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For many organisms, the number of sensory neurons is largely determined during development,
before strong environmental cues are present. This is despite the fact that environments can fluc-
tuate drastically both from generation to generation and within an organism’s lifetime. How can
organisms get by by hard-coding the number of sensory neurons? We approach this question us-
ing rate-distortion theory. A combination of simulation and theory suggests that when environ-
ments are large, the rate-distortion function—a proxy for material costs, timing delays, and energy
requirements—depends only on coarse-grained environmental statistics that are expected to change
on evolutionary, rather than ontogenetic, timescales.
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The amount of sensory information potentially avail-

able to an organism is, for all practical purposes, infinite.

This, taken together with the finite size of the brain,

implies that we constantly operate in the lossy regime,

transmitting only some of the information present in the

environment. Optimal sensing, in other words, is optimal

compression, and this means that core theorems of in-

formation theory constrain biology of perception. In the

context of evolved sensors, the introduction of the need to

compress and coarse-grain environmental signals extends

the efficient coding hypothesis [1], which has guided ex-

perimental and theoretical neuroscience for the past five

and a half decades [2, and references therein], to the lossy

regime [3].

Considering the role of lossy compression in evolved

sensory systems leads to interesting interpretations of ex-

isting experimental results concerning neurogenesis, or

the dynamic creation of new neurons over an organism’s

lifetime [4–7]. While neurogenesis is widespread, neu-

rogenesis in sensory regions is less commonly observed.

Indeed, the number of neurons in sensory regions appears

to be essentially determined prior to receipt of any envi-

ronmental cues [8], though some famous counterexamples

exist [9]. In other words, for many species, the number

of neurons in a brain’s sensory region is strongly deter-

mined by fixed, genetic effects [10], even if this process

continues late into development [9].

Here, we provide an information-theoretic explanation

for these facts by viewing early sensory regions as lossy

perceptual feature extractors for which the number of

sensory neurons limits the accuracy of the organism’s in-

ternal representation of the environment. To show this,

we use a model of the environment general enough to ap-

ply to a range of biological situations, but rich enough to

capture the basic problem of perception and encoding, in

which both the probability of observing a particular en-

vironmental symbol and the cost of misperceiving those

symbols are randomly drawn [11].

In this minimal model, the tradeoff between neuron

number and representational accuracy is essentially in-

variant to changes in the probability distribution over

sensory inputs and the particular costs of misperceiving

one sensory input for another; this is true even though the

optimal internal coding of environmental inputs varies

wildly from one environment to the next. These re-

sults lead to a new functional interpretation of pheno-

typic variability and neurogenesis in sensory brain re-

gions: first, phenotypic variability in sensory neuron

number may be tied to phenotypic variability in the aver-

age heat dissipation rate of a sensory neuron; and second,

neurogenesis may only be necessary when the organism-

environment interactions change drastically, e.g., due to

changes in action policy.

RELATING SENSORY COSTS TO THE

RATE-DISTORTION FUNCTION

Confusing one environmental state for another can be

costly due to a subsequent suboptimal choice of action.

For example, mistaking a lion for a domesticated cat

might lead to death, while mistaking a domesticated cat

for a lion might lead to unnecessary energy spent run-
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ning. However, correctly identifying a greater number

of objects requires more mental effort, whether that be

measured by a larger number of neurons devoted to ob-

ject recognition or a correspondingly larger number of

ATP molecules consumed in their function.

Previous work suggests that resource constraints such

as these are critical in shaping the neural code [12–19].

In this manuscript, we also endeavour to describe the

tradeoff between neuron number and the quality of in-

formation transmission. However, our approach differs

from these previous efforts in two major ways. First,

we use rate-distortion theory (a branch of information

theory) and recent advances in nonequilibrium statistical

mechanics to place lower bounds on material, timing, and

energy costs without specifying a particular neural code.

