
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hybrid Monte Carlo and continuum modeling of electrolytes
with concentration-induced dielectric variations

Xiaofei Guan, Manman Ma, Zecheng Gan, Zhenli Xu, and Bo Li
Phys. Rev. E 94, 053312 — Published 28 November 2016

DOI: 10.1103/PhysRevE.94.053312

http://dx.doi.org/10.1103/PhysRevE.94.053312


Hybrid Monte Carlo and Continuum Modeling of

Electrolyte with Concentration-Induced Dielectric

Variations

Xiaofei Guan ∗† Manman Ma ‡§ Zecheng Gan ¶ Zhenli Xu ‖

Bo Li ∗∗

November 7, 2016

Abstract

The distribution of ions near a charged surface is an important quantity in many

biological and material processes; and has been therefore investigated intensively.

However, few theoretical and simulation approaches have included the influence of

concentration-induced variations in the local dielectric permittivity of an underlying

electrolyte solution. Such local variations have long been observed and known to af-

fect the properties of ionic solution in the bulk and around the charged surface. We

propose a hybrid computational model that combines Monte Carlo simulations with

continuum electrostatic modeling to investigate such properties. A key component in

our hybrid model is a semi-analytical formula for the ion-ion interaction energy in a

dielectrically inhomogeneous environment. This formula is obtained by solving for the

Green’s function Poisson’s equation with ionic-concentration dependent dielectric per-

mittivity using a harmonic interpolation method and spherical harmonic series. We

also construct a self-consistent continuum model of electrostatics to describe the effect

of ionic-concentration dependent dielectric permittivity and the resulting self energy

contribution. With extensive numerical simulations, we verify the convergence of our
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hybrid simulation scheme, show the qualitatively different structures of ionic distribu-

tion due to the concentration-induced dielectric variations, and compare our simulation

results with the self-consistent continuum model. In particular, we study the differ-

ences between weakly and strongly charged surfaces and multivalencies of counterions.

Our hybrid simulations conform particularly the depletion of ionic concentrations near

a charged surface and also capture the charge inversion. We discuss several issues and

possible further improvement of our approach for simulations of large charged systems.

1 Introduction

The formation and structure of an electric double layer (EDL) around a charged colloid
immersed in an electrolyte solution is largely determined by a high gradient of the electric
potential around the colloid. Such electric potential is determined by fixed charges (e.g., sur-
face charges), charges of ions, and the solvent polarization. The distribution of ions near the
colloidal surface therefore characterizes EDL structures. An EDL has a significant influence
on the behavior of microscopic and mesoscopic charged particles that are in contact with
solution. Understanding ionic distributions near a charged surface and hence the structure of
EDL is therefore crucial to many applications, including energy-saving devices, membranes,
and biopolymers [1–3].

Computationally, all-atom simulations of mesoscopic systems are prohibitively expensive
because of the repeated energy or force evaluations for a system with large number of parti-
cles. Alternative continuum approximations and coarse-grained models are rather efficient,
and the classical Poisson–Boltzmann (PB) theory [4–6] is a representative continuum model
of such efficient approaches. While this simple and effective theory has been quite successful
in predicting some basic properties of an EDL structure, it is known to be only accurate in
the weak-coupling regime and with low ionic concentrations. For instance, the PB theory
is unable to describe the ionic depletion near an air-electrolyte interface, as well as over
charging, charge reversal, stratification of ionic concentrations, and ion-mediated like-charge
attractions [7–15]. It is believed that the main reason for the PB theory to be quite restrictive
is that it does not describe well the many-body correlations.

A different and also widely used coarse-grained computational model is the primitive
model [16, 17]. In such a model, the solvent (e.g., water) molecules, often of very large
numbers, are treated implicitly and collectively as a continuum medium with a spatially
homogeneous dielectric constant. Mobile ions, however, are still explicitly treated as discrete,
charged particles. As the dielectric environment is in general nonuniform, its approximation
with a dielectric constant can lead naturally to an issue of the dielectric effect. In fact,
the dielectric polarization effect has been found to play an important role in a variety of
systems, such as colloid suspensions [18–21], cloud droplets [22,23], and protein folding [24].
In order to investigate such a polarization effect with the primitive model, one needs to
account for the effect of dielectric mismatch across an interface, the dielectric boundary,
from a low dielectric material to the high dielectric aqueous solvent. This can be done
by solving Poisson’s equation or Poisson–Boltzmann equation for the electrostatic potential
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with a spatially piecewise constant dielectric coefficient.
Computer simulation studies with the primitive model and dielectric boundary Poisson’s

