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We characterize the properties of the asymptotic stage of modulational instability arising from localized per-

turbations of a constant background, including the number and location of the individual peaks in the oscillation

region. We show that, for long times, the solution tends to an ensemble of classical (i.e., sech-shaped) solitons

of the focusing nonlinear Schrödinger equation (as opposed to the various breather-like solutions of the same

equation with non-zero background). We also confirm the robustness of the theoretical results by comparing

the analytical predictions with careful numerical simulations with a variety of initial conditions, which confirm

that the evolution of modulationally unstable media in the presence of localized initial perturbations is indeed

described by the same asymptotic state.
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a. Introduction. The dynamics of media subject to mod-

ulational instability (MI) [1] has received renewed attention in

recent years, thanks in part to its connections to the phenom-

ena of rogue waves and integrable turbulence [2–6] and in part

to a number of theoretical and experimental advances [7–14].

The prototypical model for the study of such phenomena is

the focusing nonlinear Schrödinger (NLS) equation,

iqt + qxx + 2(|q|2 − q2
o)q = 0 , (1)

where subscripts x and t denote partial derivatives and qo > 0
is the background amplitude. In particular, Eq. (1) describes

the envelope dynamics in deep water waves, optical fibers,

and attracting Bose-Einstein condensates [15–17]. (The term

2q2
oq in Eq. (1), which can be removed by the trivial gauge

transformation q(x, t) 7→ q(x, t) e2iq2
ot, was added so that the

boundary conditions are independent of time.)

From an applicative point of view, MI has many applica-

tions in optics, e.g., in the generation of supercontinuum (SC)

light sources [18–20]. Recently, MI has also been applied in

fiber-optics as a novel sensing mechanism [21–24].

To study MI, one must look at the evolution of perturbations

to the constant solution qcw(x, t) = qo of Eq. (1). The lin-

ear stage of MI, which is easily studied by linearizing Eq. (1)

around the constant background solution qcw, exhibits expo-

nential growth of long wavelength perturbations. The nonlin-

ear stage of MI, however, which is reached once the perturba-

tions have become comparable with the background, is much

more complex, and has been the subject of intense study over

the years, either with periodic boundary conditions (BC) or

with constant fields at infinity, i.e., with the non-zero bound-

ary conditions (NZBC) limx→±∞ q(x, t) = qo.

Importantly, the nonlinear dynamics produced by MI is

highly dependent on the nature of the spatial domain as well

as the specific BC considered. In particular, for finite domains

with periodic BC, the solutions of Eq. (1) exhibit recurrence

of initial conditions (ICs) [25, 26], a phenomenon observed

in water waves [27, 28] as well as optics [29–32]. The same

setting also displays sensitive dependence on ICs and numeri-

cally induced chaos [33, 34]. Such chaotic phenomena, exper-

imentally demonstrated in [35], are attributed to the presence

of homoclinic solutions of Eq. (1) with periodic BC [36, 37].

The dynamics produced by MI on infinite spatial domains is

very different, however. In [12] we studied the nonlinear stage

of MI for localized perturbations of the background using the

inverse scattering transform for the focusing NLS equation

with NZBC [11]. We showed that MI is mediated by the con-

tinuous spectrum of the scattering problem associated with

Eq. (1), whose growing solutions are the precise nonlinear

analogue of the unstable Fourier modes. In [13, 14] we then

showed that the long-time behavior of a large class of finite-

energy perturbations of the constant background reaches the

same asymptotic state. We emphasize that the presence of

this asymptotic state of MI depends crucially on the BC. In

practice, the difference between a finite spatial domain with

periodic BC and an infinite domain with NZBC is realized by

seeding the IC with periodic perturbations as opposed to spa-

tially localized ones.

