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We present an exact mathematical framework able to describe site-percolation transitions in real
multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite
number of random configurations where nodes are present in the system with given probability.
The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the
true percolation diagram of sparse multiplex networks with negligible number of short loops. The
performance of our theory is tested in social, biological, and transportation multiplex graphs. When
compared against previously introduced methods, we observe improvements in the prediction of the
percolation diagrams in all networks analyzed. Results from our method confirm previous claims
about the robustness of real multiplex networks, in the sense that the average connectedness of the
system does not exhibit any significant abrupt change as its individual components are randomly
destroyed.

PACS numbers: 89.75.Fb, 64.60.aq, 05.70.Fh, 64.60.ah

Many, if not all, real-world networks are coupled with
or interact with other networks [1]. The notion of mul-
tiplex network represents a way of accounting for such
fundamental feature [2, 3]. Loosely speaking, a multi-
plex is defined as a network composed of N nodes con-
nected in some way through a set of edges that can as-
sume M possible colors or flavors. Often, it is conve-
nient to think of the system as a layered network, where
individual network layers are generated by grouping to-
gether edges with the same color. The representation
of a real system as a multiplex network is appropriate
in disparate contexts, such as (but not limited to) so-
cial networks sharing the same actors [4, 5], multimodal
transportation graphs sharing common geographical lo-
cations [6, 7], and coupled networks of power distribution
and communications [1].

The first, and probably the most important, model
studied on multiplex networks, is the so-called site-
percolation model [1, 8]. This model serves as a proxy
to quantify the robustness of networked systems under
random failures, by monitoring how the connectedness
at the macroscopic level changes as a function of the
amount of microscopic damages of individual nodes [9–
12]. In their seminal paper, Buldyrev et al. showed that
multiplex networks composed of random network models
with negligible overlap undergo a discontinuous percola-
tion transitions when interdependencies are introduced
between the nodes in different layers [1]. The model has
been studied extensively on ensembles of multiplex net-
works [13], where it has been found that the transition is
not only discontinuous but also hybrid, i.e., it displays
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a square root singularity [14]. This theory has been
extended in different directions to correlated multiplex
networks and more general multilayer structures [15–18].
Among the different types of correlations that can be
found in multiplexes, link overlap [19] plays a major role
because of its ubiquity in real network structures [4, 7].
Despite some earlier works on duplex networks [20], per-
colation theory in presence of link overlap has been elu-
sive until recently. An appropriate mathematical frame-
work able to describe the emergence of the giant compo-
nent in arbitrary multiplex networks has been introduced
in Refs. [21, 22] to characterize the percolation transition
in ensemble of multiplex networks [19]. In these papers,
it has been found that in multiplex networks the perco-
lation transition is always discontinuous with the only
exception of the trivial case in which all the layers com-
pletely overlap.

Much less attention has been devoted to the analysis of
the percolation model on real-world multiplexes. These
systems generally exhibit overlap only in a small fraction
of core edges that are able to keep the system connected
without leading to any significant abrupt transition [23].
The result of Ref. [23] has been obtained through the de-
velopment of a mathematical framework able to approx-
imate the percolation diagram of arbitrary multiplexes.
However in the method of Ref. [23], a good approxima-
tion of the true percolation diagram is granted only if the
network obtained from the overlap of the layers is either
fragmented in vanishing clusters, or it contains a unique
giant component [22]. In the intermediate case when mul-
tiple nonvanishing clusters are present in the overlap net-
work, the method developed in [23], as well as those used
in [24], describes a different type of model not compati-
ble with the one of the site-percolation model [21, 22, 25].
The goal of this letter is to introduce an exact mathemat-
ical theory able to provide the solution of the percolation
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model in arbitrary multiplex networks. In this approach,
we take as input the topology of the multiplex to draw
the entire percolation diagram. Such a diagram approx-
imates how the relative size of the largest mutually con-
nected cluster in the graph varies as a function of the
microscopic probability of individual nodes to be present
in the system.