model with piecewise dielectric coefficient have confirmed that the dielectric boundary does
have a significant influence on many-body phenomena, such as charge inversion, like-charge
attraction, and electrostatics-driven colloidal self-assembly [21, 25–28]. Such an approach,
however, still has some obvious drawbacks. First, numerically solving such dielectric bound-
ary Poisson’s equation for arbitrary geometries can be rather expensive, unless the underlying
system geometry is simple (e.g., a spherical interface) and a corresponding efficient method
(such as the image charge method) is used [27]. In recent years, several efficient techniques for
general system geometries have been developed. These include the induced charge computa-
tion method [29–31], boundary element method [32], energy functional approaches [33, 34],
and the local electrostatic method based on the Maxwell equations [35]. However, the ef-
ficiency is still an issue, particularly when such a method is combined with Monte Carlo
(MC) or molecular dynamics (MD) simulations. Second, a more serious issue is that the
dielectric description is still far from reality. For instance, the dielectric fluctuation effect
due to the alignment of ordered dipoles is ignored in these descriptions. Experimentally, the
solvent itself can be polarized, leading to its effective dielectric permittivity being spatially
varying as a function of the salt concentration [36, 37]. Heuristically, salt ions weaken the
ability of the re-alignment of solvent molecules with an applied field. Thus, a locally high
salt concentration effectively decreases the dielectric permittivity in that region. This effect
has been less studied, mostly due to the difficulty in efficiently solving Poisson’s equation
with a spatially varying coefficient coupled with particle based simulations.

In this work, we develop a hybrid MC simulations and continuum electrostatics model
to study an electrolyte solution. This model allows us to self-consistently calculate the equi-
librium ionic distributions in a medium with salt concentration dependent local dielectric
permittivity. We describe this local dielectric permittivity by an analytic formula that fits
experimental data and all-atom MD simulation results [38,39]. We combine the MC simula-
tion scheme with a harmonic interpolation method (HIM) [40] for rapidly solving Poisson’s
equation with spatially varying dielectric coefficient. We also construct a self-consistent con-
tinuum model (SCCM) that extends a previous model developed in [41, 42]. This model is
in the form of Poisson’s equation together with generalized Boltzmann distributions that
account for self energies. We develop various efficient numerical methods to implement our
model. These include an approximation method using a homogeneous dielectric permittivity
and a method of line image charge [43].

After we verify the convergence of our computational methods, we apply them to investi-
gate the effect of ionic concentration dependent dielectric permittivity to the EDL structure
around a charged colloidal particle. In particular, we consider both low and high charge
densities of the colloidal surface, as well as multivalencies of counterions in the electrolyte
solution. Moreover, we compare our hybrid MC simulation results with standard MC sim-
ulation results in which a constant dielectric coefficient in the region of electrolyte is used.
We also compare our hybrid MC simulation results with those obtained from calculations
based on our self-consistent continuum model. Our extensive computations demonstrate the
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attractive performance of our new method and reveal several interesting phenomenon arising
from the ionic concentration-induced variations in the dielectric permittivity.

We organize the rest of our paper as follows. In Section 2, we describe our hybrid
MC simulations and continuum electrostatics model and provide details of the harmonic
interpolation method (HIM) for solving the continuum electrostatics problem coupled in
MC simulations. In Section 3, we introduce the self-consistent continuum model and our
method of implementation for this model. In Section 4, we report simulation results with
discussions. Finally, in Section 5, we draw conclusions and discuss some issues and possible
improvement of our approaches.

2 A Hybrid Monte Carlo Simulations and Continuum

Electrostatics Model

We propose a canonical-ensemble Metropolis Monte Carlo (MC) method for an extended
primitive model that accounts for the dielectric inhomogeneity arising from the dependence
of the dielectric coefficient on local, total ionic concentration. By fitting experimental and
simulations data [44, 45], we obtain the following formula of the dielectric coefficient (i.e.,
relative permittivity) varying with the total ionic concentration [38]:

ε(c) = 70e−0.22c/c0 + 10, (2.1)

where c =
∑M

j=1 cj with M the number of species of ions and cj the local concentration of the
jth ionic species, and c0 = 1 M. In Eq. (2.1), we have implicitly assumed that the dielectric
coefficient εw (w for water) for the pure solvent (i.e., c = 0) is εw = ε(0) = 80.

