

LR
, (8)

where || · ||F is the Frobenius norm of a matrix. Note that as in matrix factorization, there

is an inherent ill-posedness when it comes to recovering the couple (U,V). As a matter of

fact, for any R × R invertible matrix C, the couple (UC,V (C−1)
>

) generates the same X

as (U,V). In some case, this symmetry can be lifted thanks to the distributions p0
U and p0

V ,

but this is not always the case and might nevertheless be cause of trouble. In that case, it

is possible to have a very low MSEx but high MSEu and MSEv.

In the setting where R = 1, U and Û are vectors and we can consider the following

definitions of normalized mean squared errors

nMSEu = 1−

∣∣∣U>Û∣∣∣
||U||2||Û||2

, nMSEv = 1−

∣∣∣V>V̂∣∣∣
||V||2||V̂||2

(9)

that take values between 0 and 1 and take into account all invariances of the problem: an

nMSE of 0 indicates perfect reconstruction up to the scaling invariance.

Note that the mentioned symmetry in the R > 1 case has to be taken into account in the

theoretical analysis of the problem (see (B6)) in order to obtain the best achievable MSEs.

In contrast, in the P-BiG-AMP algorithm the symmetry is broken spontaneously by the

choice of the initialization.

B. Notations

We use bold letters for vectors and matrices and non-bold letters for scalars. The elements

of a vector x are noted [x]i or xi. The operator � is used for component-wise multiplication
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of vectors or matrices. x−1, x2 and x> refer respectively to the component-wise inverse, the

component-wise square and the transpose of the vector (or matrix or tensor) x. If A is a

linear operator and A its tensor, we writeA2 for the linear operator associated to A2. We use

the notation ı ≡
√
−1. Estimators X̂ and x̂ of a variable X are the minimal mean squared

error (MMSE) estimators of estimated probability distribution functions P̂ (x) and p̂(x). We

note X̄ and x̄ the variances of these distributions and refer to them as uncertainties, as they

are a measure of the uncertainty of the estimators X̂ and x̂.

Using the tensor A, we can define two auxiliary linear operators AU : RP → RL×M and

AV : RM → RL×P such that

[AU(v)]lµ ≡
∑
p

Aµpl vp, (10)

[AV (u)]lp ≡
∑
µ

Aµpl uµ. (11)

We note x ∼ pX(x) a random variable x following the probability distribution pX . This

holds also for vectors and matrices: x ∼ pX(x). In that case, we say that pX(x) is separable

if each component xi of x is sampled independently from the others: ∀i, xi ∼ pXi(xi), which

we will note pX as well if the components are identically distributed.

We write f(x) ∝ g(x) when the functions f and g are equal up to a multiplying constant

that does not depend on x. We write K = O(1) (respectively K = O(M)) in order to signify

that K is of order 1 (respectively M).

Let us introduce some useful functions that will be used throughout the paper. We note

N (x; x̂, x̄) the normalized Gaussian with mean x̂ and variance x̄:

N (x; x̂, x̄) =
1√
2πx̄

e−
(x−x̂)2

2x̄ . (12)

In integrals, we note Dt the integration over a variable t with a standard normal distribution:

Dt = dtN (t; 0, 1). (13)

For any function h and integer i, we define the i-th moment of the product of h multiplied

by a Gaussian:

fhi (x̂, x̄) =

∫
dx xih(x)N (x; x̂, x̄). (14)
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With (14), we define the mean and the variance of the distribution h(x)N (x;x̂,x̄)

fh0 (x̂,x̄)
:

f̂h(x̂, x̄) =
fh1 (x̂, x̄)

fh0 (x̂, x̄)
, (15)

f̄h(x̂, x̄) =
fh2 (x̂, x̄)

fh0 (x̂, x̄)
− f̂h(x̂, x̄)2, (16)

It can be verified that following relations hold:

∂

∂x̂
fhi (x̂, x̄) =

1

x̄

(
fhi+1(x̂, x̄)− x̂fhi (x̂, x̄)

)
, (17)

∂

∂x̄
fhi (x̂, x̄) =

1

2x̄2

(
fhi+2(x̂, x̄)− 2x̂fhi+1(x̂, x̄)− (x̄− x̂2)fhi (x̂, x̄)

)
, (18)

∂

∂s
fhi (
√
st, ρ− s) = −e

t2

2

2s

∂

∂t

(
e−

t2

2
∂

∂t
fhi (
√
st, ρ− s)

)
. (19)

Finally, we introduce two further useful auxiliary functions:

ĝh(x̂, x̄) =
f̂h(x̂, x̄)− x̂

x̄
, ḡh(x̂, x̄) =

f̄h(x̂, x̄)− x̄
x̄2

. (20)

II. MESSAGE-PASSING ALGORITHM

In this paper, we will focus on an approximate message passing (AMP) algorithm. AMP

algorithms originated in studies of problems related to linear estimation [18–20]. For the

above probabilistic model of matrix compressed sensing, AMP was derived and called P-

BiG-AMP in [6]. In the following, we explain its principle and expose the main steps of its

derivation.

In Bayesian inference, one seeks to produce estimators Û and V̂ of U and V using the

following posterior probability:

p(U,V|Y,A) ∝ pU(U)pV (V)pY |Z
(
Y|A(UV>)

)
. (21)

As explained above, the probability distributions used in (21) ideally match the distribu-

tions (3, 5) used for the generation of the problem, in which case the inference is said to be

Bayes-optimal. However, it is often the case that these distributions are not known exactly:

in this case, the distributions used in (21) are assumptions that we make on the signals’

distributions and on the measurement channel. Inference is in that case suboptimal. How-

ever, in similar problems it has turned out that the results can still be satisfying despite

the mismatch between the priors and the actual probability distributions. Furthermore, it
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u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

v1,1

v2,1

v3,1

v3,1

v2,2

v3,2

v4,1 v4,2

y1

m1,2→1

m̃2→3,2

ñ1→1,1

n4,1→2

y2

FIG. 2. Factor graph associated to the probability distribution (22). Here, we used R = 2, M = 3,

P = 4, L = 2. Circle represent variables, squares represent constraints. The small squares represent

the priors on the variables u and v. Messages (m, m̃, n, ñ) are sent along each edge of the factor

graph.

is possible to parametrize the priors and learn the parameters during inference, for exam-

ple using an expectation maximization procedure [21], which has proven to give satisfying

results [13].

Starting from the posterior probability distribution (21), the two interesting questions

are how to evaluate this quantity and how to obtain estimators (Û, V̂) from it. For the

second point, we will use the minimal mean squared error (MMSE) estimator, as our goal

is to obtain low MSEs for (8). Concerning the first point, the problem in estimating (21)

is that it is a distribution in a high-dimensional space. Though it is possible to sample

from such a distribution using a Monte Carlo Markov chain, the procedure is very time

consuming. Therefore we resort to loopy belief propagation (BP) to estimate the marginals

of (21). Though not guaranteed to converge on this type of problems, BP has proven to be

very successful in a variety of similar inference problems [13, 22].

In order to derive the BP algorithm, we first rewrite (21) to make all variables appear

individually:

p(U,V, |Y,A) ∝
∏
µs

pU(uµs)
∏
ps

pV (vps)

∫ ∏
l

dzlpY |Z(yl|zl)δ
(
zl −

P∑
p=1

M∑
µ=1

Apµl

R∑
s=1

upsvµs

)
.