The present theory is developed for multiplexes with
arbitrary number of layers. The only approximation used
is the so-called locally treelike ansatz, according to which
nearest-neighbors of every node are not connected among
themselves [26]. We remark that this approximation may
be not justified in many real systems [27]. On the other
hand, all theoretical approaches generated so far in this
context suffer from the same exact limitation, including
methods deployed for the description of the (simpler) per-
colation model in isolated networks [28, 29]. Whereas
in the context of isolated networks improved methods
exist [27], corrections to frameworks valid for multiplex
networks do not seem as straightforward.

For illustrative purposes, we will consider here only
the case of a multiplex composed of M = 2 layers. The
general case M ≥ 2 is presented in the SM. Without
loss of generality, we assume that a multiplex network
G composed of N nodes is given. Every node i ∈ G
appears in both layers so that the failure of a node in
one layer implies the simultaneous failure of its copy in
the other layer. Connections among pairs of nodes are
specified in the adjacency matrices of the layers: on each
individual layer α = 1, 2, a connection between the nodes

i and j exists if a
[α]
ij = a

[α]
ji = 1, whereas no connection

between nodes i and j exists in layer α if a
[α]
ij = a

[α]
ji = 0.

For convenience of notation, we define for every pair of

nodes i and j the multilink vector [19] ~mij =
(
a
[1]
ij , a

[2]
ij

)
,

so that the entire topological information of the multiplex
is stored in N(N − 1)/2 two-dimensional vectors. This
represents the input of the mathematical framework that
we are going to describe below.

We consider the ordinary version of the site-percolation
model on multiplex networks, where every node is present
in the system with probability p [8]. Nodes that are
present form clusters of connected nodes. Depending on
the value of p, nodes may be or may not form a mutually
connected giant component (MCGC) [1]. The MCGC
is identified in a recursive manner and is composed by
all the vertices that are connected by at least by one
path (internal to the MCGC) in each layer. In infinitely
large networks, the MCGC exists for values of p > pc,
whereas it doesn’t exists if p ≤ pc. Further, with the
exception of the trivial case of duplex networks whose
layers completely overlap, the MCGC emerges discontin-
uously [19, 21, 22]. In finite systems, such as real-world
multiplexes, although the transition is not properly de-
fined, we can still monitor the behavior of the MCGC
as a function of the probability p, and define a pseudo-
transition point pc. Such a threshold represents a good
proxy to measure how robust is a given multiplex, as it in-

dicates the fraction of nodes that must be in a functional
state in order to preserve a macroscopic connectedness
in the system. Additional information about system ro-
bustness can be gauged from the entity of the variation
of the MCGC around this point. Whereas the latter is
generally difficult to measure from a finite number of nu-
merical simulations, it can be instead easily derived from
an analytic framework, such as the one described below,
that is able to well describe average values of the MCGC
over an infinite number of realizations of the percolation
model.

The mathematical framework that allows us to com-
pute how the size of the MCGC varies as a function of
the microscopic probability p consists in a set of self-
consistent messages exchanged by pairs of connected
nodes [30]. A similar message-passing algorithm is a
well-established method to detect the giant component
in single networks [12]. In ordinary percolation on sin-
gle networks, the message between node i and node j
indicates the probability that node i connects node j to
the giant component. In our multiplex percolation prob-
lem, instead, the message between node i and node j
includes the information about the specific set of layers
where node j is connected to the MCGC.

A message can be delivered from node i to node j only
if a connection between node i and node j exists in the
system, i.e. if ~mij 6= ~0. Please note that, whereas the net-
work is undirected, messages instead travel in the system
following specific directions, so that a message proceed-
ing in the direction i → j is not necessarily identical to
the message travelling in the opposite direction j → i.

Let us define a vector ~n = (n[1], n[2]) of elements
n[α] = 0, 1 and let us consider a pair of nodes i and j

connected by a multilink ~mij 6= ~0. The message s
~mij ,~n
i→j

indicates the probability that node i connects node j to
the MCGC in all the layers α where n[α] = 1. For exam-
ple, given two nodes i, and j connected by a ~mij = (1, 1),

s
(1,1),(1,1)
i→j indicates the probability that node i connects

node j to the MCGC in both layers. Similar straightfor-
ward definitions are valid for the other messages. Out

of all the possible messages s
~mij ,~n
i→j , there is a set of triv-

ial messages that are always equal to zero. In fact node
i cannot connect node j to the MCGC in a layer α if
the two nodes are not connected in that layer. There-

fore if m
[α]
ij = 0 we cannot have n[α] = 1. It follows that

s
(1,0),(0,1)
i→j = s

(1,0),(1,1)
i→j = s

(0,1),(1,0)
i→j = s

(0,1),(1,1)
i→j = 0 or

equivalently s
~mij~n
i→j = 0, if n[1](1−m[1]

ij )+n[2](1−m[2]
ij ) 6= 0.