2.1 The Hamiltonian

We consider a negatively charged colloidal particle immersed in an electrolyte solution; cf.
Figure 1. (There is no particular reason, other than being specific, for us to consider a
negatively charged macroion.) The macroion is centered at r0 = O (the origin), has radius
Rm, and has a bare charge Q0 = Z0e at its center, where Z0 is the valence and e is the
elementary charge. The electrolyte solution occupies a spherical shell defined by Rm < r <
Rshell for some radius Rshell, where r = |r| [17]. We assume that there are N microions of M
different ionic species in the electrolyte solution. The ith ion is located at ri (the center of
ion), has radius ai and carries a charge qi = zie at its center with zi its valence. An ion of
jth species has valence Zj. So, each zi (1 ≤ i ≤ N) is the same as some Zj (1 ≤ j ≤ M). We
also assume that the entire charged system satisfies the electro-neutrality condition. With
a given set of microions, we define the ionic concentrations cj = cj(r) (j = 1, . . . ,M) and

the total concentration c(r) =
∑M

j=1 cj(r). With our underlying system geometry, we shall
assume that all these concentrations are radially symmetric, i.e., they only depend on r = |r|.
We shall also use the notation c = c(r) = c(r).

We divide our system region into three regions of concentric spherical shells:

4



εm

ε(c(r))

Rm
Rshell

-

+

Ω - -

--

- -
-

-

--

-_

+

+

+

_

_ _

__

Figure 1: Schematic representation of a charged colloid immersed in an electrolyte. Cations
and anions are represented by solid red and blue balls.

(1) The macroion region: r < Rm. This region has the constant dielectric coefficient εm,
same as that of the colloidal particle;

(2) The EDL or electrolyte solution region: Rm < r < Rshell. In this region, the dielectric
coefficient at a spatial point r is given by ε = ε(c(r)) = ε(c(r)), where c = c(r) is the
total ionic concentration at r and ε = ε(c) is defined in Eq. (2.1);

(3) The bulk region: r > Rshell. In the bulk region far away from the charged interface,
the dielectric coefficient is assumed to be a constant ε∞ = ε(c(∞)) where c(∞) is the
bulk value of the total concentration.

Note that all the microions are placed in the region Rm < r < Rshell.
We define the Hamiltonian U = U(r0, r1, . . . , rN) of our system to be

U = Uhs +
∑

0≤i<j≤N

Uij +
N∑

i=0

U self
i , (2.2)

where the indices i and j run over all macro and micro-ions with i = 0 representing the
macroion. Here, the first term Uhs is the hard-sphere potential: Uhs = ∞ if any two ionic
spheres (micro or macro) overlap, or the center of any microion goes out of the region of
electrolyte solution Rm < r < Rshell; and Uhs = 0 otherwise.

The second term in the Hamiltonian (2.2) sums over the pair-wise electrostatic interac-
tions among all different charges, including the macroion which is labeled by 0. We denote
r0 the center of macroion, which is the origin, and z0 = Z0 and q0 = Q0. Given i and j with
i 6= j, the electrostatic interaction Uij between the charges qi = zie and qj = zje located at
ri and rj , respectively, can be expressed as Uij = qiqjG(ri, rj). Here G(r, r′) is the Green’s
function defined by

−∇ · ε(r)ε0∇G(r, r′) = δ(r− r′), (2.3)
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where ε0 is the vaccum permittivity, δ is the Dirac delta function, and the dielectric coefficient
ε(r) is defined to be εm for r < Rm, ε(c(r)) for Rm < r < Rshell, and ε∞ for r > Rshell. The
Green’s function is defined in the entire space R

3. It satisfies that for a fixed r′ both G
and ε(r)∂rG are continuous functions with respect to r across the interfaces r = Rm and
r = Rshell, and that G(r, r′) → 0 as r → ∞.

The Green’s function G(r, r′) represents the electrostatic potential due to a unit point
charge at r′. It thus describes the electrostatic interaction between two unit charges at r

and r′, respectively. With the radially symmetric dielectric medium, we can decompose the
Green’s function into

G(r, r′) = GCoul(r, r
′) +GPol(r, r

′), (2.4)

where the term GCoul(r, r
′) is the direct Coulomb interaction term, defined to be

GCoul(r, r
′) =

1

4πε0
√

ε(r)ε(r′)|r− r′|
, (2.5)

and the term GPol(r, r
′) describes the polarization due to both the dielectric jump at the

surface of macroion and the dielectric variation in the EDL region. Once G(r, r′) is known,
then it together with (2.4) and (2.5) determine GPol(r, r

′) = G(r, r′)−GCoul(r, r
′).