The purpose of this work is twofold. First, building

on [13, 14], we characterize in detail the properties of the

asymptotic state, which reveals a number of interesting phe-

nomena. In particular, we show that, for long times, the solu-

tion tends to an ensemble of classical (i.e., sech-shaped) soli-

tons of the NLS equation (as opposed to the various breather-

like solutions of the same equation with NZBC). Second, we

considerably strengthen the analytical results by comparing

them with careful numerical simulations of Eq. (1) with a va-

riety of ICs, which demonstrate the robustness of the theoret-

ical predictions and confirm that indeed the asymptotic state

describes the evolution of a large number of perturbations of

the constant background.

b. Asymptotic state of MI. Recall [13, 14] that, for

a broad class of localized initial perturbations of the con-

stant background, the solution has the asymptotic behavior

q(x, t) = qasymp(x, t) + O(1/
√

t) as t → ∞, with the

xt-plane divided into three regions: (i) two plane-wave re-

gions, x < −ξ∗t and x > ξ∗t, with ξ∗ = 4
√

2qo, in which

|qasymp(x, t)| = qo (i.e., the solution has the same amplitude

as the undisturbed background); (ii) a modulated elliptic wave

region −ξ∗t < x < ξ∗t, in which the solution is expressed by

a slow modulation of the elliptic solutions of Eq. (1), namely:



2

|qasymp(x, t)|2 = (qo + αim)2

− 4qoαim sn2
(

2C(x − 2αret − Xo)
∣

∣m
)

, (2)

where sn(·) is one of the Jacobian elliptic functions [38],

m ∈ [0, 1] is the elliptic parameter, C =
√

qoαim/m, and

the offset Xo depends on the IC q(x, 0) via the reflection co-

efficient [14]. When αre and αim are independent of x and t,
Eq. (2) is an exact traveling wave solution of Eq. (1), with m
given by Eq. (3b) below [39]. In our case, however, αre, αim

and m are slowly varying functions of x and t which are given

by the following system of modulation equations [14, 39, 40]:

x

2t
= 2αre +

q2
o − α2

im

αre
, (3a)

m =
4qoαim

α2
re + (qo + αim)2

, (3b)

(

α2
re + (qo − αim)2

)

K(m) = (α2
re − α2

im + q2
o)E(m) , (3c)

where K(m) and E(m) are the complete elliptic integrals of

the first and second kind, respectively. Importantly, these

equations are universal, i.e., independent of the ICs [13, 14].

We next use Eqs. (3) to characterize the structure of the

modulated elliptic wave region. For brevity we limit ourselves

to considering the range x ≥ 0. (To obtain the corresponding

results for the range x < 0, one can simply take the opposite

of αre in the discussion below.) It is easy to show that in this

case αre is also positive [14]. It is also convenient to introduce

the similarity variable ξ = x/t.

A key step in order to characterize the properties of the

modulated elliptic solution (2) is to express all quantities in

Eqs. (3) as functions of m. Doing so allows one to obtain ξ,

αre and αim explicitly, thus eliminating the need to solve a

nonlinear system of equations. Explicitly, Eqs. (3) yield

αre(m) =
2qo

√
1 − m

m

√

1 − (1 − m)
K2(m)

E2(m)
, (4a)

αim(m) =
qo

m

(

2 − m − 2(1 − m)
K(m)

E(m)

)

, (4b)

with corresponding expressions for ξ(m) and C(m) (see Ap-

pendix). Inserting these expressions in Eq. (2) and letting

x = ξ(m)t one can now compute qasymp(x, t) explicitly as

a function of m and t.

Equations (4) enables us to obtain a number of important

properties of the asymptotic state. Recall that the limiting

case m → 1 of the elliptic solution (2) yields the sech-shaped

solitons of the focusing NLS equation with zero background,

whereas the limit m → 0 yields the background solution.

Note that ξ(m) is a decreasing function of m, as shown in

Fig. 1(left), with ξ(0) = ξ∗ and ξ(1) = 0. The behavior

of qasymp(x, t) as a function of x and t with Xo = 0 is also

shown in Fig. 2.