(22)

This probability distribution can be represented by the factor graph in figure 2. On it,

two types of message pairs (m, m̃) and (n, ñ) are sent to and from the u and v variables

respectively. As the roles of u and v are completely symmetric, we will only treat explicitly

9



the pair (m, m̃): the result can be generalized straightforwardly to (n, ñ). The message-

passing update equations read:

mt+1
µs→l(uµs) ∝ pU(uµs)

∏
l′ 6=l

m̃t
l′→µs(uµs), (23)

m̃t+1
l→µs(uµs) ∝

∫ ∏
ps′

dvps′n
t+1
ps′→l(vps′)

∏
(s′,µ′) 6=(s,µ)

duµs′m
t+1
µs′→l(uµs′)

 dzpY |Z(yl|z)δ(z −A(UV>)),

(24)

where the ∝ sign stands because (m, m̃) are probability distributions and must therefore be

normalized. These equations can be seen as fixed point equations or as iterative equations

that constitute an algorithm. For notational lightness, we will do the following calculations

without time indices. However, the correct time indices are crucial for the final algorithm

to converge.

A first simplification can be made by replacing the R(M+P ) integrals in (24) by a single

one over the variable z, which is the sum of R(M + P ) − 1 random variables. In BP, we

assume these random variables to be independent, which allows us to use the central limit

theorem. Calling ûµs→l and ūµs→l respectively the means and variances of the variable uµs

distributed according to the distribution mµs→l (and similarly for the variables vps), the

variable zl =
∑

µpA
µp
l

∑
s uµsvps is a Gaussian variable with mean and variance:

Ẑl =
∑
µps

Aµpl ûµs→lv̂ps→l, (25)

Z̄l =
∑
µps

(Aµpl )2
[
ūµs→lv̄ps→l + (ûµs→l)

2v̄ps→l + ūµs→l(v̂ps→l)
2
]

+
∑
ps

∑
µ 6=µ′

Aµpl A
µ′p
l v̄ps→lûµs→lûµs′→l

+
∑
µs

∑
p 6=p′

Aµpl A
µp′

l ūµs→lv̂ps→lv̂ps′→l. (26)

However, in eq. (24), uµs is fixed and thus (ûµs→l, ūµs→l) has to be replaced by (uµs, 0)

10



in (25,26). Defining (Ẑl→µs, Z̄l→µs) to be (Ẑl, Z̄l) with (ûµs→l, ūµs→l) = (0, 0) and

Flµs =
∑
p

Aµpl v̂ps→l, (27)

Hlµs = 2
∑
p

∑
µ′ 6=µ

Aµpl A
µ′p
l ûµs′→lv̄ps→l, (28)

Glµs =
∑
p

(Aµpl )2v̄ps→l, (29)

one can rewrite (24) with a single integral over a variable z following a Gaussian distribution.

Using the definition (14), the message (24) can be expressed as a simple function of the mean

and variance of this Gaussian:

m̃l→µs(uµs) ∝ fY0

(
Ẑl→µs + Flµsuµs, Z̄l→µs +Hlµsuµs +Glµsu

2
µs

)
. (30)

Here, we use the simplified notation fYi ≡ f
pY |Z
i . In appendix A, we show how by making a

Taylor expansion of this equation, we can express the message (23) as

mµs→l(uµs) ∝ p(uµs)N
(
uµs; Ûµs→l, Ūµs→l

)
, (31)

with

Ūµs→l = −
(∑
l′ 6=l

(
F 2
l′µs +Gl′µs

)
ḡl′→µs +Gl′µsĝ

2
l′→µs

)−1

, (32)

Ûµs→l = Ūµs→l
∑
l′ 6=l

Fl′µsĝl′→µs, (33)

where

ĝl′→µs = ĝY (Ẑl′→µs, Z̄l′→µs), ḡl′→µs = ḡY (Ẑl′→µs, Z̄l′→µs), (34)

and (ĝY (·, ·), ḡY (·, ·)) are simplified notations for the functions (ĝpY |Z (·, ·), ḡpY |Z (·, ·)) defined

in (20).

This allows us to have a simple expression for the previously introduced mean and variance

ûµs→l and ūµs→l of the message (31). Using the notations (15, 16),

ûµs→l = f̂U
(
Ûµs→l, Ūµs→l

)
, ūµs→l = f̄U

(
Ûµs→l, Ūµs→l

)
, (35)

where as before, we introduce the simplifying notation fU ≡ fpU . As noted previously,

the exact same thing can be done for the messages (n, ñ). The result is an iterative set of

equations on a set of means and variances(
Ẑt
·→·, Z̄

t
·→·, ĝ

t
·→·, ḡ

t
·→·, Û

t
·→·, Ū

t
·→·, û

t
·→·, ū

t
·→·, V̂

t
·→·, V̄

t
·→·, v̂

t
·→·, v̄

t
·→·

)
(36)
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that constitute the message-passing algorithm.

Algorithm 1 P-BiG-AMP for matrix compressed sensing
Initialization:

Initialize the means (û0, v̂0, ĝ0) and the variances (ū0, v̄0) at random according to the distributions

p0
U and p0

V .

Main loop: while t < tmax, calculate following quantities:

X̄t+1 = ūtv̄
>
t + ūt(v̂

2
t )
> + û2

t v̄
>
t

X̂t+1 = ûtv̂
>
t

Z̄t+1 = A2(X̄t+1)

Ẑt+1 = A(X̂t+1)− ĝt �
(
ūt (AU (v̂t)�AU (v̂t−1))> + (AV (ût)�AV (ût−1)) v̄>t

)
ḡt+1 = ḡY (Ẑt+1, Z̄t+1)

ĝt+1 = ĝY (Ẑt+1, Z̄t+1)

Ūt+1 = −
([
AU (v̂t)

2 +A2
U (v̄t)

]
ḡt+1 +A2

U (v̄t)ĝ
2
t+1

)−1

Ût+1 = Ūt+1 �
(
AU (v̂t)ĝt+1 − ût �AU (v̂t)

2ḡt+1 − ût−1 �A2
U (v̄t−1)ĝt+1 � ĝt

)
ūt+1 = f̄U (Ût+1, Ūt+1)

ût+1 = f̂U (Ût+1, Ūt+1)

V̄t+1 = −
([
AV (ût)

2 +A2
V (ūt)

]
ḡt+1 +A2

V (ūt)ĝ
2
t+1

)−1

V̂t+1 = V̄t+1 �
(
AV (ût)ĝt+1 − v̂t �AV (ût)

2ḡt+1 − v̂t−1 �A2
V (ūt−1)ĝt+1 � ĝt

)
v̄t+1 = f̄V (V̂t+1, V̄t+1)

v̂t+1 = f̂V (V̂t+1, V̄t+1)

Result : (Û, V̂, X̂, Ẑ) are the estimates for (U,V,X,Z) and (Ū, V̄, X̄, Z̄) are variances of these

estimates.

This algorithm can be further simplified using the so-called Thouless-Andersen-Palmer

(TAP) approximation introduced in the study of spin glasses [23]. We refer the reader to

other works in which these simplifications are treated in details [6, 14] and only give the

resulting algorithm 1, in which only local quantities and no messages are updated. This

algorithm is a special case of the “P-BiG-AMP” algorithm, introduced in [6].