The last term in the Hamiltonian (2.2) sums over all the self energies that arise due to the
dielectrical inhomogeneity of the medium, for which the free energy cost of inserting an ion
becomes space-dependent [46]. Such a self energy can be divided into two contributions: (1)
The polarization energy due to the global dielectric variation; and (2) The Born energy [47]
due to the local finite ionic size effect. Thus the total self energy of the ith ion is given by

U self
i =

q2i
2

[
GPol(ri, ri) +

1

4πε(ri)ε0Rb,i

]
, (2.6)

where Rb,i is the Born radius of the ith ion.

2.2 The harmonic interpolation method

We use the harmonic interpolation method (HIM) [40, 48] to solve Eq. (2.3) for the Green’s
function G(r, r′). This method is based on the following observation: if the square root of
dielectric coefficient function is harmonic, then the Green’s function can be transformed by
a change of variable to a new Green’s function that is defined with a constant dielectric
coefficient. A key idea in the HIM is then to use a piecewise interpolation of the variable di-
electric coefficient in Eq. (2.3) so that the square root of the interpolated dielectric coefficient
function is piecewise harmonic.

We divide the radially symmetric simulation region 0 ≤ r ≤ Rshell into small layered
shells Il = [rl−1, rl] (l = 1, . . . , L) for some L, where r0 = 0, r1 = Rm, and RL = Rshell. Let
us denote εj = ε(rj) the dielectric coefficient at rj (j = 0, 1, . . . , L). We then approximate
the dielectric coefficient function by the following piecewise defined function εappr = εappr(r):
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εappr = εm if r0 ≤ r ≤ r1, and

εappr(r) = εl(r) =

(
âl +

b̂l
r

)2

if rl−1 ≤ r ≤ rl, l = 2, . . . , L, (2.7)

where the coefficients âl and b̂l are given by

âl =

√
εlrl −

√
εl−1rl−1

rl − rl−1
and b̂l =

√
εl −

√
εl−1

1/rl − 1/rl−1
.

These coefficients are so determined to ensure the continuity of εappr(r).
Now let Gappr(r, r

′) be the Green’s function corresponding to εappr, i.e., Gappr(r, r
′)

satisfies Eq. (2.3) with ε(r) replaced by εappr(r). We denote Gl(r, r′) = Gappr(r, r
′) if

r = |r| ∈ Il = [rl−1, rl]. Let the source charge r
′ be located in Ik for some k : 1 ≤ k ≤ L, i.e.,

r′ = |r′| ∈ Ik = [rk−1, rk]. Then we have that [40]

−∇2[
√

εl(r)ε0G
l(r, r′)] =

1√
εk(r′)

δ(r− r′) if rl−1 < r < rl, l = 1, . . . , L.

Notice that, if we set vl =
√
εlε0G

l, then the left-hand side of the above equation on Il is
just −∇2vl. The equation is then Poisson’s equation with a constant dielectric coefficient,
in contrast to Eq. (2.3) that has a variable dielectric coefficient.

We use the spherical coordinates, and denote the angle between r and r′ by θ. Then,
within the layer Il, the Green’s function can be expanded into a series of spherical harmonics,

4πε0G
l(r, r′) =

1√
εl(r)

∞∑

n=0

[Al(n)r
n +Bl(n)r

−n−1]Pn(cos θ) +
δlk√

εl(r)εk(r′)

1

|r− r′| , r ∈ Il,

where δlk is the Kronecker delta and Pn is the Legendre polynomial of order n. Applying
the spherical harmonics expansion to the reciprocal distance 1/|r − r′|, we can rewrite the
above expression as

4πε0G
l(r, r′) =

∞∑

n=0

Ml,n(r)Pn(cos θ), r ∈ Il,

where

Ml,n(r) =
Al(n)r

2n+1 +Bl(n)√
εl(r)rn+1

+
δlkr

n
<√

εl(r)εk(r′)rn+1
>

,

and r<(r>) is the smaller (larger) one of r and r′. All the constants Al(n) and Bl(n) are
determined by the following continuities:





Gl(rl, r
′) = Gl+1(rl, r

′),

εl(rl)
∂Gl(rl, r

′)

∂r
= εl+1(rl)

∂Gl+1(rl, r
′)

∂r
,

l = 1, . . . , L− 1.
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The boundedness at the origin of the electrostatic potential leads to B1(n) = 0 for all n. The
fact that the potential goes to 0 as r → ∞ leads to AL(n) = 0 for all n. By the orthogonality
of the Legendre polynomials, we have





Ml,n(rl) = Ml+1,n(rl),

εl(rl)
∂Ml,n(rl)

∂r
= εl+1(rl)

∂Ml+1,n(rl)

∂r
,

l = 1, . . . , L− 1, (2.8)

for all n = 0, 1 . . . For each n, this is a system of 2(L − 1) linear equations for 2(L − 1)
unknowns, and thus can be solved by direct numerical methods as L is usually a small
number.

