aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Kinetics of aggregation with choice
E. Ben-Naim and P. L. Krapivsky

Phys. Rev. E 94, 062119 — Published 14 December 2016
DOI: 10.1103/PhysRevE.94.062119


http://dx.doi.org/10.1103/PhysRevE.94.062119

Kinetics of Aggregation with Choice

E. Ben-Naim! and P. L. Krapivsky?

! Theoretical Division and Center for Nonlinear Studies,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2 Department of Physics, Boston University, Boston, Massachusetts 02215, USA

We generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two
random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster
and two candidate clusters are randomly selected, and the target cluster merges with the larger of
the two candidate clusters. We study the long-time asymptotic behavior, and find that as in ordinary
aggregation, the size density adheres to the standard scaling form. However, aggregation with choice
exhibits a number of novel features. First, the density of the smallest clusters exhibits anomalous
scaling. Second, both the small-size and the large-size tails of the density are overpopulated, at the
expense of the density of moderate-size clusters. We also study the complementary case where the
smaller candidate cluster participates in the aggregation process, and find abundance of moderate
clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes
with choice among multiple candidate clusters, and a symmetric implementation where the choice

is between two pairs of clusters.

I. INTRODUCTION

The concept of choice plays a central role in queuing
theory, algorithms, and computer science [1-3]. In par-
ticular, the so-called “power of choice” has been widely
explored in the Achlioptas processes that models evo-
lution of random graphs [4]. An intriguing, apparently
discontinuous, percolation transition, termed “explosive
percolation”, has been observed in numerical studies of
the original Achlioptas process and several of its variants
[4-11]. However, it was later shown that this transition,
albeit unusually steep, is actually continuous [12-15].

The presence of choice can lead to lack of self-averaging
[16, 17], truly discontinuous percolation transitions, and
multiple giant components [18, 19]. The power of choice
has been also studied in the realm of growing networks
[20, 21], and it has been shown that it leads to phase tran-
sitions, including the emergence of a macroscopic hub
[21]. The classical evolving random graph model [22]
is equivalent to an aggregation process in which clusters
merge with rate equal to the product of their masses [23—
25]. Yet, theoretical analysis of this aggregation process
with choice has proven largely elusive [4, 12, 14]. One
of the two models we analyze in this study is simply an
Achlioptas process with a simpler uniform aggregation
rate.

In this study, we generalize the most basic aggregation
process [23-25] to include choice. While a complete the-
oretical description in the form of the explicit cluster-size
density appears to be out of reach, many features of this
distribution can be understood analytically. In particu-
lar, we find the density of the smallest clusters and the
tails of the size distribution. In general, we demonstrate
how choice can be used to control the size distribution.

In ordinary aggregation, two clusters are chosen at
random and are joined to form a larger cluster. To in-
corporate choice, we alter this aggregation process by
randomly selecting one target cluster and two candidate
clusters. The target cluster merges with the larger of

FIG. 1: Illustration of the aggregation process with choice.
Clusters are shown as disks, the bigger the disk the larger
its size. The target cluster (filled disk with two links) and
two potential merging partners are randomly drawn. The
larger cluster is chosen as the actual merging partner in the
maximal choice case (filled disk). In the minimal choice case,
the smaller cluster (hollow disk) is chosen.

the two candidate clusters, leaving the smaller of the two
candidate clusters unaffected. Starting with a uniform
size distribution, this elementary aggregation event is re-
peated indefinitely.

We study kinetics of this aggregation process and fo-
cus on the long-time asymptotic behavior of the cluster-
size density. Our reference frame is the well-understood
behavior in the case of ordinary aggregation where the
cluster-size density is purely exponential. We find that
the density of the smallest clusters is anomalously large
compared with typical-size clusters. This anomaly is not
captured by the scaling function which characterizes the
bulk of the density. We also find an interesting change
in the shape of the size density. In addition to the over-
population of smaller-than-typical clusters, there is also
an overpopulation of larger-than-typical clusters. The
small-size tail and the large-size tail are both enhanced at
the expense of moderate-size clusters. The enhancement
of small clusters is easy to appreciate as it is a direct con-



sequence of choosing the larger cluster. The enhancement
of large clusters is an indirect, perhaps counter-intuitive,
consequence of the aggregation rules.

We also study a few other implementations of choice.
First, we consider the case where the smaller candidate
cluster participates in the merging event. In this case,
we observe an opposite change in the shape of the size
density. Now, both the small-size tail and the large-size
tail of the size density are suppressed, while the density of
moderate-size clusters is enhanced. Second, we study ag-
gregation processes where multiple candidates are drawn
and the maximal (or minimal) merges with the target
cluster. In the maximal choice case, we find an interest-
ing sequence of distinct scaling laws corresponding to the
densities of the smallest clusters. Finally, we also inves-
tigate a symmetric implementation of choice where two
candidate pairs are drawn at random and one of the pairs
undergoes aggregation. We find that the changes in the
shape of the size density, described above, are generic.

This paper is organized as follows. First, we briefly re-
view ordinary aggregation, the most basic process where
the merging clusters are chosen at random (Sec. II).
Next, we introduce the notion of choice by consider-
ing the case where the larger of two randomly-selected
clusters merges with another randomly-selected cluster.
From the rate equation for the cluster-size density, we
obtain the density of the smallest cluster, the small-size
tail of the density, as well as the large-size tail of the
density (Sec. III). We also detail results of our numeri-
cal simulations to gain insights into the entire size den-
sity. We apply the same theoretical tools to the case
where the smaller of the two candidate clusters under-
goes merger (Sec. IV), and to the case where multiple
candidates clusters are drawn (Sec. V). In Sect. III-V
the choice is implemented asymmetrically as the target
cluster was selected from the outset. In Sec. VI, we in-
troduce a symmetric implementation of choice where two
pairs of clusters are chosen and only one of these pairs
undergoes aggregation. We conclude in section VII and
provide several technical details in the Appendices.