As its counterparts for generalized linear models (GAMP [20]) or matrix factorization [14,
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24], algorithm 1 needs some adaptations that improve its convergence. One very simple

damping scheme that allows to improve convergence (though not guaranteeing it) consists

in damping a single variable:

Ût+1 ← βÛt+1 + (1− β)Ût, (37)

with β = 0.3, applied right after the calculation of Ût+1. A more involved and better

performing, adaptive damping strategy is presented in [25]. Notice that we defined the

operators AU and AV used in algorithm 1 as linear applications AU : RP → RL×M and

AV : RM → RL×P in (10,11): In the algorithm, we apply them row-wise on the matrices

they act on.

III. ASYMPTOTIC ANALYSIS

The problem of low-rank matrix compressed sensing can be analyzed with statistical

physics methods in the thermodynamic limit, i.e. when the dimensions of the signals M

and P and of the measurements L go to infinity. R can remain finite or go to infinity

as well. On the other hand, the ratios defined in (7) have to be fixed and finite. As in

related inference problems, the analysis is done with the replica method. The resulting state

evolution equations describe the behavior of the corresponding message-passing algorithm.

In this section, we will focus on the derivation of the replica analysis that results in a simple

set of state evolution equations. The analysis is very similar to the one of related inference

problems [12–14, 26].

A. Replica analysis: free entropy

Treating an inference problem as a statistical physics problem reduces to writing an energy

function corresponding to the problem and studying the free energy of the system. We are

thus interested in calculating a partition function. Here, the relevant partition function is

the normalization constant of the probability distribution (21):

Z(Y,A) =

∫
dU pU(U)

∫
dV pV (V)

∫
dzpY |Z (Y|z) δ

[
z−A(UV>)

]
. (38)

The free entropy logZ(Y,A) of a given instance can be calculated from the marginals

calculated by the belief propagation equations.
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However, one can also be interested in the average free entropy of this problem. In order

to do this, one needs to average logZ(Y,A) over all possible realizations of A and Y, for

which we use the replica method [12, 22]. It uses the identity

〈logZ〉 = lim
n→0

∂

∂n
〈Zn〉 (39)

where 〈·〉 denotes the average over A and Y, and relies on the fact that an expression for

Zn can be found for integer n. This expression is then used for calculating the n→ 0 limit

in (39). Though not rigorous, this method has proven to give correct results in a wide range

of problems [12, 22].

Let us therefore start by calculating

Z(Y,A)n =

∫ n∏
a=1

{
dUa pU(Ua)dVa pV (Va)dzapY |Z (Y|za) δ

[
za −A(Ua(Va)>)

]}
(40)

and its average with respect to the realizations of Y, generated by U0, V0 and A:

〈Zn〉 =

∫
dU0 p0

U(U0)dV0 p0
V (V0)dA p0

A(A)dY

dz0pY |Z(Y|z0)δ
[
z0 −A(U0(V0)>)

]
Z(Y,A)n. (41)

The indices a represent so-called replicas of the system and are initially independent from

each other. Carrying on the calculation requires to couple them. To be more precise,

each variable zal = [A(Ua(Va)>)]l is the sum of a large number of independent random

variables and can therefore be approximated as a Gaussian random variable. This was done

in section II already and allows again to considerably reduce the number of integrals caused

by the averaging over A. However, zal and zbl are not independent, as they are produced

with the same operator A. We show in appendix B that zl ≡ (z0
l . . . z

n
l ) is a multivariate

random Gaussian variable with mean 0 and covariance matrix Qz ≡ Qu � Qv, where the

elements of the matrices Qu and Qv are given by:

Qab
u ≡

1

M

∑
µ

uaµu
b
µ, Qab

v ≡
1

P

∑
p

vapv
b
p. (42)
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As in (41), these quantities can be anything, we have to integrate over them, such that

〈Zn〉 =

∫
dQu

∫ ∏
a

dUa paU(Ua)
∏
s
a≤b

δ

(
MQab

u −
∑
µ

uaµsu
b
µs

)
∫

dQv

∫ ∏
a

dVa paV (Va)
∏
s
a≤b

δ

(
PQab

v −
∑
p

vapsv
b
ps

)
L∏
l=1

[∫
dzlN (zl; 0,Qz)

∫
dylp

0
Y |Z(yl|z0

l )
n∏
a=1

pY |Z(yl|zal )

]
. (43)

Here, we use the convention that paU = pU if a 6= 0. We now see that the different replicas

are coupled via Qu and Qv in the first two lines. As we did with zl, we now introduce the

vector ups = (u0
ps . . . u

n
ps) (similarly for vµs) and we use the integral representation of the

δ function, introducing the conjugate variables Q̂u and Q̂v (details in appendix B), which

leads to

〈Zn〉 =

∫
dQudQ̂ue

−MR
2

Tr(QuQ̂u)

[∏
µs

duµspu(uµs)e
1
2
u>µsQ̂uuµs

]
∫

dQvdQ̂ve
−PR

2
Tr(QvQ̂v)

[∏
ps

dvpspv(vps)e
1
2
v>psQ̂vvps

]
L∏
l=1

[∫
dzlN (zl; 0,Qz)

∫
dylp

0
Y |Z(yl|z0

l )
n∏
a=1

pY |Z(yl|zal )

]
. (44)

Finally, we assume the distributions of uµs’s, vps’s and yl’s are the same for every coordinate.

Using the notations

pu(u) = p0
U(u0)

∏
a>0

pU(ua), pv(v) = p0
V (v0)

∏
a>0

pV (va), py|z(y|z) = p0
Y |Z(y|z0)

∏
a>0

pY |Z(y|za),

(45)

this leads to:

〈Zn〉 =

∫
dQudQ̂ue

−MR
2

Tr(QuQ̂u)
[
dupu(u)e

1
2
u>Q̂uu

]RM
∫

dQvdQ̂ve
−PR

2
Tr(QvQ̂v)

[
dvpv(v)e

1
2
v>Q̂vv

]RP
[∫

dzN (z; 0,Qz)

∫
dypy|z(y|z)

]L
. (46)
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In the “thermodynamic” limit, we take M , P and L going to infinity with constant ratios.

This motivates us to rewrite the last equation under the form

〈Zn〉 =

∫
dQuQ̂uQvQ̂ve

−MR[Sn(Qu,Q̂u,Qv ,Q̂v)] (47)

and to use the saddle point method, according to which

log (〈Zn〉) = −MR min
Qu,Q̂u,Qv ,Q̂v

Sn(Qu, Q̂u,Qv, Q̂v). (48)

We are therefore left with a minimization problem over the space of the matrices Qu, Q̂u,Qv

and Q̂v, representing 2(n+ 1)(n+ 2) parameters (as the matrices are symmetric).

B. Replica symmetric assumption

The idea of the replica symmetric assumption is that the n replicas introduced in (40)

are all equivalent, as they are purely a mathematical manipulation. Based on this, we make

the assumption that a sensible matrix Qu does not make any distinction between the n

introduced replicas. We therefore parametrize Qu and Q̂u in the following way:

Qu =


Q0
u mu · · · mu

mu Qu · · · qu
...

...
. . .

...

mu qu · · · Qu

 Q̂u =


Q̂0
u m̂u · · · m̂u

m̂u Q̂u · · · q̂u
...