Furthermore, we can omit the separate treatment

of the messages s
~mij ,(0,0)
i→j since we always have the

normalization condition s
~mij ,(0,0)
i→j = 1 − s

~mij ,(0,1)
i→j −

s
~mij ,(1,0)
i→j − s

~mij ,(1,1)
i→j . The remaining five messages

s
(1,1),(1,1)
i→j , s

(1,1),(1,0)
i→j , s

(1,1),(0,1)
i→j , s

(1,0),(1,0)
i→j , and s

(0,1),(0,1)
i→j
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obey the following system of coupled nonlinear equations

s
(1,1),(1,1)
i→j = s

(1,0),(1,0)
i→j = s

(0,1),(0,1)
i→j =

p
[
1−∏`∈N(i)\j(1− z

[1]
`→i)−

∏
`∈N(i)\j(1− z

[2]
`→i)

+
∏
`∈N(i)\j(1− z

[1,2]
`→i )

] ,

(1)

s
(1,1),(1,0)
i→j = p

 ∏
`∈N(i)\j

(1− z[2]`→i)−
∏

`∈N(i)\j

(1− z[1,2]`→i )

 ,

(2)
and

s
(1,1),(0,1)
i→j = p

 ∏
`∈N(i)\j

(1− z[1]`→i)−
∏

`∈N(i)\j

(1− z[1,2]`→i )

 .

(3)
In the previous equations, we have indicated with N(i)

the neighbors of node i, i.e. N(i) = {j ∈ G | ~mij 6= ~0}
and we have defined

z
[1]
i→j = s

~mij ,(1,0)
i→j + s

~mij ,(1,1)
i→j , (4)

z
[2]
i→j = s

~mij ,(0,1)
i→j + s

~mij ,(1,1)
i→j , (5)

and

z
[1,2]
i→j = s

~mij ,(0,1)
i→j + s

~mij ,(1,0)
i→j + s

~mij ,(1,1)
i→j . (6)

Here, z
[1]
i→j represents the total probability node i con-

nects node j to the MCGC through links of layer α = 1;

z
[2]
i→j is the same as z

[1]
i→j , but for layer α = 2; z

[1,2]
`→i

equals instead the probability that node i connects node
j to the MCGC at least in one layer. Eqs. (1), (2), and
(3) connect in a self-consistent manner the various mes-
sages, accounting for the presence of edge overlap among
layers. We remark also that the topology of the net-
work is given, so that only the non-trivial messages ap-
pearing in the Eqs. (1), (2), and (3) are actually non-

zero. From Eq. (1), we note that s
(1,1),(1,1)
i→j , s

(1,0),(1,0)
i→j ,

s
(0,1),(0,1)
i→j are determined as the probability that node i

is present, thus the factor p, multiplied by the probabil-
ity that node i is receiving (or not receiving) coherent

messages in both layers. The message s
(1,1),(1,0)
i→j defined

in Eq. (2) is computed from the messages incoming from
neighboring nodes different from j. Its value is given by
the probability that the node i is present multiplied by
the probability that node i is connected to the MCGC
in layer α = 1, but is not connected to the MCGC in

layer α = 2. The message s
(1,1),(0,1)
i→j of Eq. (3) is defined

in analogous manner. We note two fundamental things
common in the r.h.s. of Eqs. (1), (2), and (3): (i) Prob-
abilities are estimated under the locally treelike approxi-
mation, hence the appearance of products of probabilities
for (hypothetically) nonconnected neighbors; (ii) When

calculating message for the pair i→ j, we always exclude
contributions of node j in the products, thus avoiding for
the presence of immediate backtracking messages. The

inclusion of the messages s
(1,1),(0,1)
i→j and s

(1,1),(1,0)
i→j rep-

resent the fundamental difference between the current
method and the one developed in Ref. [23]. These terms
serve to account for the possibility that the overlap graph
may be divided in different clusters connected by distant
single layer links. In fact, these messages, by preserving
the information about the single layers connected to the
MCGC, allow the algorithm to propagate from cluster to
cluster [22]. For a given value of p, Eqs. (1), (2), and
(3) can be solved by iteration. The solutions of these
equations are then plugged into

ri = p
[
1−∏j∈N(i)(1− z

[1]
j→i)