II. ORDINARY AGGREGATION

In ordinary aggregation, two clusters are chosen at ran-
dom and merge to form a larger cluster [23-25]. This
basic process can be generalized to model polymeriza-
tion [26], condensation [27], chemotaxis [28], and random
structures [29, 30]. Symbolically, we may represent the
merger process as ¢,j — ¢+ j where the aggregation rate
is independent of cluster mass. The elementary aggre-
gation step is repeated indefinitely. Initially, the system
consists of identical particles whose mass can be set to
unity. We tacitly take the thermodynamic limit, that is,
assume that the initial number of particles is infinite.

Two clusters participate in each aggregation event and
the number of clusters declines by one. Hence, the total

cluster density ¢(t) obeys the rate equation

dc 9
— = —c". 1
TR (1)
Without loss of generality, we set the merging rate to
unity. Solving (1) subject to the initial condition ¢(0) = 1
yields

ct)=1+t)"L (2)

In the long-time limit we have ¢ ~ ¢t~1. (In our notations
a ~ b indicates the ratio a/b approaches a constant when
t — oo, while a ~ b indicates that the ratio approaches
unity.)

Let cx(t) be the density of clusters of mass k at time
t. This quantity obeys the master equation

dck
- = Z cicj —2ccy . (3)
it+j=k

By summing (3) we can verify that the density c =), ¢
obeys (1). The mass density M = ), k¢, is conserved
dM/dt = 0, as also follows from (3).

We shall consider the mono-disperse initial condition

cr(0) = 0,1 - (4)

We note that it suffices to use (4), because the asymptotic
behavior is universal as long as the initial density decays
rapidly with mass. The density of the smallest clusters,
monomers, obeys dcj/dt = —2ccy, from which ¢;(t) =
(1 +t)=2. The monomer density decays more rapidly
than the overall density, ¢; ~ t~2. Starting from (4), the
cluster-size density remains purely exponential

k—1
cxlt) = g - e (5)

throughout the evolution.

Using mass conservation and the density decay (2)
alone, we can deduce the average cluster size (k) = M/c
or (k) = 14t. In the long time-limit, the size distribution
attains the scaling form

cp(t) 2t 2F(kt™1). (6)

This form reflects the linear growth of the typical mass
k ~ t. According to the density decay ¢ ~ ¢t~! and mass
conservation, M = 1, the scaling function must satisfy
two constraints:

/OoodxF(x) -1, /Ooode(x) 1.

For ordinary aggregation Eq. (5) implies that the scaling
function is purely exponential, F(x) = e~ %, a behavior
that holds for any (rapidly decaying) initial condition.

Ordinary aggregation provides a useful reference point
for our study. Throughout this study the density satisfies
(1), and mass is certainly conserved. Moreover, the size
density generally follows the scaling form (6), with the
scaling function satisfying the constraints (7).



IIT. MAXIMAL CHOICE

We now incorporate choice while preserving most fea-
tures of ordinary aggregation. In particular, aggregation
remains a binary process with two clusters joining to form
one larger cluster (Fig. 1). One cluster with size i is se-
lected at random, and it is certain to participate in the
aggregation process. The aggregation partner is selected
as the larger of two, randomly selected clusters of sizes
j1 and jo. Schematically,

i,jl,j2—>7;+maX(j1,j2), min(jlan)' (8)

We reiterate that while three clusters are drawn, only two
undergo aggregation. Mass is of course conserved and we
consider the mono-disperse initial condition (4).

As in ordinary aggregation, two clusters are lost in each
aggregation event and one new cluster is formed. Hence,
the total density obeys (1), and it decays according to
(2). Consequently, the growth of the typical mass as well
as the scaling form (6) with the constraints (7) hold.

The cluster-size density obeys the master equation

d
ZE=c Y el —gl) —ca— (g —gia)- )
i+j=k

Here, gi, = Y, ¢ is the cumulative size density, namely,
the density of clusters with size smaller than or equal to
k. The gain term has the same convolution structure as
(3) with one density corresponding to the target cluster
and another density corresponding to the larger of the
two candidate clusters. The quantity gi — 91%—1 is pro-
portional to the probability that the largest of two ran-
domly selected clusters has size k, and the multiplicative
constant ¢~ ensures proper normalization. There are
two loss terms. The first represents the target cluster,
and the second accounts for the selected cluster. One
can verify that the total cluster density obeys (1). As
in the Achlioptas process [4], the master equation (9)
assumes “perfect mixing” as each cluster interacts with
every other cluster in the same way. In other words,
we treat the aggregation process on the mean-field level
where the system has no underlying spatial structure.
Throughout this study, we repeatedly avoid the ex-
plicit appearance of the concentration ¢ in the master
equation by introducing the cluster-size distribution Cy
and the modified time variable 7, defined as follows,
Ck

Ck = — and

; 7 =1In(1+1). (10)

The distribution Cj is normalized, )", Cx =1, and it
represents the fraction of clusters of size k. The modified
time variable 7 satisfies dr/dt = c¢. With the transforma-
tions (10), the first loss term in (9) is eliminated, and we
arrive at

dC
T: = Z Ci (G? - G?*l) - (G —Gioy) - (1)
itj=k

Here G, = >, C; is the cumulative size distribution,
the fraction of clusters with size not exceeding k.

For monomers, k = 1, we have dC;/dr = —C%? and
since C1(0) = 1, then Ci(7) = (1+7)~!. In terms of the
actual time variable, the density of monomers reads

at)=[1+t)+ (1 +t)n(l+¢)]* . (12)

The asymptotic behavior ¢; ~ (tInt)~! represents a sub-
stantial enhancement over the monomer density ¢; ~ ¢t =2
for ordinary aggregation.