...
. . .

...

m̂u q̂u · · · Q̂u

 (49)

and similarly for Qv, allowing to be left with 16 instead of 2(n+ 1)(n+ 2) parameters over

which to perform the extremization (48). Furthermore, Q0
u and Q0

v are in fact known, as

they are the second moments of the priors p0
U and p0

V , and therefore we set

Q̂0
u = 0, Q̂0

v = 0, (50)

and thus the extremization is only over 12 variables: (mu, m̂u, qu, q̂u, Qu, Q̂u) and (mv, m̂v, qv, q̂v, Qv, Q̂v).

Let us now look in more details at the function Sn to extremize:

Sn(Qu,Qv, Q̂u, Q̂v) ≡
[

1

2
TrQuQ̂u − log

(∫
dupu(u)e

1
2
u>Q̂uu

)]
+
M

P

[
1

2
TrQvQ̂v − log

(∫
dvpu(v)e

1
2
v>Q̂vv

)]
− L

RP
log

(∫
dzN (z; 0,Qz)

∫
dypy|z(y|z)

)
. (51)
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Thanks to the parametrization (49), the different terms have simple expressions. The traces

can simply be written as

TrQuQ̂u = 2nmm̂u + nQuQ̂u + n(n− 1)quq̂u, (52)

while we can use that

u>Q̂uu = Q̂0
u(u

0)2 + (Q̂u − q̂u)
∑
a>0

(ua)2 + q̂u(
∑
a>0

ua)2 + 2m̂uu
0
∑
a>0

ua (53)

and the Gaussian transformation eλα
2

=
∫

Dx eα
√

2λx in order to rewrite the integral∫
duPu(u)e

1
2
u>Q̂uu as

InU =

∫
Dt

∫
du0 p0

U(u0)

[∫
du pU(u)e

Q̂u−q̂u
2

u2+(t
√
q̂u+m̂uu0)u

]n
. (54)

The third line in (51) can be simplified as well. The first step consists in writing the coupled

Gaussian random variables z0 . . . zn as a function of n independent, standard Gaussian

random variables xa (a ∈ [1, n]) and one additional standard random variable t that couples

them all:

z0 =

√
Q0
z −

m2
z

qz
x0 +

mz√
qz
t, za =

√
Qz − qz xa +

√
qz t. (55)

Making the change of variables in the integral, we obtain the following expression for∫
dzN (z; 0,Qz)

∫
dyPy|z(y|z):

InZ =

∫
dy

∫
Dt

[∫
Dx0 p0

Y |Z(y|
√
Q0
z −

m2
z

qz
x0 +

mz√
qz
t)

] [∫
Dx pY |Z(y0|

√
Qz − qz x+

√
qz t)

]n
.

(56)

Looking back at the replica trick (39), we have to study the quantity limn→0
∂
∂n
Sn and

therefore the quantities

IU(Q̂) = lim
n→0

∂

∂n
log InU =

∫
Dt

[∫
du0 p0

U(u0) log

[∫
du pU(u)e

Q̂−q̂
2
u2+(t

√
q̂+m̂u0)u

]]
, (57)

as well as its equivalent IV (obtained by replacing all us by vs in (57)) and

IZ(Q) = lim
n→0

∂

∂n
log InZ =

∫
dy

∫
Dt fY,00 (

m√
q
t, Q0 − m2

q
) log

(
fY0 (
√
qt, Q− q)

)
, (58)
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where fY,0i ≡ f
p0
Y |Z

i . In the end, we obtain the free entropy φ as an extremum

φ = − extr

{(
mum̂u +

1

2
QuQ̂u −

1

2
quq̂u − IU(Q̂u)

)
+
M

P

(
mvm̂v +

1

2
QvQ̂v −

1

2
qv q̂v − IV (Q̂v)

)
− L

RP
IZ(Qu �Qv)

}
(59)

over a set of 12 variables. Note that the shift from a minimum in (48) to an extremum in

the equation above is a consequence to the hazardous n→ 0 limit in the replica method.

1. Equivalence to generalized matrix factorization

It is interesting to notice that if L = MP and R = O(M), this free entropy is the same

as in generalized matrix factorization [14]. This is not an entirely obvious fact, as the two

problems are different and that they are identical only if A is the identity: in generalized

matrix factorization, Z = X.

In order to perform the theoretical analysis of generalized matrix factorization as in [14],

it is important to take the limit R→∞. In fact, it is this limit that ensures that each entry

of Z is the sum of a large number of random variables, which allows to consider that it has

a Gaussian distribution. This is a condition both in the derivation of the message-passing

algorithm and in the replica analysis. For that reason, generalized matrix factorization

with finite R leads to different algorithms and theoretical bounds [27, 28]. However, in

matrix compressed sensing, the mixing of coefficients with A ensures that even if R = 1,

each element of Z can be considered to have a Gaussian distribution. Thanks to this, both

the algorithm and the analysis are the same, independently of R. Note that it would be

natural to write the free entropy (59) with no explicit R-dependence by introducing a global

measurement ratio α ≡ L
R(M+P )

.

Let us examine the case in which L = MP and R = O(M) and the two problems are

strictly equivalent. What differentiates the generalized matrix compressed sensing from the

generalized matrix factorization case is thatA is not the identity. However, asA’s coefficients

are Gaussian i.i.d. , it is with high probability a bijection when L = MP , and in this sense

the mixing step does not introduce any further difficulty into the problem compared to matrix

factorization. If L > MP , matrix compressed sensing is not “compressive” and therefore

easier than the corresponding matrix factorization problem, because more measurements are

available. If L < MP , matrix compressed sensing is “compressive”.
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C. State evolution equations

In the previous section, we have derived an expression of the free entropy as an extremum

of an action function over a set of parameters. In this section, we find self-consistent equa-

tions that hold at the values of these parameters extremizing the action. Furthermore, these

self-consistent equations can be iterated in order to numerically obtain the extrema of the

action.

In order to find the extremum in (59), we simply set all the partial derivatives of φ to 0.

The difficult part is finding expressions for the derivatives of the integrals IU , IV and IZ ,

which we detail here. First we do the calculation for IU .

∂

∂Q̂u

IU(Q̂u) =

∫
Dt

∫
du0p0

U(u0)

∫
du pU(u)u2e

Q̂u−q̂u
2

u2+(t
√
q̂u+m̂uu0)u∫

du pU(u)e
Q̂u−q̂u

2
u2+(t

√
q̂u+m̂uu0)u

,

∂

∂q̂u
IU(Q̂u) =

∫
Dt

∫
du0p0

U(u0)

∫
du pU(u)

(
−u2

2
+ tu

2
√
q̂u

)
e
Q̂u−q̂u

2
u2+(t

√
q̂u+m̂uu0)u∫

du pU(u)e
Q̂u−q̂u

2
u2+(t

√
q̂u+m̂uu0)u

,

∂

∂m̂u

IU(Q̂u) =

∫
Dt

∫
du0u0p0

U(u0)

∫
du pU(u)u e

Q̂u−q̂u
2

u2+(t
√
q̂u+m̂uu0)u∫

du pU(u)e
Q̂u−q̂u

2
u2+(t

√
q̂u+m̂uu0)u

. (60)

If we inject these expressions into the extremization equations of φ with respect to Q̂u, q̂u, m̂u

and use the update functions defined in (14)-(16), we obtain

mu =

∫
Dt

∫
du0 u0p0

U(u0)f̂U
(√

q̂ut+ m̂uu
0

q̂u − Q̂u

,
1

q̂u − Q̂u

)
, (61)

Qu − qu =
1√
q̂u

∫
Dt t

∫
du0p0

U(u0)f̂U
(√

q̂ut+ m̂uu
0

q̂u − Q̂u

,
1

q̂u − Q̂u

)
, (62)

Qu =

∫
Dt

∫
du0p0

U(u0)

[
f̄U
(√

q̂ut+ m̂uu
0

q̂u − Q̂u

,
1

q̂u − Q̂u

)
+

(
f̂U
(√

q̂ut+ m̂uu
0

q̂u − Q̂u

,
1

q̂u − Q̂u

))2
]
.