A signature of the nonlinear stage of MI is the local be-

havior of the solutions in the modulated elliptic wave region,

which we turn to next. For simplicity, we consider the proto-

typical case Xo = 0. We show below, however, that the results
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FIG. 1. (Color online) The quantities ξ(m) (left panel) and f (m)
(right panel) as functions of m for qo = 1. The red dashed lines

identify the location of the peaks of |qasymp| at t = 5, and the dotted

blue lines indicate the location of the troughs.

agree very well with direct numerical simulations of Eq. (1)

with a variety of ICs.

Let us denote by xn the n-th peak of |qasymp(x, t)| as a

function of t, counting from x = 0. Notice that the origin

x = 0 is always a peak when Xo = 0, as can be seen from

Eq. (2). (Note however that there exist ICs for which a trough

is present at x = 0 instead of a peak. This is due to the fact

that, for such ICs, the value of Xo at m = 1 is not negligible.)

Since αim > 0, Eq. (2) implies that such peaks are located

along the zeros of sn. Since sn(0| m) = 0 and sn2(Θ | m) =
sn2(Θ + 2nK(m) | m) for n ∈ Z, we have that the locations

of the peaks are given by

xn(t) = 2αre(m)t + n K(m)/C(m) . (5)

Recall, however, that x = ξt is already determined as a func-

tion of m via Eqs. (4) and the first of Eqs. (3b). Thus, Eq. (5)

is actually a constraint on m, and the peak locations are given

precisely by those values m = mn(t) which satisfy it. In other

words, the parameter m in Eq. (5) is also time-dependent. We

rewrite Eq. (5) as

f (m) = n/t , n ∈ Z , (6)

where f (m) is explicitly given in terms of m by

f (m) =
C(m)

K(m)

(

ξ(m)− 2αre(m)
)

. (7)

As shown in Fig. 1(right), f (m) is also decreasing with m,

with f (0) = 3
√

3 qo/π and f (1) = 0. (Equation (6) is remi-

nescent of the constraint that yields the allowed energy levels

of a quantum-mechanical particle in a one-dimensional poten-

tial well. In this analogy, the parameter t in Eq. (6) is the ana-

logue of the depth of the potential well, and a new eigenvalue

appears whenever t increases by 3
√

3qo/π.)

Equation (6) can be solved numerically to obtain the values

mn(t) corresponding to the peaks. Such values can then be

inserted in Eq. (5) to obtain the peak locations xn(t). As we

show below, the resulting locations agree very well with the

results of numerical simulations of Eq. (1) with a variety of

ICs, confirming the universal nature of the asymptotic stage

of MI. The location of the minima of |qasymp| can be obtained

in a similar way.

As can be seen in Fig. 2, the number of oscillations in-

creases with time. (This is confirmed by numerical results,

as discussed later.) Indeed, this is a direct consequence of
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FIG. 2. (Color online) Left panel: Contour plot of the asymptotic

solution |qasymp(x, t)| (2) in the xt-plane for qo = 1 with the

peak locations xn(t) (10) (red dots) and the boundary of the modu-

lated region (dashed red line). Right panel: The asymptotic solution

|qasymp(x, t)| (2) with qo = 1 at t = 12 as a function of x, together

with five independent sech-like solutions qn(x, t) (12) (dashed red

curves) and predicted envelope (dotted red curve).

Eq. (6). Denoting by npeak(t) the number of peaks for

x ∈ (0, 4
√

2qot), and recalling the behavior of f (m) as a

function of m, we immediately have

npeak(t) = ⌊(3
√

3/π) q2
ot⌋ , (8)

where ⌊·⌋ is the floor function. Therefore, the total number of

peaks in the oscillation region is 2npeak(t) + 1.