A more elaborate calculation (see Appendix A) gives
the density of dimers:

3 Ih(2)Ko(2u) — Ko(2)Ip(2w)

Cop = €
Here I, and K, are the modified Bessel functions with
index v, and u = (1 + 7)~Y/2. Using the asymptotic

relations, Ko(2u) ~ In(1/u) and K;(2u) ~ (2u)~! when
u — 0, we find the asymptotic decay

_ 1In(Int)
ca(t) = t (Int)? "

(14)

The dimer density is much smaller than the monomer
C2  ~u

density, o~ % when t > 1. In comparison with

ordinary aggregation where co ~ t~2, the dimer density
(14) is substantially larger, however.

For trimers and other finite clusters, k > 3, we can ob-
tain the leading asymptotic behavior. As for monomers
and dimers, the loss rate in (11) dominates when k < t.
Indeed, the concentration C} decays with time, the gain
term is cubic in C}, while the loss term is quadratic in
C, as equation (A1) shows. Furthermore, since C; > Co
in the asymptotic regime, the dominant term in Eq. (11)
involves the monomer fraction

dC

— ~ -2CC} . (15)
dr

We now substitute the asymptotic behavior C; ~ 771,

and immediately obtain C}, ~ 7~2. In terms of the phys-
ical time variable

1
(Int)?

1

cp(t) ~ T (16)

for 3 < k <« t. Hence, ¢; > ¢3 > ¢, when k > 3. The
ratio £ ~ In(Int) diverges with time, but very slowly.

In summary, equations (12), (13), and (16) show that
there are three distinct scaling laws for small clusters

11
t (Int) =

ck~ QT k=2 (17)
1 _1 k
t (Int)? =

As a consequence of choice, there is a strong enhancement
of small clusters compared to ordinary aggregation. Fur-
ther, three different decay laws characterize the density



FIG. 2: The scaling function F(z) in the maximal choice
model. Shown is F(z) = t?ck(t) versus the scaling variable
x = k/t at three different times.

of monomers, dimers, and clusters of mass 3 < k < t.
As we show below, the scaling function underlying the
cluster-size density captures c; with & > 3. We stress
that whether the logarithmic terms in (17) are ignored
or retained, the difference between maximal choice and
ordinary aggregation where c; ~ t~2 becomes more and
more pronounced as time increases.

Our numerical simulations (see Fig. 2) confirm that
the cluster-size density adheres to the scaling form (6):
in terms of the properly normalized cluster size © = k/t,
the size density has a universal shape in the asymptotic
regime. The scaling function F(z) satisfies the integro-
differential equation

dzF(z)]  [* d®*(y)  d®*(x)
dx +/0 dyF(z =) dy  dx

Here ®(z) = [ dyF(y) is the fraction of clusters with
size smaller than « = k/t in the long-time limit. To ob-
tain (18) we simply substitute (6) into the rate equation
(11). The two nonlinear terms in (18) correspond to the
two nonlinear terms in (11).

First, we consider statistics of small clusters. As men-
tioned above, the convolution term, which corresponds
to generation of larger clusters from smaller clusters
through aggregation, is negligible. Keeping only the lead-
ing terms when x < 1, we get

=0.(18)

d 2
%[mF—Q)(x)]zo. (19)
Hence F = ®2, or alternatively 2® = ®2. Solving this
differential equation yields ® = [In(1/x)]~! leading to the
asymptotic behavior

-
(In(1/2)]?

as x — 0. This form is consistent with the cluster
density (16), and it specifies the proportionality con-
stant: ¢, ~ k[t (Int)?]~!. The diverging small-z tail
of the scaling function does not qualitatively capture

Fz) ~ % (20)
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FIG. 3: The large-size tail of the scaling function F'(z) show-
ing the exponential decay (22).

the anomalous populations of monomers and dimers (see
Fig. 2). Indeed, according to the definition (6), the form
(20) implies the universal decay ¢ ~ [t(Int)?]~1 for all
small and finite &, in contradiction with the three distinct
types of asymptotic behavior summarized in (17).

Next, let us consider statistics of large clusters. In the
limit > 1, the convolution term is dominant, and the
governing equation (18) becomes

xF’(x)—!—Q/;dyF(y)F(x—y) =0. (21)

Here, we also assumed xF’ > F which can be justified
a posteriori. Equation (21) is essentially the same as in
ordinary aggregation, and therefore, the tail is exponen-
tial:

F(z) ~ %e“m (22)
when  — oco. Our numerical simulations confirm this
exponential asymptotic decay (see Fig. 3) with the con-
stant & = 0.57+0.01. Obtaining the value o theoretically
requires a full solution of the nonlinear equation (18), and
is an interesting challenge for further investigation.

The tail (20) shows that the density of small clus-
ters is enhanced compared with ordinary aggregation:
F(z) > e ® when  — 0. This is an expected con-
sequence of choice — very small clusters are less likely
to participate in aggregation, so their population is en-
hanced. Remarkably, the same holds for large clusters —
since a < 1, the large-size tail (22) is enhanced compared
with ordinary aggregation, F(z) > e~ * when z — .
This is an indirect consequence of choice — the popu-
lation of large clusters is enhanced compared with ordi-
nary aggregation (see the large-z divergence in figure 4) ,
thereby indicating that large clusters are “shielded” from
aggregation. This interesting phenomena is directly tied
to the value @ < 1 of the decay constant in (22). It is pos-
sible an upper bound for a can be obtained by analysis
of (18), and may not necessarily require a full solution of
this equation: in section VI, we follow such an approach
to obtain bounds for exponents characterizing the small-
x tail of the size distribution.
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FIG. 4: The normalized scaling function e” F(z) versus the
scaling variable x (solid line). Also shown for reference is the
unit constant corresponding to the ordinary aggregation case
(dashed line).