Second, we use a distortion measure (e.g., loss function)

to quantify the quality of sensory information process-

ing; confusing sensory input x for x̃ costs the organism

d(x, x̃). This leads to a stark difference in objective func-

tion: previous authors looked to maximize the shared in-

formation between stimulus and response I[X; X̃] while

minimizing a separately-calculated energy expenditure;

we look to minimize both shared information I[X; X̃]

and expected distortion 〈d(x, x̃)〉p(x,x̃).
For concreteness, we consider m sensory neurons that

form an information bottleneck between environmental

information and downstream brain regions that decide

organism actions based on the perceptual information.

Though some work suggests that the neural code might

be analog (based on spike timing), there is inherent noise

in neural circuitry that effectively imposes a minimal dis-

cretization time (a few milliseconds [20]) on which the

neural code operates. We choose the time units to be

that minimal discretization time, and think of the sen-

sory neural code as a binary vector of length m in which

1 (0) in the ith position codes for a spike (no spike) from

neuron i in that minimal discretization time. Here, sen-

sory inputs x are drawn i.i.d. with probability p(x).

Rate-distortion theory places asymptotically achiev-

able lower bounds on the rate of the sensor, the bits

per input symbol required to communicate the sensor’s

state to a decoder, lower-bounded by I[X; X̃]. The sen-

sor’s distortion is given by the expected value of a user-

specified distortion measure d(x, x̃), which quantifies the

cost of confusing x and x̃. Distortion can be connected

to the reward function r̃(x, a) and action policy p(a|x) in

a simplified reinforcement learning setup [21] where a are

possible actions, via d(x, x̃) = (maxx̃
∑
a p(a|x̃)r̃(x, a))−∑

a p(a|x̃)r̃(x, a). This distortion measure is “normal”,

d(x, x) = 0, if the action policy uses all available infor-

mation about the environmental state via sensory repre-

sentation. The rate-distortion function R(D) delineates

the boundary between achievable and unachievable com-

binations of rate and distortion as shown in Fig. 1.

Material and timing costs both run into fundamen-

tal limits quantified by the rate-distortion function. If

the number of sensory neurons is greater than the rate-

distortion function, R(D) ≤ m, then one can instanta-

neously decode each estimated input x̃t from the tth bi-

nary vector of length m, but R(D) places a lower bound

on material cost m. If R(D) ≥ m, then we can acquire

additional expressiveness by coding each input x as a

string of binary vectors of length m, resulting in tim-

ing delays. The expected length of the neuronal output

string is no less than R(D)/ log2 2m = R(D)/m, which,

when multiplied by the number of input symbols sensed

thus far, is the timing delay between encoding and de-

coding.

Finally, a more generally applicable nonequilibrium

thermodynamics viewpoint ties the rate-distortion func-

tion to power consumption. Memoryless channels implic-

itly have a measure-reset cycle: first, the channel senses

the environment, and the channel communicates its mea-

surement to some “homunculus”; and afterwards, the

channel resets its internal state. The energy per reset

required to maintain such a channel is lower-bounded

by kBTI[X; X̃] [22, 23], which is lower-bounded by

kBTR(D), where I[X; X̃] and R(D) here are measured

in nats. This is a different energetic consideration than

that mentioned in Ref. [24].

In short, R(D) places a lower bound on the size of

the physical substrate, on timing delays between encod-

ing and decoding environmental input, and on the power

required to maintain the sensor. Alternatively, if some

part of the brain is “transparent”, the rate R(D) places

a lower bound on the channel capacity of downstream

brain regions.