The spatial structure of the oscillations in the asymptotic

state simplifies considerably as t → ∞, as we show next. The

key is to compute the limiting behavior of mn(t). Equation (6)

yields simply f (m) = O(1/t) as t → ∞. Therefore, recall-

ing again the behavior of f (m) [cf. Fig. 1], we immediately

see that mn(t) → 1 as t → ∞. Since the limit m → 1 of

the solution (2) yields the classical (i.e., sech-shaped) solitons

of the Eq. (1) with zero background [41], this means that, per-

haps surprisingly, the long-time asymptotic behavior of modu-

lationally unstable media is comprised of an ensemble of clas-

sical solitons of the NLS equation, as opposed to the various

breather-like solutions with NZBC, such as the Kuznetsov-Ma

solitons [42, 43], the Peregrine breather [44], the Akhmediev

breathers [36] and the more general Taijiri-Watanabe solitons

[45]. We show below that this result is strongly corroborated

by direct numerical simulations of Eq. (1).

The above results are also further strengthened by char-

acterizing in detail the local structure of the asymptotic so-

lution. To do so, one must compute the corrections to the

leading-order behavior of mn(t). To this end, recall that

the modulation parameters αre and αim do not depend on t
explicitly but are instead just functions of m. Computing

their asymptotic expansions with respect to m as m → 1,

which are given explicitly in Appendix, Eq. (6) becomes

4q2
o

√
1 − m + O(1 − m)3/2 = n/t as m → 1. Solving this

equation for m = mn(t) we obtain

mn(t) = 1 − 1/τ2
n + M2(τn)/τ4

n + O((ln τn)
4/τ6

n) , (9)

where we used the shorthand notation τn(t) = 4q2
ot/n, and

M2(τ) is a quadratic polynomial in ln τ (see Appendix). Us-

ing Eq. (9) allows one to convert expansions as m → 1 (which

are computed in a straightforward way, since all quantities are

given explicitly in terms of m, see Appendix) into expansions

as t → ∞. In particular, recalling Eq. (5), we have

xn(t) = (n/qo)
[

ln τn + 2 ln 2 + 1

+ X2(τn)/τ2
n − X4(τn)/τ4

n

]

+O((ln τn)
6/τ6

n) , t → ∞ , (10)

where X2(τ) and X4(τ) are polynomials of degree 2 and 4 in

ln τ, respectively (see Appendix). A comparison between the

above expansion and a contour plot of the solution (2), shown

in Fig. 2 (left), demonstrates excellent agreement for all values

of n, and even for relatively small values of t. The velocity of

the n-th peak, given by Vn = dxn/dt, is also easily computed

from Eq. (10), and is

Vn(t) = 4qo/τn + O((ln τn)
2/τ3

n) , t → ∞ . (11)

Note Vn(t) → 0 as t → ∞, i.e., all the peaks become asymp-

totically stationary as t → ∞, but their position xn(t) diverges

logarithmically in this limit.

The above results also allow us to compute the local shape

of the modulated solution (2) in the neighborhood of one of

the peaks. Using the above asymptotic expansions, one ob-

tains an explicit expression for |qasymp(x, t)| near x = xn(t):

qn(x, t) = An(t) sech[2qo(x − xn(t))] + O(1/t2) , (12)

as t → ∞, where

An(t) = 2qo [1 + (1 − ln τn)/τ2
n ] . (13)

A comparison between Eq. (12) for a few values of n and

the modulated solution (2) is shown in Fig. 2, demonstrat-

ing excellent agreement. Note An(t) → 2qo as t → ∞.