(63)

These equations can be further simplified by using the transformation t ← t + m̂√
q̂
u0 and

integrating by part eq (62):

mu =

√
q̂u
m̂2
u

∫
dt fU,01

(√
q̂u
m̂u

t,
q̂u
m̂2
u

)
f̂U
( √

q̂ut

q̂u − Q̂u

,
1

q̂u − Q̂u

)
, (64)

Qu − qu =

√
q̂u
m̂2
u

∫
dt fU,00

(√
q̂u
m̂u

t,
q̂u
m̂2
u

)
f̄U
( √

q̂ut

q̂u − Q̂u

,
1

q̂u − Q̂u

)
, (65)

qu =

√
q̂u
m̂2
u

∫
dt fU,00

(√
q̂u
m̂u

t,
q̂u
m̂2
u

)[
f̂U
( √

q̂ut

q̂u − Q̂u

,
1

q̂u − Q̂u

)]2

, (66)
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and the same equations hold replacing u by v.

Let us now come to the derivatives of IZ . To calculate them, we use the identity (19),

taking s = q or s = m2

q
. After an integration by parts, we obtain

∂

∂m
IZ(Q) =

1

m

∫
dy

∫
Dt

[
∂
∂t
fY,00 ( m√

q
t, Q0 − m2

q
)
] [

∂
∂t
fY0 (
√
qt, Q− q)

]
fY0 (
√
qt, Q− q) , (67)

∂

∂q
IZ(Q) = − 1

2q

∫
dy

∫
Dt

[
∂
∂t
fY0 (
√
qt, Q− q)

fY0 (
√
qt, Q− q)

]2

fY,00 (
m√
q
t, Q0 − m2

q
), (68)

∂

∂Q
IZ(Q) =

∫
dy

∫
Dt fY,00 (

m√
q
t, Q0 − m2

q
)

[
∂
∂Q
fY0 (
√
qt, Q− q)

fY0 (
√
qt, Q− q)

]
. (69)

Injecting these expressions into the extremization equations of φ with respect to Q, q,m, we

obtain

m̂ =
1

m

∫
dy

∫
Dt

[
∂
∂t
fY,00 ( m√

q
t, Q0 − m2

q
)
] [

∂
∂t
fY0 (
√
qt, Q− q)

]
fY0 (
√
qt, Q− q) , (70)

q̂ =
1

q

∫
dy

∫
Dt

[
∂
∂t
fY0 (
√
qt, Q− q)

fY0 (
√
qt, Q− q)

]2

fY,00 (
m√
q
t, Q0 − m2

q
), (71)

Q̂ = 2

∫
dy

∫
Dt fY,00 (

m√
q
t, Q0 − m2

q
)

[
∂
∂Q
fY0 (
√
qt, Q− q)

fY0 (
√
qt, Q− q)

]
, (72)

and remembering that m = mumv, q = quqv, Q = QuQv and the definitions (7):

m̂u = αUmvm̂, q̂u = αUqv q̂, Q̂u = αUQvQ̂, (73)

m̂v = αVmum̂, q̂v = αV quq̂, Q̂v = αVQuQ̂. (74)

The equations (64,65,66) along with their equivalents for v, the equations (70,71,72)

and (73,74) constitute a closed set of equations that hold at the extrema of φ in equa-

tion (59).

When they are iterated, they constitute the so-called state evolution equations. These

can also be obtained by the analysis of the BP algorithm and are known to accurately

describe the algorithm’s behavior when the replica symmetric hypothesis is indeed correct.

As noted before, if L = MP , these state evolution equations are identical to the ones in

matrix factorization [14]. Therefore, they reduce to the state evolution of GAMP when U

is known, which corresponds to fixing mu = qu = Qu = Q0
u in the equations.
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D. Bayes-optimal analysis

Until now, we have not supposed exact knowledge of the true signal distributions and of

the true measurement channel. When this is the case, the state evolution equations greatly

simplify because of the so-called Nishimori conditions [29]. In our case, these ensure that

following equalities hold:

Q = Q0, Q̂ = 0, m = q, m̂ = q̂ (75)

both for u and v. Then, we only need to keep track of the variables (mu, m̂u,mv, m̂v), and

the state evolution is obtained by choosing initial values for (m0
u,m

0
v) and iterating for i ≥ 0

the equations

m̂i+1 =
1

mi
um

i
v

∫
dy

∫
Dt

[
∂
∂t
fY0 (
√
mi
um

i
vt, Q

0
uQ

0
v −mi

um
i
v)
]2

fY0 (
√
mi
um

i
vt, Q

0
uQ

0
v −mi

um
i
v)

, (76)

mi+1
u =

1√
αUmi

vm̂
i+1

∫
dt

[
fU1 ( t√

αUmivm̂
i+1
, 1
αUmivm̂

i+1 )

]2

fU0 ( t√
αUmivm̂

i+1
, 1
αUmivm̂

i+1 )
, (77)

mi+1
v =

1√
αVmi

um̂
i+1

∫
dt

[
fV1 ( t√

αVmium̂
i+1
, 1
αVmium̂

i+1 )

]2

fV0 ( t√
αVmium̂

i+1
, 1
αVmium̂

i+1 )
, (78)

until convergence. From mu and mv, one can simply deduce the mean squared errors by the

following relations:

MSEu = Q0
u −mu, MSEv = Q0

v −mv, MSEx = Q0
uQ

0
v −mumv. (79)

The initialization values (mu, m̂u,mv, m̂v) indicate how close to the solution the algorithm

is at initialization. In case of a random initialization of the algorithm, the expected initial

overlaps m0
u and m0

v are of order 1/M and 1/P respectively, and they should therefore be

set to these values (or less) in the state evolution equations.

Note that state evolution run with matching priors without imposing the Nishimori condi-

tions (75) should in principle give the exact same results as the Bayes-optimal state evolution

analysis presented above, and thus naturally follow the so-called “Nishimori line” defined

by (75). However, as shown in [30], the Nishimori line can be unstable: In that case, nu-

merical fluctuations around it will be amplified under iterations of state evolution that will
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thus give a different result than its counterpart with imposed Nishimori conditions. This

instability of the Nishimori line seems to be the reason why algorithm 1 as well as others of

the same type do not converge without damping of the variables.

IV. CASE STUDY

In this section, we focus on one specific setting for which the state evolution equations

are practical to implement. An analysis of their fixed points leads to an understanding of

different phases and of the phase transitions between them.