Researchers have used rate-distortion theory to study

everything from chemotaxis [26] to genetic transcription

[24] to prediction in the salamander retina [27] to hu-

man vision [28]. The appropriate choice of information

source and distortion measure depends heavily on the

particular biological system that one studies. Here, we

use rate-distortion theory to model environments using

the framework of Ref. [11]. Distortions d(x, x̃) and the

probability distribution of inputs p(x) are drawn from

a probability distribution that represents the range of

possible environments an organism might find itself born

into. In this paper, for simplicity, all off-diagonal distor-

tions are drawn i.i.d. with probability density function

ρ(d), and the probability distribution of inputs is drawn

from a Dirichlet distribution with concentration parame-
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FIG. 1. Rate-distortion theory: estimation with an in-
formation bottleneck. Top panel: m sensory neurons are
asked to communicate an environmental input x to a “ho-
munculus” using neuron spike code p(r|x); the homunculus
creates an estimate, x̃, of the environmental input on the ba-
sis of the spiking pattern r. The quality of estimation is given
by the expected distortion D = 〈d(x, x̃)〉p(x,x̃), and the abso-
lute rate of the information bottleneck, R, is m, the number of
sensory neurons. Bottom panel: the rate-distortion function
shown in blue delineates the boundary between achievable
(white) and unachievable (hatched) combinations of rate and
distortion. The rate-distortion function shown here is that for
two equiprobable environmental inputs and Hamming distor-
tion measure [25].

ter α. The α parameter in Dirichlet distribution dictates

how uncertain an environment is; as α increases, p(x) is

more evenly distributed among theN possible states, and

the uncertainty of the environment increases. Together,

ρ(d) and α specify a generative model for environments.

To calculate R(D) given a distortion measure and

probability distribution over inputs, we find the

pβ(x̃|x) which minimizes the rate-distortion Lagrangian,

β〈d(x, x̃)〉p(x,x̃) + I[X; X̃] using the Blahut-Arimoto al-

gorithm [25], and calculate the resultant rate Rβ and

expected distortion Dβ . As β sweeps from 0 (high dis-

tortion) to∞ (low distortion), Rβ and Dβ parametrically

trace out the rate-distortion function R(D).

The rate-distortion functional also has a physical inter-

pretation as a total energetic cost. Distortion D quan-

tifies the food energy that the organism failed to intake

from the environment; rate r is correlated with the en-

ergy that the organism expended in doing so. We can

loosely think of the rate r as a proxy for neuron number,

so that the energy expenditure of this organism’s brain

is β−1r, where β is the average rate of energy use for a

single neuron [29]. The overall energetic cost to the or-

ganism is then D+ β−1r, and the fitness of an organism

is some monotonically decreasing function of the organ-

ism’s energetic cost.

WEAK UNIVERSALITY OF THE

RATE-DISTORTION FUNCTION

Numerical experiments shown in Fig. 2 strongly sug-

gest that, when there are many possible environmental

inputs (N � 1), the rate-distortion function R(D) does

not depend on the specific distortion measure or environ-

mental input probabilities, but only on the distribution

from which distortions were drawn, ρ(d), and the distri-

bution from which the input probabilities were drawn,

characterized by concentration parameter α. Note that

Ref. [11] considered the effects of a nonzero dmin =

inf{x : ρ(x) > 0}. Here, we assume that dmin = 0.

We refer to the insensitivity of the rate-distortion func-

tion to the particular distortion measure and probability

distribution over inputs as “weak universality” [30]. In

particular, we now argue that the rate-distortion func-

tion converges in probability to a curve which depends

only on ρ and α. Let subscripts of RN,d(D) denote the

number of sensory inputs N and the distortion measure

d. We wish to show that

lim
N→∞

P(|RN,d(D)− lim
N→∞

〈RN,d(D)〉p(d)| ≥ ε) = 0 ∀ ε > 0.

(1)

If Eq. 1 holds, then (loosely speaking) the rate-distortion

function RN,d(D) depends only on ρ and α in the large N

limit, even though optimal codebooks for distortions with

the same ρ and α but different d tend to differ wildly.