Figure 4 compares aggregation with choice with or-
dinary aggregation, and it demonstrates that there are
three regimes of behavior, as the normalized scaling func-
tion e”F'(z) is non-monotonic. Small clusters with size
x < x1 are overpopulated compared with ordinary aggre-
gation. Large clusters with size z > x5 are also overpop-
ulated compared with ordinary aggregation. The con-
servation laws (7) dictate that clusters of moderate sizes
1 < & < z2 must be underpopulated. Further, the diver-
gences at small and large sizes show that the difference
between maximal choice and ordinary aggregation can
become unbounded at large times. Hence, introducing
choice alters the shape of the size density.

Monte Carlo simulations of aggregation processes are
rather straightforward when the aggregation rate is uni-
form as is the case for the merging rule (8) and other
rules studied in this paper. Initially, the system consists
of Ny identical particles with unit mass. In each aggrega-
tion event, three distinct particles are selected at random.
One of these particles is designated as the target particle,
and it merges with the larger of the remaining two par-
ticles. When Nj is large, the overall density (2) specifies
time as t = No/N where N is the number of remaining
aggregates. The simulation results presented throughout
this paper were obtained using Ny = 10%, and an average
over roughly 10° independent realizations.

IV. MINIMAL CHOICE

We now consider the complementary case where the
target cluster merges with the smaller of the two candi-
date clusters (see also Fig. 1) according to the scheme

i,J1,J2 — 1 +min(j1, j2), max(ji,7j2). (23)

As in maximal choice mass is conserved, and the total
density decays according to (2).

2
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FIG. 5: The scaling function F(z) in the minimal choice
model. Shown is F(x) = t?ck(t) versus the scaling variable
x = k/t at three different times.

The size-density ci(t) satisfies the master equation

dck
71
= Z ci ( J g+1)

i+j=k

—CCp — (h hk+1)( 4)

subject to (4). The quantity hy = Y ,~, ¢ is the den-
sity of clusters of size larger than or equal to k. The
cumulative distributions hy and gi_; appearing in (9)
are complimentary: gx_1 + hy = c for all £k > 1. As
in Eq. (9), the first loss term in Eq. (24) corresponds to
the target cluster and the second, to the selected cluster.
The quantity ;i — k3, is proportional to the probability
that the selected cluster has size k. By summing (24),
we can verify that the density satisfies (1).

In terms of the modified time variable 7, the size dis-
tribution C}, satisfies

dC’
—= Z Ci H ]+1) - (Hl? -
i+j=k

H},.). (25)

Here Hy, = )~ Ci. We note that G, + Hy11 = 1 and
H, =1 at all times. The initial condition (4) becomes
Cr(0) = k1.

According to (25) the density of monomers satisfies
dcl = C?-2Cy, with C1(0) = 1. This Bernoulli equation
1s “solved to yield C1(7) =2/(1 4 €?7). In terms of the
original time variable, the density of monomers reads

2
(I+t)+(1+1)3

c(t) = (26)

In the long-time limit we have c¢;(t) ~ 2¢~3, whereas in
ordinary aggregation c;(t) ~ t~2. Monomers are most
likely to participate in the aggregation process (23), and
consequently, they decay rapidly.

One can also obtain the exact expression for the dimer
density (see Appendix A)

(e77v)? Jo(2)Yo(v) — Y5(2)Jo(v)
8 Yo2)i(0) = o2Va(0)

o = (27)



FIG. 6: The large-z tail of the scaling function F'(z) showing
the super-exponential decay (34) with 8 2 1.26749.

Here J,, and Y, are the Bessel functions with index v and
v = [8/(14+e727)]71/2. Asymptotically, the dimer density
decays according to co(t) ~ Ast~3 with the prefactor

Ay =8 Jo(2)Yo(V8)—Y5(2)Jo(V3) (28)

Y5(2)J1(V8) = Jo(2)Y1(V8)
or As = 3.878012---. In contrast with the behavior (17),
the ratio ¢a/c; now approaches a nontrivial constant.
For finite but small &, the loss rate in (11) dominates.
By using Hy, — Hi11 = C, we have dCy/dr ~ —2C}, and
therefore C, (1) ~ e=27. In general, the density of small
clusters decays algebraically,

cp(t) ~ Apt™3 (29)

for finite £ < t. As expected, small clusters are
suppressed due to choice. In contrast with maximal
choice, however, there are no anomalies associated with
monomers or with dimers, and a single scaling law char-
acterizes small clusters. As shown below, the decay (29)
is captured by the scaling function F'(x).

Our numerical simulations confirm that once size is
rescaled by the typical size, k ~ t, the size distribu-
tion becomes universal in the long-time limit (see Fig. 5).
By substituting the scaling ansatz (6) into the governing
equation (24), we find that the scaling function obeys

o F(x z 2 2(x
LI PRI AN AT

Here U(z) = [ dyF(y) is the fraction of clusters of size
larger than = = k/t. Once again, the scaling function
obeys the two constraints in (7).

First, we discuss statistics of small sizes. The con-
volution term is negligible when z <« 1 and using
U'(x) = —F(x) we get 2F'(z) = F(z). Therefore the
scaling function is linear (see Fig. 5)

=0.(30)

F(z) ~x, (31)

in the limit # — 0. The linear behavior confirms (29),
and further, it shows that A ~ k for large but finite k.

In contrast with maximal choice, the equation governing
F(z) is linear in the limit © — 0, and determining the
proportionality constant in F'(z) ~ const. X z requires a
full solution of the nonlinear equation (30).