We look at the setting in which both U and V follow a Bernoulli-Gauss distribution:

pU(u) = (1− ρu)δ(u) + ρuN (u; 0, 1), (80)

pV (v) = (1− ρv)δ(v) + ρvN (v; 0, 1), (81)

and the measurements are taken through an additive white Gaussian noise (AWGN) channel:

∀l ∈ [1, L], Yl = [A(UVT )]l + ξl, with ξl ∼ N (ξl; 0,∆). (82)

Note that most previous works [9, 31–33] consider this channel. For the AWGN channel the

equation (76) has a simple analytical expression:

m̂i+1 =
1

∆ + ρuρv −mi
um

i
v

. (83)

Further simplifying the setting to the special case M = P and ρu = ρv = ρ, the Bayes

optimal state evolution equations (76-78) can be written as one single equation

m =

√
∆ + ρ2 −m2

αum

∫
dt

[
fU1 (
√

∆+ρ2−m2

αum
t, ∆+ρ2−m2

αum
)
]2

f0(
√

∆+ρ2−m2

αum
t, ∆+ρ2−m2

αum
)

, (84)

in which the iteration-time indices of m, i (left hand side) and i − 1 (right hand side), are

left out for better legibility. We can define a global measurement rate

α ≡ L

2MR
=
αu
2
, (85)

which is the natural quantity to compare ρ to.
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A. Phases and phase transitions

As in compressed sensing or in matrix factorization, the analysis of the free entropy and

state evolution equations reveals the existence of different phases in which the difficulty of

the problem is different. In our case study, the free entropy φ has the following expression:

φ(m) = −mm̂− α

4
log
(
2π
(
∆ + ρ2 −m2

))
+

2√
m̂

∫
dtfU0

(
t√
m̂
,

1

m̂

)[
t2

2
+ log

(√
2π

m̂
fU0

(
t√
m̂
,

1

m̂

))]
(86)

with

m̂ =
1

∆ + ρ2 −m2
. (87)

The integral can best be numerically evaluated replacing
∫

by 2
(∫ 20

0
+
∫ 20
√

1+m̂

20

)
, which

allows a reliable numerical evaluation for all possible values of m̂.
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FIG. 3. Free entropy landscapes for ρ = 0.5, ∆ = 10−5. Crosses represent local maxima. There are

three types of them: either at nMSE= 1 (as for α = 0.49), or at nMSE ≈ ∆, or in an intermediary

region. In case there are several local maxima (as for α = 0.68), the algorithm will perform sub-

optimally, getting stuck in the local maximum of highest nMSE instead of converging to the global

maximum (“hard but possible” phase).

Figure 3 shows the free entropy landscapes for ρ = 0.1 and different values of α. Instead

of using m as x-axes, we use the normalized mean squared error

nMSE = 1− m

ρ
, (88)
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that is a more natural quantity to measure the quality of reconstruction.

We can define three different phases depending on the positions of the free entropy max-

ima. In the noiseless setting, these are:

1. An “impossible” phase, in which the global maximum of the free entropy is not at

nMSE= 0. In that phase, no algorithm can find the correct solution.

2. A “hard but possible” phase, in which the free entropy has its global maximum at

nMSE= 0, but also a local maximum at non-zero nMSE. In that phase, it is possible

to find the correct solution, by correctly sampling from the posterior distribution (21).

However, algorithms such as P-BiG-AMP get stuck in the local free entropy maximum

instead of finding the global maximum.

3. An “easy” phase, in which the free entropy function has a single maximum at nMSE=

0.

In a noisy setting as in figure 3, the lowest achievable nMSE is of the order of the AWGN

variance ∆ instead of 0.

1. State evolution fixed points

The state evolution equation (84) can either be iterated or considered as a fixed point

equation. Figure 4 shows the fixed points of (84), which are all local extrema of the free

entropy φ. The iterated state evolution equation converges to one of the local maxima.

Since the state evolution for the matrix compressed sensing problem and the dictionary

learning problem are the same (provided L = MP and R = O(M)) these diagrams and

their analysis are equivalent to those presented in previous work on the dictionary learning

[14]. Notably [16] presented analogous diagrams depicting the fixed points for the dictionary

learning problem.

The plots allow to see more clearly the “impossible”, “hard but possible” and “easy”

phases. In the “hard but possible” phase, the state evolution has an unstable fixed point,

which corresponds to a local minimum of the free entropy. Three interesting facts can be

noticed:

1. In the noiseless setting, the impossible/possible phase transition (the apparition of the

low nMSE fixed point) takes place at α = ρ. This can be expected because it is the
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FIG. 4. Fixed points of the state evolution equation (84) for two different sparsities ρ. For values

of α for which two stable fixed points exist, the iterated state evolution equation converges to the

one of higher nMSE if the initial nMSE is higher than the unstable fixed point, and to the one of

lower nMSE if not.

critical α at which the number of available equations is equal to the total number of

non-zero components of the unknowns, just as in compressed sensing.

2. The fixed point at nMSE=1 always exists and is stable for α ∈ [0, 1/2]. This is a

rather remarkable fact that does not appear in compressed sensing. A consequence

of this is the existence of a “hard but possible” phase that even for very small values

of ρ extends at least up to α = 1/2. This radically differs from the low-ρ regime in

compressed sensing, in which the measurement rate α necessary for tractable recovery

goes to zero as ρ→ 0.

3. Increasing α starting below 1/2 and following the high-nMSE branch, two successive

phase transitions are encountered. First, the nMSE = 1 fixed point disappears at

α = 1/2 and turns into an nMSE < 1 fixed point in a second order (i.e. continuous)

phase transition. Second, the upper branch disappears and the discontinuity of the

nMSE of the fixed point, jumping down to the lower branch, marks a first order

phase transition. While these two transitions of different types are clearly visible in

Figure 4b, they are too close together in Figure 4a to be distinguished. They are

separated nonetheless, the easy/hard (first order) phase transition always takes place
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at α > 1/2.
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FIG. 5. Phase diagram for the considered case-study obtained from the state evolution, eq. (84).

Noise variance is ∆ = 10−12 and success is defined by a final nMSE< 10−10. The disappearing

of the state evolution fixed point (or equivalently, of a free entropy maximum) with nMSE of

order 1 marks the frontier between the “hard” and the “easy” phase (full line). The dashed line

marks the easy/hard phase boundary when an “informed” initialization is provided (see text). The

possible/impossible frontier represented corresponds to the noiseless case.

Figure 5 shows the full phase diagram for the case-study problem, with the easy, hard

and impossible phases. The “uninformed” line is obtained by starting the state evolution

starting from nMSE= 1 − ε, with an infinitesimally small ε, and defines the transition

between the “easy” and the “hard” phase. Interestingly, the entire region with α < 0.5 is

in the hard phase, even at low values of ρ, due to the existence of the stable fixed point at

nMSE = 1. In the “hard” phase, inference is possible provided a good estimation of the

signal is already known. The effect of such a partial knowledge can be simulated by running

the state evolution equation (84) starting with nMSE= 0.9, leading to the “informed” line,

for which α → 0 when ρ → 0. The position of this line depends strongly on the starting

nMSE.
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B. Comparison with algorithmic performances

Figures 6 and 7 presents a comparison of the theoretical fixed point analysis performed

above with the actual performances of P-BiG-AMP.