−∏j∈N(i)(1− z
[2]
j→i) +

∏
j∈N(i)(1− z

[1,2]
j→i )

] (7)

to estimate the probability ri that node i belongs to the
MCGC. Finally, the average size of the MCGC is calcu-
lated as

P (th)
∞ =

1

N

N∑
i=1

ri . (8)

By changing the value of p ∈ [0, 1] and solving Eqs. (1)-
(8), one can draw the entire percolation diagram for a
given multiplex.

To test the performance of the theory, we consider
15 real-world multiplexes (see Table I for the list of
networks). We compare the numerical solutions of our
method with the solution of the framework of Ref. [23].

For shortness, we indicate with P
(Rad)
∞ the order param-

eter computed according to Ref [23]. Critical thresholds
according to both approximations are obtained with a bi-
nary search strategy able to identify the value of p where
the order parameter P∞ changes from zero to a value

larger than zero. We indicate with p
(th)
c the threshold

obtained with the current framework, and with p
(Rad)
c

the one computed with the method of Ref [23]. Further,
we use as a term of comparison the ground truth obtained
through numerical simulations of the percolation model.

Values of the order parameter P
(num)
∞ are obtained by

averaging over 10, 000 random configurations of the per-
colation model for a given value of the probability p. For

numerical simulations, the critical threshold p
(num)
c is es-

timated as the value of p where the susceptibility reaches
its maximum [36]. We stress that the value of pc ob-
tained from numerical simulations characterizes only the
average behaviour of the multiplex network under ran-
dom damage and that the position of the transition for a
given realization of the initial damage might have large
fluctuations for multiplex networks of small size. Further,
we measure the overall performance of the theoretical ap-
proaches to approximate the percolation phase diagram
obtained from numerical simulations using the distance
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Network Layers N E[1,2] E[1] E[2] O p
(num)
c p

(Rad)
c P̂

(Rad)
∞ ε(Rad) p

(th)
c P̂

(th)
∞ ε(th)

US Air
Transportation [23]

Am. Air. – Delta 84 136 380 748 0.11 0.29 0.24 0.03 0.01 0.17 0.01 0.01
Am. Air. – United 73 136 322 404 0.16 0.30 0.20 0.00 0.01 0.15 0.00 0.01
Delta – United 82 112 696 452 0.09 0.27 0.26 0.03 0.03 0.17 0.02 0.01

Caenorhabditis
Elegans [31, 32]

Electric – Chem. Mon. 238 222 748 1, 324 0.10 0.45 0.26 0.00 0.01 0.22 0.00 0.02
Electric – Chem. Pol. 252 324 698 2, 586 0.09 0.36 0.23 0.00 0.02 0.20 0.00 0.02
Chem. Mon. – Chem. Pol. 259 1, 260 514 1, 892 0.34 0.22 0.11 0.00 0.01 0.10 0.00 0.01

Drosophila
Melanogaster [33,

34]

Direct – Supp. Gen. 676 132 1, 204 2, 556 0.03 0.67 0.68 0.05 0.01 0.60 0.03 0.01
Direct – Add. Gen. 625 98 948 1, 950 0.03 0.75 0.85 0.08 0.02 0.75 0.00 0.01
Supp. Gen. – Add. Gen. 557 936 1, 906 1392 0.22 0.26 0.17 0.00 0.01 0.14 0.00 0.01

Homo
Sapiens [32, 33]

Direct – Physical 9, 553 23, 930 60, 824 112, 440 0.12 0.42 0.04 0.00 0.00 0.04 0.00 0.00
Direct – Supp. Gen. 4, 465 2, 724 36, 658 26, 742 0.04 0.23 0.18 0.00 0.00 0.16 0.00 0.00
Physical – Supp. Gen. 5, 202 4, 436 80, 560 30, 754 0.04 0.48 0.09 0.00 0.00 0.08 0.00 0.00