Let us now consider the large-z behavior. Since the
convolution term is dominant in (30), we have

dv?(y)
dy

d[xF(x)]-FQ/OmdyF(m—y)

- =0 (32)

when = > 1. We anticipate (and justify a posteriori)
a sharp decay of the scaling function. In this scenario,
U(y) = fyoo dzF(z) < F(y) and —F'(z) < F(z). (We use
the notation A < B to imply that the logarithms of A
and B have the same asymptotic behavior, In A ~ In B.)
Further, we postulate that the integral in (32) is maximal
at y = oz, with 0 < o < 1, and therefore

F(z) < F?(cx)F(z —ox). (33)

Taking the logarithm of both sides we arrive at a linear
functional equation In Fl(z) =2In F(ocz)+In F(x—o x).
This equation admits a simple family of algebraic solu-
tions, In F(x) ~ —const x x7, or equivalently,

F(z) < exp (—const. x z) (34)

with exponent 8 > 1. The exponent S and the parameter
o are related via

20 + (1-0)f =1. (35)

An additional relation is needed to “select” (3. Selec-
tion problems arise in the context of nonlinear partial
differential equations [31] and nonlinear recurrences [32].
Typically, the selection criterion is tied to an extremum,
as is the case for velocity selection in traveling waves
[31]. Guided by these examples, we postulate that 3 is
selected by the requirement that the quantity o = o(8),
determined by Eq. (35), increases with mazimal rate at
the selected 3, that is do/df is maximal. This extremum
requirement specifies the selection criterion

Lo
ds?

Using equations (35) and (36) we obtain (see Appendix
B for further details) § = 1.26749 and the correspond-
ing ¢ = 0.166453. Our simulation results support this
value, as shown in figure 6. The super-exponential tail
for large «x is sufficiently sharp to provide an a posteriori
justification to the assumptions made in deriving (35).
The small-size tail (31) confirms that when the smaller
of the two candidate clusters undergoes aggregation, the
population of small clusters is suppressed. The large-
size tail (34) is much steeper than exponential: F'(z) <
e~ * for large x. Figure 7 compares the scaling function
for minimal choice with ordinary aggregation. There are
three regimes of behaviors: in the small mass range x <
1 and in the large mass range x > x5 the cluster-size

=0. (36)
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FIG. 7: The normalized scaling function e” F(z) versus the
scaling variable x (solid line). Also shown for reference is the
unit constant, corresponding to the ordinary aggregation case
(dotted line).

density is underpopulated while in the intermediate size
range r1 < ¢ < xo the density is overpopulated. Hence,
the effect on size density is the exact opposite of that
found for the maximal case.

V. MULTIPLE CHOICE

In Sections III and IV we showed that choice be-
tween two alternatives significantly affects the size den-
sity. What happen if we allow choice between more than
two alternatives? In the context of other models [1-3],
the general conclusion was that multiple choice modi-
fies the behavior only quantitatively. As we show below,
introduction of multiple choice in aggregation has inter-
esting consequences, including some qualitative changes.

A. Maximal Choice

We start with the maximal case, and introduce mul-
tiple choice as to preserves the binary nature of the ag-
gregation process. As in section III, we choose a single
target cluster along with n candidate clusters. The tar-
get cluster merges with the largest of these n clusters,
while the rest of the n — 1 clusters are not affected. This
merger process preserves the total mass, and the total
cluster density is given by (2).

The cluster-size density ci(t) obeys

deg, 97 — 951 Ik — 9k—1
=D G e, (37)
itj=k

where g, = >, ., ¢ is the cumulative density. The mas-
ter equation (37) reduces to (3) and (11) when n = 1 and
n = 2, respectively. The quantity g;; — g;;_; is propor-
tional to the probability that the selected cluster has size
k. From (37) we can obtain the master equation govern-
ing the normalized cluster-size distribution Cj = ¢ /c.

Using the time variable 7 = In(1+1¢) and G, = >, Ci
we get -

dr Z Ci (G} = Gj_y) — (GR = Gi_y) . (38)
itj=k
The density of monomers satisfies dCy /dr = —C7', from

which Cy(7) = [1+ (n —1)7]~Y®™=D " In terms of the
physical time

cr(t) =1+t 1+ (n—1)n1+1)] YD (39)

This decay represents an enhancement over ordinary ag-
gregation.

For finite cluster size k, it is possible to proceed with
asymptotic analysis of (11) and find Cj, ~ C¥ for k < n
and Cy ~ CT for & > n. The three-tier asymptotic
behavior (17) generalizes as follows

1
In)F/ (=D k<n,
In(In t)

1
t

k)~ § o k=n, (40)
t T k> n.

Interestingly, there are n + 1 distinct scaling laws that
characterize the enhancement of small clusters. The den-
sity of monomers is the largest, the density of dimers is
the next largest and so on. Thus, multiple choice leads
to multiple anomalies in the cluster-size density.

The scaling function now obeys an integro-differential
equation

x (b’n.

% [z F — ®"(z)] + /O dy F(a — y)° dy(y> =0 (41)
which generalizes (18). Here ®(z) = [, dyF(y) is the
fraction of clusters with size smaller than x. The tails
of the scaling function are derived by repeating the steps
leading to (20) and (22) to give

1 1
Fla)~ 4@ Tomamrms <L)
% exp(—awx) x> 1.

The small-z tail captures the behavior of clusters with
size n < k < t, and the logarithmic divergence reflects
the relative abundance of small clusters due to choice.
The divergence in the limit x — 0 becomes weaker and
weaker as n grows. Based on the behavior in the case
n = 2 we anticipate that @ < 1 in general, and that
there is also an increase in the density of large clusters
compared with ordinary aggregation.

B. Minimal choice

In the complementary case of minimal choice, the tar-
get cluster merges with the smallest of n candidate clus-
ters. In terms of the modified time variable 7, the cluster-
size distribution C}, satisfies

dCl
G = 2 G — ) = (H = i), (43)
i+j=k



n 2 20 200 2000 | 20000
£11.26749(2.14474|3.05326|3.99381|4.9607

TABLE I: The exponent 3 obtained by solving (49) and (B2)
for n = 2,20, 200, 2000, 20000.

with Hy = 3,5, Ci. The master equation (43) general-
izes (25) which corresponds to the case n = 2.