Therefore, the long-time limit of the nonlinear stage of MI is

characterized by an infinite ensemble of identical stationary

sech-shaped solitons of the focusing NLS equation, each with

amplitude equal to twice that of the unstable background.

c. Robustness under perturbations. A natural question

is whether the above behavior is robust. We can reformulate

this question in terms of whether the results are stable under

perturbations. The key dichotomy is whether the dynamics

of the system under study is exactly governed by the NLS

Eq. (1). If the answer is affirmative, the results of [14] estab-

lish rigorously the long-time asymptotics of the solution for

any sufficiently localized ICs which do not generate a discrete

spectrum, from which the results of this work follow. On the

other hand, if the NLS equation is only an approximate model

of the actual behavior, and the exact dynamics is governed

by a perturbation of Eq. (1), the situation is different. This

is because in many cases perturbed NLS equations give rise

to chaotic behavior [33–35]. In that case, initially small dif-

ferences between the exact solution of the NLS equation and

that of the perturbed system will grow exponentially, and, as a

result, the asymptotic state described in this work will not per-

sist for all times. For example, this is the case when solving

Eq. (1) numerically with periodic boundary conditions, since

in this case Eq. (1) is only an approximation of the dynamics

due to truncation error. Indeed, such a scenario is character-

ized by catastrophic roundoff accumulation [33, 34].
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FIG. 3. (Color online) Comparison between the theoretical predic-

tion and the numerical solution q(x, t) of Eq. (1) with three different

ICs. Top row: Gaussian IC (14a); Center row: Sech IC (14b); Bot-

tom row: Box-like IC (14c). Left panels: Density plot of |q(x, t)| to-

gether with predicted boundary between modulated region and plane

wave region (red line) and location of peaks xn(t) (10) (red dots).

Right panels: Solution |q(x, 12)| (blue curve), selected five sech-

like peaks (12) (dashed red curves) and predicted envelop (dotted red

curves).

Nonetheless, even when integrating Eq. (1) numerically,

an intermediate time range exists for which MI reaches the

asymptotic state described in this work while the catastrophic

roundoff has not yet taken hold. Recall that the growth

rate of an unstable Fourier mode ζ ∈ [0, 2π] is γ(ζ) =

ζ
√

4q2
o − ζ2. Therefore γmax = 2q2

o , which is achieved for

ζ =
√

2qo. A simple calculation then shows that, working

in double precision (i.e., with a machineilon of 10−16), the

time needed for roundoff error to become O(1) is τroundoff =
16 ln(10)/γmax = 8 ln(10)/q2

o. One can expect that the

asymptotic state described in this work will be destroyed by

roundoff error after this time. On the other hand, we next show

that the asymptotic state is robust up to t = O(τroundoff).

To test the above results, we performed careful numerical

simulations of Eq. (1) with several types of ICs on a non-zero

background, using an eighth-order split-step Fourier spectral

method [46]. Owing to the scaling invariance of Eq. (1), we

took qo = 1 without loss of generality. For brevity, we only

present the results for the following three kinds of ICs: Gaus-

sian, sech-shaped, and box-like, or, respectively,

qGaussian(x, 0) = 1 + i e−x2
cos(

√
2x) , (14a)

qsech(x, 0) = 1 + i sech(10x) , (14b)

qbox(x, 0) =

{

1 + i cos(πx), |x| < 1,

1, otherwise.
(14c)

The numerical results, as well as a comparison with the an-

alytical predictions, are shown in Fig. 3. Despite small in-

dividual variations between the three cases, the time evolu-

tion of the three ICs is remarkably similar, and shows excel-

lent agreement with the asymptotic predictions, including the

boundary of the oscillation region, the location of the peaks

and the local shape of the solution near the peaks. This is true

even for the IC (14c) which is discontinuous at x = ±1, and

would therefore be expected to give rise to Gibbs-like disper-

sive oscillations [47, 48]. (What this means is that the Gibbs-

like dispersive oscillations produced by the discontinuity are

small in amplitude and limited to short times, and are quickly

swamped by the developing growth of the oscillation struc-

ture produced by the modulational instability.) Similar results

were also obtained with other kinds of localized ICs.

d. Discussion. We characterized the the universal oscil-

lation behavior of the nonlinear stage of MI under localized

perturbations of the constant background. In particular, we

gave explicit formulae for the number and locations of peaks,

and we obtained asymptotic expressions for the shape of the

solution near each peak in the long-time limit. We have also

seen that, surprisingly, the long-time asymptotic behavior of

MI is characterized by an ensemble of identical, sech-shaped

solitons of the NLS equation with zero background, each with

amplitude equal to twice that of the unstable background. In-

terestingly, this phenomenon is the opposite to that of the

semiclassical limit of the focusing NLS equation with zero

background, in which the individual peaks have been shown to

be accurately described by an ensemble of Peregrine breathers

[49], which is a solution on a non-zero background.