To do so, we must first argue that

limN→∞〈RN,d(D)〉p(d) exists. Ref. [11] showed

that 〈RN,d(D)〉p(d) ≤ log 1∫ ∞
D
ρ(x)dx

in the large N limit,

which implies that 〈RN,d(D)〉p(d) is bounded from

above. Simulation results suggest that 〈RN,d(D)〉p(d)
is strictly increasing with N ; see Ref. [11] and Fig. 2

for examples. The monotone convergence theorem then

implies that limN→∞〈RN,d(D)〉p(d) exists. For ease, we

introduce new notation: R̄N (D) := 〈RN,d(D)〉p(d) and

R̄(D) := lim
N→∞

R̄N (D) (2)

where R̄N (D) and R̄(D) depend on both ρ and α.

An application of Markov’s inequality with nonnega-
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tive random variable X = |RN,d(D)− R̄(D)| reveals that

P(|RN,d(D)− R̄(D)| ≥ ε) ≤ 2R̄(D)

√
〈(RN,d(D)− R̄N (D))2〉p(d)

ε
, (3)

where we have used 〈|RN,d(D) − R̄(D)|〉p(d) ≤
〈RN,d(D)〉p(d) + R̄(D) ≤ 2R̄(D). For Eq. 1 to

hold, we must show that the right hand side of

Eq. 3 tends to 0 as N → ∞. We argued above

that R̄(D) was bounded. Fig. 3 suggests that

limN→∞

√
〈(RN,d(D)− R̄N (D))2〉p(d) = 0 for all D. Al-

together, then, we have numerical evidence that Eq. 1

holds for any D, i.e. that RN,d(D) converges in proba-

bility to R̄(D).
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FIG. 2. Convergence in probability to a single rate-
distortion function. Each line shows the average R(D)
for 100 rate-distortion functions calculated for worlds with
equivalent generative models, with α = 1 and ρ(d) =

1

σd
√
2π
e−(log d−µ)2/2σ2

with µ ≈ 3 and σ ≈ 2. Lines denote es-

timates of R̄N (D) and surrounding transparent regions show
68% confidence intervals on R(D) obtained by bootstrapping.
Linear interpolation is used to find R(D) at desired D’s from
the distortions at which R(D) was actually calculated. The
inset is a log-log plot of the same. The size of the 68% con-
fidence intervals appear to decrease, and the average rate-
distortion function R̄N (D) appears to increase, as N grows
larger.

In some ways, the results presented above are unsur-

prising. The rate-distortion function is a one-dimensional

projection of N(N −1) i.i.d. distortions, so we might ex-

pect weak universality to emerge from some particular

application of the weak law of large numbers. Indeed,

we can show analytically that this happens in the two
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FIG. 3. Fluctuations in required resources dimin-
ish as the environmental complexity increases. Max-
imal variance in R(D) calculated for three different world
generative models at N = 5, 10, 25, 50, 100, 250, 500.
The distortions are chosen from ρ1(d) = e−d and ρ2(d) =

1

σd
√
2π
e−(log d−µ)2/2σ2

with µ ≈ 3 and σ ≈ 2; the input proba-

bility distributions are Dirichlet with concentration parameter
α. The y-axis values, maxD Vard[RN,d(D)], are estimated by
bootstrapping given 100 samples of the rate-distortion func-
tion at 200 uniformly spaced distortions between 0 and the
maximum Dmax. In all cases, deviations from the average
case decline rapidly with N ; this is true despite large differ-
ences in the moments of the different distributions considered.

extreme limits (low and high distortion), thus providing

some insight into the mechanism by which rate-distortion

function converges in probability to R̄(D). Proof of con-

vergence at other distortions remains an open problem.