For finite and small k, the leading asymptotic behavior
is purely algebraic as in (29)

cp(t) ~ Apt™" 1t (44)

This behavior readily follows from (43) by noting that
the dominant term is linear, that is, dCy/drT ~ —nCjy.
Hence, Cy, ~ e~ and (44) follows. The small-cluster
densities (44) confirm that small clusters are suppressed
when the minimal cluster is chosen for aggregation.

For monomers, it is possible to obtain the constant
A; analytically. The monomer concentration obeys
dCy/dr = (1 = C1)™ — 1, from which

! dv
/Cll—(l—v)":T' (45)

One can evaluate this integral in the asymptotic limit
where the lower limit of integration vanishes to confirm
the decay (44). Moreover, the general expression for the
amplitude is

Al—exp{/oldv{l_(ln_v)n—i]}. (46)

The amplitudes A; for n < 6 are listed in Appendix C.
The scaled mass distribution function F(x) satisfies
the general version of (30),

Here, ¥(z) = [ dyF(y). By repeating the steps leading
to the tails (31) and (34), we obtain the leading asymp-
totic behaviors

n—1 1
F(x)w{x r<L1,

48
exp (—const. x 2°) x> 1. (48)

The small-z tail is consistent with (44) and additionally,
it indicates that Ay ~ k"~ when 1 < k < t. The sup-
pression of small clusters becomes stronger and stronger
as n grows. In this sense, choice provides a mechanism
for controlling the size distribution. The large-z tail is
steeper than an exponential, and the exponent § is de-
termined by

no® +(1-0)’ =1, (49)

along with the selection criterion (36). Appendix B pro-
vides additional details on the derivation of 3, and Table
I lists several values of 3. Since 8 increases with n, sup-
pression of large clusters becomes stronger with increas-
ing n.
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FIG. 8: Illustration of aggregation with symmetric choice.
Two pairs (two filled disks and two hollow disks) are randomly
drawn. The pair with bigger combined size (filled pair) is
chosen in the maximal choice case. In the minimal choice case,
the pair with smaller combined size (hollow pair) is chosen.

VI. SYMMETRIC CHOICE

In Sects. ITI-V we implemented choice asymmetrically:
One cluster was selected from the outset, while its merg-
ing partner was chosen from two or more alternatives.
Asymmetric choice can arise, for example, in network
growth when a new node considers a few provisional links,
and then implements only one of these links according to
a pre-determined selection criterion. We recall that the
Achlioptas process is symmetric [4], namely two pairs of
nodes are randomly chosen and the link between nodes
from one pair is made. This motivates one to introduce
choice using the very same procedure where clusters from
one of the two randomly selected pairs merge.

A. Maximal choice

In the symmetric version of aggregation with choice,
we choose two pairs of clusters with sizes i1, j; and 49, jo.
All four clusters are chosen randomly. Without loss of
generality, we assume that i1 + j; > is 4+ jo. Under maxi-
mal choice, the pair with the larger total mass undergoes
aggregation (see Fig. 8):

i1, 1,02, j2 — @1 + j1, 42, j2 - (50)

Hence, the selection criterion is such that the total size of
the resulting aggregate is maximized. In the Achlioptas
process [4], in contrast, the selection criterion is different,
e.g. the product of the sizes can be sought to be maximal,
so that the choice (50) is made if i1 - j1 > i - jo.

The aggregation process (50) involves four clusters,
and the corresponding master equation governing the
cluster-size density is quartic

02 % — Z CiCj (2 Z Cyr Cj + Z Cij/) (51)
k'=k

i+i=k K<k

— 201@(2 Z CjCyCjr + Z CjCijl),

k! <k+j k'=k+j
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FIG. 9: The scaling function F'(z) versus the scaling variable
2 for maximal choice (solid line), ordinary aggregation (dotted
line), and minimal choice (dashed line).

with ¥ =4’ 4+ j'. There are two gain terms and two loss
terms. The first gain term accounts for the case where
the two pairs have different total size, and the second gain
term, for the complementary case of equal total size. The
two loss terms are similarly ordered.

Our numerical simulations show that the scaling func-
tion F(z) maintains the same qualitative features as in
the asymmetric case. Figure 9 shows that the scal-
ing function F(x) diverges at small-z, thereby indicat-
ing an overpopulation of small clusters. Similarly, figure
(10) which shows the normalized scaling function e* F(x)
demonstrates that there is also an overpopulation of large
clusters. Once again, there are three size regimes, and at
intermediate sizes, the density is suppressed.

By substituting (6) into (51), we see that the scaling
function obeys

0=aF'(z) + 2F(z)+ 2¢(x) /Ow dy F(y)F(z —y)

4F@{Am¢uwwwx+w. (52)

In deriving this equation we took into account that the
second gain term and the second loss term which corre-
spond to the case where i1 + j1 = i3 + jo are asymptot-
ically negligible. The function ¢(z) appearing in (52) is
shorthand for the following integral

o= [ warerw). 6

The scaling function is subject to the normalization (7).
At small sizes, the convolution term in (52) is negligible
and it simplifies to *F' = (y — 2)F with

v=4Am@F@W@» (54)

The scaling function is therefore algebraic, F(x) ~ 2772,
when x < 1. This algebraic behavior implies the alge-
braic decay

Cp ~ t 7 (55)
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FIG. 10: The normalized scaling function e” F(z) versus the
scaling variable x. Shown are the cases of maximal choice
(solid line), ordinary aggregation (dotted line), and minimal
choice (dashed line).

for finite k < ¢. Indeed, it is possible to derive (55) with
(54) directly from the master equation (51) together with
the scaling form (6). The behavior (55) also holds for
monomers, and there is no longer an anomaly associated
with minimal clusters.