Finally, we compared the theoretical results to numerical

simulations with a variety of ICs. The numerical results there-

fore demonstrate not only the validity of the theoretical de-

scription, but also the universality and the robustness of the

nonlinear stage of MI described in this work.

More in general, these results clearly demonstrate that the

dynamics produced by the focusing NLS equation is different

for systems with periodic BC and systems on infinite spatial

domains with NZBC. In particular, we reiterate that the re-

currence and chaotic dynamics present in the case of periodic

BC likely mean that no asymptotic state would emerge in that

situation.

Since the NLS equation arises as a model in several phys-

ical settings and the results described in this work persist un-

der perturbations, we believe that these phenomena should

be observable experimentally. In particular, we hope that the

present results will motivate experiments in deep water waves,

optical fibers in the anomalous dispersion regime and attract-

ing Bose-Einstein condensates.
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APPENDIX

The solution of the system (3) yields

ξ(m) =
4qo

√
m′

mE(m)

× (1 + m′)E(m)K(m) + E2(m)− 3m′K2(m)
√

E2(m)− m′K2(m)
, (15a)

C(m) = (qo/m)
√

2 − m − 2m′K(m)/E(m) . (15b)

with m′ = 1 − m for brevity. Recalling the asymptotic ex-

pansions of K(m), E(m) and sn(·|m) as m → 0+ and as

m → 1− [38], one obtains

αre(m) =

√
2

2
qo , αim(m) =

3

8
qom , ξ(m) = 4

√
2qo ,

up to O(m2) terms as m → 0+, as well as

αre(m) = 2qo

√
m′ ,

αim(m) = qo
[

1 + m′ ln m′ + (2 − 4 ln 2) m′] ,

ξ(m) = 2qo
[

2 + 4 ln 2 − ln m′]√m′ ,

up to O(m′)3/2 terms as m → 1−. Next, to compute m as a

function of t, we parametrize the elliptic parameter as

m = 1 − ∆
2 . (16)

Then by expanding the left-hand side of Eq. (6) as ∆ → 0, one

can solve recursively to compute all the terms in the expansion

of ∆ as a function of t. In this way we obtain

∆(t) =
1

τn
−

[

2 ln2 τn − 2(7 − 4 ln 2) ln τn

+ 15 + 4(ln 2 − 7) ln 2
] 1

4τ3
n
+O((ln4 τn)/τ5

n) ,

where we have used the shorthand notation τn(t) = 4qot2/n
as before. Substituting this expression into Eq. (16), we then

obtain Eq. (9), where

M2(τ) = ln2 τ + (4 ln 2 − 7) ln τ

+ 15/2 + 4 ln2 2 − 14 ln 2 .

Moreover, inserting Eq. (9) into Eq. (15a), we obtain Eq. (10),

where X2(τ) and X4(τ) are given by

X2(τ) =
1

4

[

2 ln2 τ

+ (8 ln 2 − 5) ln τ + 3 − 10 ln 2 + 8 ln2 2
]

,

X4(τ) =
1

128

[

16 ln4 τ + 32(4 ln 2 − 9) ln3 τ

+ 192(6− 9 ln 2 + 2 ln2 2) ln2 τ

+ 2(256 ln3 2 − 1728 ln2 2 + 2304 ln 2 − 997) ln τ

+ 1273− 3908 ln 2 + 4608 ln2 2 − 2304 ln3 2

+ 256 ln4 2
]

.
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