For the experiments, rank R = 1 was used. In this setting, the only invariance left is a

scaling invariance: if (U,V) is the true solution, then for every γ 6= 0, (γU, 1
γ
V) is a solution

as well. The final nMSE returned by the algorithm takes this invariance into account and

is the average of the error on U and the error on V:

nMSE =
1

2
(nMSEu + nMSEv) (89)

which will be compared to the results obtained by the theoretical expression (88). For each

instance of the problem, the algorithm was allowed up to 20 restarts from different random

initializations to reach a nMSE smaller than 10−6, and the lowest of the reached nMSE was

kept.
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(a) ρ = 0.1, M = 50
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FIG. 6. Comparison of fixed points obtained by the state evolution and and values reached by the

P-BiG-AMP algorithm. Parameters are ρ = 0.1, ∆ = 10−12 with (a): M = 50, (b): M = 200. For

each α there are 100 experimental points. The experimental fixed points are relatively close to the

fixed points of the state evolution. Note that the spreading around the theoretical line diminishes

with growing M . In the thermodynamic limit M → ∞, all experimental points would be on the

fixed point of highest nMSE. At finite M , the probability to initialize the algorithm below the

unstable fixed point allows some instances to converge to the low-nMSE fixed point.
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The results show that there is a good agreement between the theory and the performance

of P-BiG-AMP: most of the nMSEs reached by P-BiG-AMP correspond to a stable fixed

point of the state evolution. The agreement with the theory becomes better with increasing

system size. For smaller sizes, the experimental points are more spread around the theoretical

fixed points. This can be well understood by analyzing the case of fixed points with nMSE=1.

The “meaning” of such fixed points is that the algorithm is unable to estimate the true

signals better than at random. In the M → ∞ limit, the nMSE between the true signals

and random signals is 1 with probability 1. For finite values of M however, the nMSE

between true and random signals follows a distribution on [0, 1] that gets more peaked on

1 as M increases. This explains the narrowing of the spread of experimental points around

the fixed points as M increases.
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(a) ρ = 0.6, M = 50
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FIG. 7. Comparison of fixed points obtained by the state evolution and values reached by the P-

BiG-AMP algorithm. Parameters are ρ = 0.6, ∆ = 3.6× 10−11 with (a): M = 50, (b): M = 200.

For each α there are 100 experimental points. Unlike for the ρ = 0.1 case on figure 6,the algorithm

fails for an important fraction of instances in the “easy” phase. This phenomenon is not explained

by the state evolution analysis and might be a finite size effect. However, as α grows the probability

of success goes to 1 (see figure 8b). Unlike for ρ = 0.1, the probability of recovery inside the “hard”

phase is much smaller, due to the lower nMSE of the unstable fixed point. The thin dotted line

marks the position of the second order phase transition, at which the nMSE stops being strictly

equal to 1.
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1. Succeeding in the hard phase: importance of the initialization

An interesting consequence of this finite size effect is that for small M , parts of the

“hard” phase are quite easy. The reason is that if the random initialization of the algorithm

is such that the nMSE is smaller than the nMSE of the unstable fixed point, the algorithm

naturally converges to the low-nMSE solution. Therefore, running the algorithm from a

few different initializations can allow to converge to the correct solution even in the “hard”

phase, provided that M is small enough and that the unstable fixed point has a high enough

nMSE.

Figure 8 shows that this effect is quite important for ρ = 0.1, but nearly inexistent for

ρ = 0.6. The reason for this is the much higher nMSE of the unstable fixed point for ρ = 0.1

than for ρ = 0.6.
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FIG. 8. Empirical probability of success (defined by nMSE < 10−6), for the experiments presented

on figures 6 and 7. Due to the finite size, the position of the curves slightly vary for different values

of M . Finite size effects allow a fraction of successful instances inside the hard phase for ρ = 0.1,

but much less for ρ = 0.6.

Remember that in P-BiG-AMP, the initial estimates of U and V are random. While in

some regions of the phase diagram and with small signal sizes, running the algorithm from

several of those random initial estimates might be sufficient, in general it would be preferable

to have a procedure that systematically produces good initializations. Previous works stress
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this fact as well and often rely on an initialization from spectral methods [9, 31–33]. In

addition to restarts from random initializations, P-BiG-AMP uses a damping scheme that

is non-trivial to analyze. For this reason, we could not check if the results presented on

figure 8 are quantitatively in agreement with the hypothesis that the finite effect described

above is the only reason for success in the hard phase.

As a matter of fact, other finite size effects seem to exist as well: another difference

between figures 8a and 8b is that in the latter, the algorithm fails for a significant fraction

of instances inside the “easy” phase, which is not the case in the former. The fact that the

fraction of such failed instances decreases with increasing signal size M seems to indicate

that this is as well a finite size effect. Unlike the previously examined finite size effect, this

one cannot be explained from the state evolution, as it has a unique fixed point in the “easy”

phase.

V. CONCLUSION

In this paper, we provide an asymptotic analysis of Bayesian low-rank matrix compressed

sensing. We employ the replica method of statistical physics to obtain the so-called state

evolution equations, whose fixed points allow us to determine if inference is easy, hard or

impossible. The state evolution equations describe the behavior of the associated message

passing algorithm P-BiG-AMP that was derived and studied previously in [6]. This work

inscribes in a line of work where approximate message passing was derived and analyzed

on related estimation problems such as compressed sensing [19, 20], or matrix factorization

[14, 24, 34].

An interesting point concerning the saddle point equations and the resulting state evo-

lution equations and phase diagrams is that they are the same as those for the matrix

factorization problem derived in [14]. Related observations were made in [10].

Our analysis, just as the algorithm, is written for a generic separable prior and output

channel. We analyze in detail the phase diagram for Gaussian noise on the output and

Gauss-Bernoulli prior on both the factors. A striking point in the phase diagram is that

the α (eq. (85)) needed for the recovery to be tractable does not go to zero as the factors

become very sparse. This is a remarkable difference between the matrix and the linear

compressed sensing. We show numerically that there is an excellent agreement between the
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theoretical analysis and the performances of the P-BiG-AMP algorithm. We observe that

for the simulated system sizes, the algorithm performs better than what could be expected

from the asymptotic theoretical analysis. However, we explain this as a finite size effect in

terms of state evolution fixed points and stress the importance of a good initial estimate in

order to perform inference outside of the easy phase. Our analysis quantifies how “good”

the initialization needs to be for large systems to allow tractable recovery.