The exponent v, which according to (54) requires full
knowledge of F(z), appears to be nontrivial. Our nu-
merical simulations yield v = 1.25 £ 0.01 (Fig. 11). If we
ignore the logarithmic correction in (20), then the cor-
responding value for the asymmetric case is v = 1. We
have not determined v analytically, but in Appendix D
we derive the bounds

4

According to these bounds, the scaling function diverges
in the limit  — 0 (see Fig. 9).

At large sizes, the convolution term dominates and
¢ — 1, so that Eq. (52) simplifies to (21). Consequently,
F(z) decays exponentially according to (22). Numeri-
cally, we find the decay constant a = 0.53 4 0.01, which
is slightly smaller than the value o = 0.57 4+ 0.01 for the
asymmetric case. The extremal behaviors of the scaling
function are therefore

ﬂm~{f;

xz — 0,

€

Thus, many of the features obtained for aggregation
with asymmetric choice extend to aggregation with sym-
metric choice. The density of very small and very large
clusters are enhanced at the expense of moderate-size
clusters. The normalized size density again diverges at
small sizes, and interestingly, this divergence is charac-
terized by a nontrivial exponent. There is one difference
between the two cases, however. The scaling function
captures the asymptotic behavior at all scales and there
is no anomaly associated with small clusters.
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FIG. 11: The monomer density c;(¢) versus time ¢ for sym-
metric aggregation with maximal choice (solid line) and min-
imal choice (dashed line).

B. Minimal choice

We now consider the complementary case where the
pair with the minimal total mass undergoes aggregation.
Aggregation proceeds according to (50) except that now
i1 + j1 < iz + j2. Repeating the above analysis one finds
that the scaling function satisfies

0=aF'(z) + 2F(x) + 2¢(x) /OI dyF(y)F(x —y)
- [ dEwa). (59)

This equation differs from (52) in that ¢(y) is replaced
by the complementary integral

v = [ aarery). @)

so that ¥(y) + ¢(y) = 1 for all y. Asymptotic analysis of
equation (58) yields

xz — 0,

e T — 0. (60)
In the small-z limit, the algebraic behavior is compati-
ble with the linear behavior F(z) ~ « in (31). Hence,
for the asymmetric case, we have v = 3, as also follows
directly from the asymptotic behavior (29) and the defi-
nition (55).
The small-x behavior is characterized by the nontrivial
exponent vy which is given by the analog of (54)

7:4Aw@F@W@» (61)

Numerically, we find the value v = 3.5 £ 0.1 (Fig. 11),
which is somewhat larger than the value v = 3 for
minimal choice with asymmetric implementation [see
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eq. (29)]. Hence, the suppression of small clusters be-
comes stronger under the symmetric aggregation process
(50). In Appendix D, we obtain the bounds

<y<4. (62)

w| oo

The small-z tail (60) implies that the density of small
clusters decay algebraically with time according to (55).

To estimate the large-size tail, we first note that for
a sharply-decaying F'(x), the integrand in (59) is maxi-
mal at 2’ = ¢y’ = 2/2, and as a result ¥(z) < F?(z/2).
Following this reasoning, we estimate that the convolu-
tion term in (58) behaves as F?(z/2). For large z, the
derivative term and the convolution term dominate, and
balancing these two terms gives

—xF'(z) < F*(x/2). (63)

We now substitute the super-exponential form (34) and
obtain 1 = 4/2% from which we deduce 8 = 2 leading
to the Gaussian tail in (60). Compared with the value
£ =1.26749 in the asymmetric case, we deduce that the
tail is now sharper.

Figures 9 and 10 compare the scaling function F(x)
with the exponential decay e~ which corresponds to or-
dinary aggregation. As in the case of symmetric aggre-
gation, the populations of very small and very large clus-
ters are suppressed, while the population of intermediate
clusters is enhanced. We conclude that the qualitative
behavior of the size density for aggregation with sym-
metric and asymmetric choice are similar.

VII. CONCLUSIONS

In summary, we generalized the most basic aggrega-
tion process to include choice. In our implementation,
several clusters are drawn at random, and two clusters
merge while the rest are not affected. The merging clus-
ters are chosen in a way that maximizes or minimizes
the aggregate size. We considered several versions and
found a number of common features. In all cases, the
size density adheres to standard scaling, in contrast with
some aggregation processes in which scaling is violated
(see e.g. [33-36].)

In general, introduction of choice changes the shape
of the cluster-size distribution. When the merger max-
imizes the size of the final aggregate, the small-size tail
of the distribution is enhanced because small clusters are
less likely to undergo aggregation. Surprisingly, the large-
size tail of the distribution is also enhanced. The opposite
effect emerges when the merging clusters minimize the
aggregate size. These qualitative features are general,
and hold regardless of the number of clusters involved in
the aggregation process.

We found a number of interesting features for aggre-
gation with choice. In the asymmetric version with max-
imal choice, the scaling function does not capture the



entire size density. In particular, when n clusters are in-
volved in the aggregation process, there are n distinct
scaling laws that characterize the density of monomers,
dimers, up to n-mers. The population of these small
clusters is anomalously large compared with that of
typical clusters. In the asymmetric version with mini-
mal choice, the large-z tail is super-exponential F'(x) ~
exp[—const. x 2f], and it is governed by a nontrivial ex-
ponent B > 1. This exponent is selected from a spectrum
of possible values according to a principle that is remi-
niscent of velocity selection in nonlinear traveling waves.