In the low distortion limit, there is an exact expression

for Rβ , Dβ in Ref. [31]. Repeated applications of the

weak law of large numbers in the large N limit yields

Dβ =
〈de−βd〉ρ(d)
〈e−βd〉ρ(d)

(4)

Rβ = ψ(Nα)− ψ(α)− βDβ +

− log(1 +N〈e−βd〉ρ(d)) (5)

to lowest order in N〈e−βd〉ρ(d); the first two terms in

the expansion of Rβ are equal to the expectation value

of the entropy of the Dirichlet distribution with param-
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eter α [32]. Unlike the histogram of eigenvalues of ran-

dom matrices, these expressions show that there is only

weak universality, as the moment-generating function

〈e−βd〉ρ(d) generally uniquely specifies ρ(d), and different

α have different ψ(Nα)− ψ(α).

A similar result exists in the high-distortion limit.

With zero rate, the minimal achievable distortion

(Dmax = minI[X;X̃]=0

∑
x,x̃ p(x, x̃)d(x, x̃)) is equiva-

lent to minx̃
∑
x p(x)d(x, x̃). The expected value of∑

x p(x)d(x, x̃) over the ensemble of environments is

(1− 1
N )〈d〉ρ(d) and the variance is 1

Nα+1 (1− 1
N )2〈d2〉ρ(d)−

〈d〉2ρ(d)
N2 , as shown in the appendix. As long as ρ(d) has

a finite second moment, this variance in R(D) scales as

∼ 〈d
2〉ρ(d)
α

1
N , which tends to 0 as N grows larger; there-

fore, Dmax converges in probability to 〈d〉ρ(d) as N tends

to infinity.

Although the rate-distortion function appears invari-

ant to changes in the particular distortion measure

and probability distribution over inputs, near-optimal

codebooks vary wildly from one environment to the

next. The statistics of near-optimal codebooks at an ex-

pected distortion D are dictated by the p(x̃|x) for which

〈d(x, x̃)〉p(x,x̃) ≤ D and I[X; X̃] is at a minimum [31],

and numerical experiments show that the statistics of

such p(x̃|x) are heavily dependent on environment.

IMPLICATIONS FOR BIOLOGICAL

ORGANISMS

Organisms can employ one of a few strategies to cope

with wildly fluctuating environments. The first strategy

derives from Kelly’s classical analysis of gambling, ap-

plied to phenotypic bet-hedging—that a population of

organisms should develop into a range of phenotypes to

maximize expected log growth rate [25, 33]. Another

strategy would involve delaying development of key brain

regions until the organism has received strong environ-

mental cues.

A third strategy would be to essentially ignore envi-

ronmental fluctuations. At first, this seems like a sub-

optimal strategy, in that a population of organisms that

employ either of the two strategies listed above would

have a higher log growth rate. However, the weak uni-

versality results presented here suggest that the necessary

size of sensory brain regions, the minimum possible tim-

ing delays in sensory perception, and the minimal power

required to maintain sensory brain regions all depend

only on coarse environmental statistics, even though op-

timal neural wiring fluctuates wildly from environment

to environment. In the examples discussed in the main

text, these coarse environmental statistics are ρ(d) and

α. More generally, these coarse environmental statistics

are the parameters specifying the distribution from which

distortion measures are drawn and the distribution from

which probability distributions over inputs are drawn.

In apparent agreement with these findings, environ-

mental cues are scarce during development, and seem to

have limited effect on neuron number [8], and there are

few reports of neurogenesis in mammalian sensory brain

regions [9].

Number may be fixed, but wiring is not, and there are

many reports of synaptic plasticity in sensory brain re-

gions; the particular wiring of neurons in sensory brain

regions does depend on the details of environmental

cues [34, 35].

If weak universality-type results mean that sensory

neuron number can be largely fixed ahead of time, two

questions immediately suggest themselves. First, why

do investigators find evidence of neurogenesis in non-

vertebrate sensory brain regions [9]? And second, why is

there high phenotypic variability in sensory neuron num-

ber for many animals, including primates [8]?