The results obtained in compressed sensing using so-called spatial coupling matrices have

shown that for certain types of carefully designed measurement matrices, perfect signal

recovery is possible in the hard but possible phase despite uninformed initialization [13]. We

expect that this is the case as well for matrix compressed sensing. Verifying this would be an

interesting direction for further research, especially in order to overcome the large hard phase

for low ρ. Another interesting type of measurement matrices are structured measurement

matrices, such as Fourier or Hadamard matrices. Although these matrices are not random, it

has been shown that they lead to very similar results while allowing a considerable speedup

of the algorithm [35, 36], while they stay analyzable by the replica method as in [37, 38].
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Appendix A: Details for the derivation of the message-passing algorithm

Here, we complete the derivation of the message-passing algorithm starting with equa-

tion (30):

m̃l→µs(uµs) ∝ fY0

(
Ẑl→µs + Flµsuµs, Z̄l→µs +Hlµsuµs +Glµsu

2
µs

)
. (A1)
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We first make a Taylor expansion of this message at order 2 around uµs = 0. We drop all

indices for this calculation and use simplified notations f = fY0 (Ẑ, Z̄), ∂1 = ∂

∂Ẑ
, ∂2 = ∂

∂Z̄
:

m̃(u) ∝ f + u (F∂1f +H∂2f)

+
1

2
u2
(
F 2∂2

1f +H2∂2
2f + 2FH∂1∂2f + 2G∂2f

)
+ o(u2). (A2)

We can rewrite m̃ as a Gaussian

m̃(u) ∝ N (u; p̂, p̄) + o(u2) (A3)

by identifying the coefficients of the Taylor expansion above with the Taylor expansion of a

Gaussian

N (x;
a

b
,−1

b
) ∝ 1− ax+

b+ a2

2
x2 + o(x2). (A4)

Note that the form (A3) is only valid around u = 0: m̃ is not Gaussian. However this form

makes calculations easier. Identification of the coefficients in (A2) and (A4) leads to

p̄ = −
[
F 2

(
∂2

1f

f
−
(
∂1f

f

)2
)

+ 2G
∂2f

f

+ H2

(
∂2

2f

f
−
(
∂2f

f

)2
)

+ 2FH

(
∂1∂2f

f
− ∂1f

f

∂2f

f

)]−1

(A5)

p̂ = −p̄
(
F
∂1f

f
+H

∂2f

f

)
(A6)

We can now treat the m-messages from eq. (23). The product is easy to handle as it is a

product of Gaussians∏
l′ 6=l

m̃l′→µs(uµs) ∝
∏
l′ 6=l

N (uµs; p̂l′→µs, p̄l′→µs) ∝ N (uµs; Ûµs→l, Ūµs→l), (A7)

which allows us to write

Ūµs→l =

(∑
l′ 6=l

p̄−1
l′→µs

)−1

(A8)

Ûµs→l = Ūµs→l
∑
l′ 6=l

(
p̂l′→µs
p̄l′→µs

)
(A9)

In the sums above, some of the non-leading order terms stemming from (A5,A6) have a van-

ishing contribution in the limit where (M,P, L)→∞ and will therefore be neglected. The
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table below analyzes the orders of magnitude and possible signs of all quantities in (A5,A6).

In the third and fourth line, we use this to analyze the order of magnitude of a sum of L

of those terms, as appears in (A8,A9) and what this leads to when L ∝ RM , which is the

scaling we are interested in.

F G H F 2 H2 FH

scales as: 1√
RP

1
RP

1
R
√
MP

1
RP

1
R2MP

1
R3/2P

sign: ± + ± + + ±
sum over L

√
L√
RP

L
RP

√
L

R
√
MP

L
RP

L
R2MP

√
L

R3/2P

L ∝ RP 1 1 1√
RM

1 1
RM

1
R
√
P

This analysis is based on the fact that:

• A has random i.i.d. elements of mean 0 and variance 1/(RMP )

• U, V and z have zero-mean elements of order 1, therefore all estimators of type û, Û,

etc. are of order 1 as well, either positive or negative

• variances of type ū, Ū, etc. are positive and of order 1

• all quantities of the type ∂if
f

are of order 1.

With the help of the table, we can neglect all terms that have a vanishing contribution.

Furthermore,using the relations (17,18) and the definition of the g functions (20), it can be

shown that

∂1f
Y

fY
= ĝY , (A10)

∂2
1f

Y

fY
−
(
∂1f

Y

fY

)2

= ḡY , (A11)

∂2f
Y

fY
=

1

2

(
ḡY − (ĝY )2

)
. (A12)

In the end, the resulting expressions for (A8,A9) are given in (32,33).
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Appendix B: Details for the replica calculation

a. Covariance matrix of zl We treat zal = [A(Ua(Va)>)]l as a random variable of A
and look at the covariance between two of those variables:

〈zal zbl′〉 =

〈(∑
µp

Aµpl
∑
s

uaµsv
a
ps

)(∑
µ′p′

Aµ
′p′

l′

∑
s′

ubµ′s′v
b
p′s′

)〉
(B1)

=

〈∑
µµ′

∑
pp′

Aµpl A
µ′p′

l′

∑
ss′

uaµsu
b
µ′s′v

a
psv

b
p′s′

〉
(B2)

=
∑
µµ′

∑
pp′

〈Aµpl Aµ
′p′

l′ 〉
∑
ss′

uaµsu
b
µ′s′v

a
psv

b
p′s′ (B3)

As the elements of A are i.i.d. with zero mean and variance 1/(RMP ), we have 〈Aµpl Aµ
′p′

l′ 〉 =

δl,l′δµ,µ′δp,p′
1

RMP
and thus

〈zal zbl′〉 = δl,l′
1

RMP

∑
ss′

((∑
µ

uaµsu
b
µs′

)(∑
p

vapsv
b
ps′

))
(B4)

=
δl,l′

R

∑
ss′

((
1

M

∑
µ

uaµsu
b
µs′

)(
1

P

∑
p

vapsv
b
ps′

))
(B5)

We now make the following assumption:

1

M

∑
µ

uaµsu
b
µs′ =

Q
ab
u = O(1) if s = s′

(Qab
u )ss′ = O( 1√

M
) if s 6= s′

(B6)

This assumption corresponds to breaking the column-permutation symmetry and more gen-

erally the rotational symmetry between different replicas. We thus assume that the s-th

column of Ua is correlated to the s-th column of Ub and to none of the others. We make

the same assumption for V. Then,

〈zal zbl′〉 =
δl,l′

R

(∑
s

Qab
u Q

ab
v +

∑
s 6=s′

(Qab
u )ss′(Q

ab
v )ss′

)
. (B7)

Due to the hypothesis (B6), the second term vanishes, and

〈zal zbl′〉 = δs,s′Q
ab
u Q

ab
v . (B8)

Note that by definition of Qab
u in (B6), Qab

u = Qba
u .
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b. Introducing Q̂u In equation (43), Dirac δ functions enforce the relations (B6). We

use the integral representation of these δ functions to carry on the calculation:

δ

(
MQab

u −
∑
µ

uaµsu
b
µs

)
=

1

2πı

∫
dQ̃ab

U e
−Q̃abU (MQabu −

∑
µ u

a
µsu

b
µs). (B9)

The product of all these δ functions thus gives∏
a≤b

δ

(
MQab

u −
∑
µ

uaµsu
b
µs

)
∝
∫

dQ̃Ue
−M

∑
a≤b Q̃

ab
U Q

ab
u e

∑
µ

∑
a≤b Q̃

ab
U u

a
µsu

b
µs . (B10)

Note that because Qab
u = Qba

u , the replica indices in the sum are a ≤ b. Finally, we make a

change of variables

∀a, Q̂aa
U = 2Q̃aa

U (B11)

∀(a, b) with a 6= b, Q̂ab
U = 4Q̃ab

U (B12)

which allows us to obtain the following formulas∑
a≤b

Q̃ab
U Q

ab
u =

1

2
Tr(QuQ̂u), (B13)

∑
a≤b

Q̃ab
U u

a
µsu

b
µs =

1

2
u>µsQ̂uuµs, (B14)

where we introduced the vector uµs = (u0
µs . . . u

n
µs)
>. We change the integration variable

from Q̃U to Q̂u, and we obtain the expression (44).
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