Aggregation with choice involves extremal dynamics: a
minimal or a maximal cluster is selected to participate in
the aggregation process. We note that extremal dynam-
ics occur in many coarsening processes. In particular, in
one dimension, the shortest domain is selected to merge
with its neighbors. Such extremal dynamics describe, for
example, the late stages of coarsening arising in the zero-
temperature time-dependent Ginzburg-Landau equation
[37—42]. In coarsening, questions of interest include the
typical growth of the domain size and the domain-length
distribution [37, 43-45], and these are analogous to the
typical cluster size and the cluster-size distribution in our
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study. Aggregation processes governed by extremal dy-
namics have been observed experimentally in studies of
coarsening in vibrofluidized compartmentalized granular
gases [46] and coarsening of vertically vibrated granular
Faraday heaps [47]. Scaling features such as the typical
growth of the domain size reflected in (6) or the tails of
the size distribution (34) are certainly of interest in the
context of such physical coarsening processes.

A related model of aggregation with symmetric choice
which would be interesting to explore is the following:
Pick up randomly three clusters and merge two of them,
e.g. the smallest or the largest. We analyzed our mod-
els only in the mean-field case, and another extension is
to aggregation in finite spatial dimensions. For instance,
clusters may occupy a single lattice site, and hop to ad-
jacent sites with the same mass-independent rate, and
when three clusters occupy the same site, two of them,
say the smallest, merge, while the third (largest) cluster
thus plays a role of a catalyst.

We acknowledge support from US-DOE grant DE-
AC52-06NA25396 (EB).
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Appendix A: The fraction of dimers C>

For maximal choice, the fraction of dimers obeys

dC:
=0+ - (G + o) (A1)
Using C1 = 1/(1 + 7), we obtain the Riccati equation
dC, , 2 1
e e . A2
dr C2 1+TCQ+(1+T)3 (A2)

To find the solution we first linearize the first-order non-
linear differential equation (A2) by making the transfor-
mation Cy = —[2u® f(u)]/f'(u) with u = (147)~ /2. The
quantity f(u) obeys the Bessel equation, and thereby, we
arrive at the dimer fraction

3 10(2)Ko(2u) — Ko(2)Io(2u)

Cy=u . A3
2 1o(2)K1(2u) + Ko(2)1, (2w) (A3)
For minimal choice, we have
d
% =207 +C2 - C3 +20,Cy — 20, . (A4)
We now write
Co=eUs(T), T=e. (A5)

Recalling that C; = 2/(1 +¢%7) = 2T/(1 + T) and using
(A5) we recast (A4) into
Uy 2 4

1 2
e U — Uy — A6
dT 272 14T 7 (1+7T)3 (A6)

12

This Riccati equation should be solved subject to the ini-
tial condition Co(T = 1) = 0. We use the same procedure
as before: We linearize (A6) by making the transforma-

tion Uy = [v3f(v)]/[8f(v)] withv = 1/8/(1 + T). Again,

the function f(v) obeys the Bessel equation, and

b — 0 Jo(2)Y(v) = Yo(2)o(v)
2T 8 Y2 h(v) — o@2Ni()

(A7)

By combining (A5) and (A7), we arrive at the announced
result (27) for the dimer density.

Appendix B: The exponent 3

To determine the large mass decay in the minimal
choice model, we must solve (35) and (36). We explain
the procedure in the general case of n alternatives. Let us
fix n > 1 and examine o as a function of 3. The deriva-
tive do/df reaches maximum at a single point. Indeed,
o(B) is a monotonically increasing function which sharply
vanishes when 8 — 1 and algebraically approaches unity
when § — oo, that is,

—1/(B-1)
oo " A, (B1)
1-p7tlnn B — oo.

Thus we seek a solution to Eqgs. (36) and (49). The ex-
plicit form of the former equation is rather cumbersome,

2 (1 —0)?[In(1 — 0)]? + no?[In o]?
8 S
no?tlno—(1-0)’"1n(l - o)
(1—-0)f~1 —poh-1
B—1 (1-0)P"2+nof2
B 1= 0)f T —noP 1P

+ 2

+ S

(B2)

where S = (1 — 0)%In(1 — ) + no’ Ino. The two tran-
scendental equations, (49) and (B2), can be solved using
e.g. Mathematica.

Appendix C: The Amplitude A,

Here, we list explicit expressions for In A; for n <6

0 n=1
In2 n =2,
™3 4 13 n =3,

InA;, = 6 2
! 5 +In2 n =4,
g,/1+%+§amtan{%}+%ln5 n=->5,
Y3 4 1 n3+1In2 n = 6.

In particular, when n = 2 we recover As = 2, consistent
with the exact solution (26).



Appendix D: The exponent ~

First, we derive the bounds (62). The quantity ¥ (y)
defined in (59) is monotonically decreasing and since
¥(0) = 1 we have 9(y) < 1. The upper bound read-
ily follows:

7—4/OoodyF(y)w(y) §4/OoodyF(y) =4. (D1)

To derive the lower bound, we narrow the integration
range in the integral in (59) from =’ +y" > y to the union
of the vertical strip 0 < 2’ < y, 3’ > y, the horizontal
stripa’ >y, 0 <y’ <y, and the quadrant 2’ > y, 3y’ > y.
The contribution to ¥(y) from the vertical strip is

/ "' F(') / Ty Fly) = 1 - U U). (D)

where U(y) = fyoo dz F(z). The contribution from the
horizontal strip is also given by Eq. (D2). The contribu-
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tion to 1 (y) from the quadrant 2’ >y, v’ > y is U2(y).
Summing these contributions we obtain

P(y) = U2 (y) +2[1 - (y)|¥(y) = 2¥(y) — ¥*(y). (D3)
The lower bound is obtained as follows

N> 4/000dy (—i) 20(y) — W3 (y)]

! 8
4/ d¥ (20 — ¥?) = —.
0 3

(D4)

To establish the upper bound in Eq. (56) we extend
the integration range in ¢(y), Eq. (53), from the triangle
'+ 1y < y to the square 0 < 2,9y’ < y. This gives
#(y) < [1 — ¥(y)]?, and therefore,

v < 4/Ooody (—(Zf) [1—(y) = g

The lower bound in (56) follows from ¢ (¢) < c(¢).

(D5)