First, Ref. [9] notes that animals with substantial neu-

rogenesis in sensory areas are also those that grow con-

siderably postnatally, which—in our simple conception

of organisms—corresponds to an increase in the possible

actions a taken by the organism. Recall that one can con-

nect the distortion measure directly to the reward func-

tion r(x, a) and action policy p(a|x̃). Changes in the set

of actions will thus change the distortion measure in a

(possibly) more structured way than what was consid-

ered here. That, in turn, will likely lead to an increase in

the requisite sensor size, necessitating adult neurogenesis

in sensory areas. We leave a delineation of the induced

structure in the distortion measure to future research.

Meanwhile, phenotypic variability is explainable

within our minimal model. Earlier, we identified the

rate-distortion objective as a fitness function, implying

that variability in the Lagrange multiplier β (represen-

tative of single neuron power usage) is tightly connected

to variability in the observed number of sensory neurons.

This explanation could be tested by correlating sensory

neuron number with the average heat dissipation rate of

single neurons in sensory regions.

Our minimal model of sensory tradeoffs in biological

organisms lead to new questions at the intersection of

random matrix theory, information theory, and sensory

processing. Extensions of this approach—to distortion

measures that change as the animal grows, or to dis-

tortion measures and probability distributions over in-

puts with more structure—may predict and mathemat-
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ically explain other observed similarities and differences

between species.
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Weak universality in the low- and high-distortion limits

First we tackle the low-distortion limit. When pβ(x̃) has full support, an exact expression exists for Rβ and Dβ

from [31]. Let ~p(x) be a vector of input probabilities p(x), let d be the distortion matrix, and let Qx,x̃ = e−βd(x,x̃).

Then

Rβ = −βDβ +H[X] + ~p(x)> log(Q−1~1) (6)

Dβ = [
~p(x)

Q−1~1
]>Q−1(d�Q)(Q−1~1). (7)

When β is sufficiently large, then the entries of Q− I are much smaller than 1 with high probability, suggesting the

expansion

Q = I + (Q− I)

Q−1 = (I + (Q− I))
−1

=

∞∑
m=0

(−1)m(Q− I)m.

By the weak law of large numbers, (Q−I)~1 is highly concentrated around (N−1)〈e−βd〉ρ(d)~1 as long as the probability

density function for e−βd has finite variance, so that

(Q− I)m~1 ≈
(
(N − 1)〈e−βd〉ρ(d)

)m~1
showing that

Q−1~1 =

∞∑
m=0

(
−(N − 1)〈e−βd〉ρ(d)

)m~1
≈ (1 + (N − 1)〈e−βd〉ρ(d))−1~1.

Then we find that

~p(x)> log(Q−1~1) ≈
∑
x

p(x) log(1 + (N − 1)〈e−βd〉ρ(d))−1

= − log
(
1 + (N − 1)〈e−βd〉ρ(d)

)
so that

Rβ = −βDβ +H[X]− log
(
1 + (N − 1)〈e−βd〉ρ(d)

)
. (8)
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Similar manipulations, again based on the weak law of large numbers, reveal that

Dβ ≈
(N − 1)〈de−βd〉ρ(d)

1 + (N − 1)〈e−βd〉ρ(d)
. (9)

When the probability distribution over inputs is drawn from a Dirichlet distribution with concentration parameter α,

then H[X] is very peaked around ψ(Nα)− ψ(α) with corrections of O(1/N) [36], yielding

Rβ ≈ −βDβ + ψ(Nα)− ψ(α)− log
(
1 + (N − 1)〈e−βd〉ρ(d)

)
. (10)

Thus Dβ and Rβ are independent of the particular distortion matrix and dependent only on ρ(d), α. Unlike the

histogram of eigenvalues of random matrices, there is only weak universality, as the moment-generating function

〈e−βd〉ρ(d) specifies ρ(d) and different α have different ψ(Nα)− ψ(α). Note that this formula holds only when pβ(x̃)

has full support, or (roughly speaking) when N〈e−βd〉ρ(d) � 1.