NetSci
Co-authorship [35]

data-an – dis-nn 1, 400 5, 112 2, 278 1, 208 0.59 0.32 0.09 0.00 0.07 0.09 0.00 0.08
data-an – stat-mech 709 2, 318 896 244 0.67 0.62 0.10 0.00 0.14 0.10 0.00 0.15
dis-nn – stat-mech 499 1, 004 530 322 0.54 0.86 0.19 0.00 0.12 0.19 0.00 0.13

Table I: List of real-world multiplexes analyzed. The first column identifies the name of the system analyzed, and the reference(s)
of the paper(s) where such a system has been previously considered. In the second column, we report the names of the different
pairs of layers used to construct duplex networks. For each of them, we report in the following columns: number of nodes (N),

twice the number of edges shared by both layers (E[1,2]), twice the number of edges present only in the first or the second layer

(E[1] and E[2]), normalized overlap among the layers [O = E[1,2]/(E[1,2]+E[1]+E[2])], best estimate of the percolation threshold

(p
(num)
c ), predictions according to the method of Ref. [23] for the threshold and height of the jump of the transition [p

(Rad)
c and

P̂
(Rad)
∞ ], value of the error ε(Rad) with respect to the numerical curve, predictions according to the current framework for the

threshold and height of the jump of the transition [p
(th)
c and P̂

(th)
∞ ], and value of the error ε(th) with respect to the numerical

curve. Numerical values in the rightmost columns of the table contain up to two significant digits, therefore 0.00 stands for
values smaller than 0.01. Numerical accuracy in the estimation of the various quantities is smaller than 0.0001.
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Figure 1: Percolation diagram for US air transportation duplexes. (a) The system is obtained by combining American Airlines
and Delta routes. We consider only US domestic flights operated in January, 2014, and construct the duplex network where
airports are nodes, and connections on the layers are determined by the existence of at least a flight between the two locations.
In the percolation diagram, the gray full line represents results of numerical simulations, the red otted line stands for results
from the framework of Ref. [23], and blue dashed line represents results obtained from the current method. b) Same as in a,
but for the combination of American Airlines and United flights. c) Same as in a, but for the combination of Delta and United
flights.

measure [37]

ε(x) =

∫ 1

0

|P (x)
∞ (p)− P (num)

∞ (p)| dp , (9)

with x = Rad, or x = th.
In Fig. 1, we show the percolation diagram of multi-

plexes representative for the air transportation network
within the US [23]. Our framework provides better pre-
diction of the true phase diagram than the method de-

veloped in Ref. [23]. Improvements are apparent from
the fact that the predicted curve is always closer to
the true one. This is demonstrated from the fact that
ε(th) ≤ ε(Rad) (Table I). The same qualitative result is
also visible in the other networks analyzed (see SM).
Overall, we note that the framework of Ref. [23] generates
results almost identical to those of the method proposed
here (the only clear exception found is the multiplex rep-
resenting interactions among genes and proteins in the
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Drosophila Melanogaster, see SM). Notably, the best im-
provement is in the coherency of the results that the the-
ory proposed here provides. The percolation threshold
predicted by the current approximation is always a lower-

bound of the true percolation threshold, i.e., pc ≥ p
(th)
c .

On the contrary, the condition pc ≥ p(Rad)
c is not granted.

To summarize, we introduced an exact mathematical
framework able to draw the percolation phase diagram
for arbitrary multiplex networks. We remark that the
method describes the average value of the percolation
order parameter over an infinite number of realizations
of the random percolation model. This may not be rep-
resentative for specific random realizations of the model
due to the presence of large fluctuations. We remark also
that the framework relies on the locally treelike ansatz,
so there is still room for potential corrections to provide
better predictions in loopy multiplexes, such as those con-
structed on the basis of co-authorship data [27]. Our

results obtained from the analysis of real-world multi-
plexes confirm the claims of Ref. [23], in the sense that
the order parameters predicted by both theoretical meth-
ods exhibit always discontinuous jumps, but their entity,
when one considers the average over random disorder, is
so small (generally smaller than 10−2 even on networks
with less than 102 nodes) that they cannot be considered
as significant. From this perspective, real-world multi-
plexes seem therefore being kept cohesive by core edges
that do not allow for abrupt structural transitions.
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