Next, we tackle the high-distortion limit, i.e. find weak universality in Dmax. We look to show that

minx̃
∑
x p(x)d(x, x̃) converges in probability 〈d〉ρ(d), and so we look to show that the expected value of

minx̃
∑
x p(x)d(x, x̃) over worlds with the same ρ(d), α converges in probability to 〈d〉ρ(d). For any x̃ we have

〈
∑
x

p(x)d(x, x̃)〉p(~p(x),d) = (N − 1)
( α

Nα

)
〈d〉ρ(d)

= (1− 1

N
)〈d〉ρ(d)

while the variance of
∑
x p(x)d(x, x̃) is

〈
(∑

x

p(x)d(x, x̃)− 〈
∑
x

p(x)d(x, x̃)〉p(~p(x),d)
)2

〉p(~p(x),d) = 〈(
∑
x

p(x)d(x, x̃))2〉p(~p(x),d) − 〈
∑
x

p(x)d(x, x̃)〉2p(~p(x),d)

= 〈
∑
x,x′

p(x)p(x′)d(x, x̃)d(x′, x̃)〉p(~p(x),d) − (1− 1

N
)2〈d〉2ρ(d)

= 〈
∑
x

p(x)2d(x, x̃)2〉p(~p(x),d) +
∑
x 6=x′

〈p(x)p(x′)d(x, x̃)d(x′, x̃)〉p(d)

−(1− 1

N
)2〈d〉2ρ(d)

= (N − 1)〈p(x)2〉p(~p(x))〈d2〉ρ(d) + (N − 1)(N − 2)〈p(x)p(x′)〉〈d〉2ρ(d)
−(1− 1

N
)2〈d〉2ρ(d)

where x 6= x′ in the second term. The first of these terms is relatively easy to evaluate using the fact that if

x1, . . . , xN are drawn from a Dirichlet distribution with concentration parameter α, then ρ(x1) = B(x1;α, (N − 1)α)

and ρ(x2|x1) = B( x2

1−x1
;α, (N − 2)α) [36]. As such, we find that

〈p(x)2〉p(~p(x)) =

∫ 1

0

p(x1)2B(p(x1);α,Nα)dp(x1)

= (1− 1

N
)2

1

Nα+ 1
.

The second term is evaluated by noticing

〈p(x)p(x′)〉p(~p(x)) =

∫
Pr(p(x1), . . . , p(xN ))p(x1)p(x2)dp(x1) . . . dp(xN )

=

∫ ∫
Pr(p(x1), p(x2))p(x1)p(x2)dp(x1)dp(x2)

=

∫ 1

0

∫ 1

0

p(x1)p(x2)B(p(x1);α, (N − 1)α)B(
p(x2)

1− p(x1)
;α, (N − 2)α)dp(x1)dp(x2).
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After some algebra, we find that 〈p(x)p(x′)〉 = 1
N(N−1) for x 6= x′, and so

〈
(∑

x

p(x)d(x, x̃)− 〈
∑
x

p(x)d(x, x̃)〉p(~p(x),d)
)2

〉p(~p(x),d) = (1− 2

N
)〈d〉2ρ(d) + (1− 1

N
)2
〈d2〉ρ(d)
Nα+ 1

− (1− 2

N
+

1

N2
)〈d〉2ρ(d)

=
1

Nα+ 1
(1− 1

N
)2〈d2〉ρ(d) −

〈d〉2ρ(d)
N2

.

In the largeN limit, we have 〈
(∑

x p(x)d(x, x̃)− 〈∑x p(x)d(x, x̃)〉p(~p(x),d)
)2〉p(~p(x),d) ∼ 〈d2〉ρ(d)Nα . Chebyshev’s inequality

implies that
∑
x p(x)d(x, x̃) tends to 〈d〉ρ(d) in probability as N → ∞ for all x̃, and so Dmax = minx̃

∑
x p(x)d(x, x̃)

converges in probability to 〈d〉ρ(d) in probability as N →∞.
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