2.3 Hybrid Monte Carlo and continuum simulations

We describe our simulations in three steps.
Step 1. Initialization. We input all the parameters: Rm and Rshell (radii), εm and εw

(dielectric coefficients), Zj (valence of an ion of the j ionic species), zi (valence of the ith ion),
ai and Rb (radius and Born radius of the ith ion), (We set Rb,i = ai for all i.) L (number of
shells in numerical discretization), rj (j = 0, 1, . . . , L) (grid points), T (temperature), and
p (a truncated order in the spherical harmonic expansion). We randomly distribute all the
microions without overlap inside the spherical-shell region of electrolyte solution. We also
generate an initial guess of the dielectric function εinit.

Step 2. MC iteration for equilibrating the ionic concentration. This step consists of the
following three parts MC1–MC3:
MC1. Given an approximation of the dielectric coefficient function as defined in (2.7), we

sample a certain number of MC cycles to obtain the ionic concentrations within each
discretized radial interval. Each MC cycle is composed of N moves, one for each of the
N microions. After each of such a move, we calculate the total energy U and decide
to reject or accept the move, all as in a standard MC simulation. Each calculation
of the Hamiltonian U involves solving for the Green’s function with the HIM. Note
that, since only one ion is moved each time, we need only to update part of the total
Hamiltonian that is related to the moved ion;

MC2. Calculate the ionic concentration cj of the jth ionic species, the total ionic concentra-

tion c =
∑M

j=1 cj , and the dielectric coefficient ε = ε(c(r)) by Eq. (2.1). As approxima-
tion, each concentration cj = cj(r) is assumed to be piecewise constant, i.e., constant
value in each of the layers Il (l = 1, . . . , L). This piecewise constant concentration cj is
determined by averaging over snapshots of the microions of the jth ionic species with
a certain number of MC cycles, as described in MC1. The resulting dielectric coeffi-
cient ε = ε(c(r)) is also a piecewise constant. In order to improve the HIM accuracy
and convergence, we smooth this piecewise dielectric coefficient by fitting it into the
following smooth exponential function:

ε(r) = a1 + a2e
−(r−Rm)/ℓD , Rm < r < Rshell, (2.9)
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where a1 and a2 are some fitting constants, and ℓD is the Debye length defined by
ℓ2D = εwε0kBT/(

∑M
j=1 c

0
jZ

2
j e

2) with c0j the bulk concentration of ions of jth species.
Note that we choose the form (2.9) based mainly on our experience. According to
the form (2.1) of dielectric coefficient function ε = ε(c(r)), we find that it decays
exponentially to the bulk value. Moreover, from the mean-field theory we know that
the decay rate should be proportional to the inverse Debye length. Therefore, we
construct the function (2.9). Our numerical tests show that this is a good fitting
function in terms of convergence;

MC3. If the dielectric coefficient function obtained in the previous part does not converge
we then repeat the previous two steps.

Step 3. Data analysis. We use the autocorrelation function (ACF) of the total energy to
validate the convergence of sequence of sample energies E1, E2, ..., EK for some K ≥ 1. (In
our simulations, we choose K = 105.) The ACF for lag k is defined by,

ACF(k) =
1

K − k

K−k∑

i=1

(Ei − E)(Ei+k − E)

var(E)

where var(E) and E is the variance and the mean of the energies for the K samples, respec-
tively. The ACF reflects how the system de-correlates as a function of MC sampling lags. It
also shows the effective number of samples needed for a Markov chain based sampling pro-
cess. Since we iteratively update the dielectric coefficient function, the ACF also describes
the relaxation time of the system in response to the change of dielectric environment. Once
the system reaches an equilibrium by MC iterations, we start the MC sampling for the inter-
ested physical quantities. These include the macroion-microion radial distribution function
(RDF) and the integrated charge distribution function (ICDF). The normalized RDF for the
jth ionic species is defined to be gj(r) = g̃j(r)/A, where

g̃j(r) =
〈Nj(r, r +△r)〉

4
3
π[(r +△r)3 − r3]

and A = 4π

M∑

j=1

∫ Rshell

Rm

g̃j(r)r
2 dr.

The angular bracket 〈Nj(r, r +△r)〉 is the average number of ions of the jth species in the
spherical shell between r and r +△r. The ICDF is defined by

Q(r) = Q0 +
M∑

j=1

Zje〈Nj(Rm, r)〉, Rm ≤ r ≤ Rshell.

3 A Self-Consistent Continuum Model

We now describe a self-consistent continuum model that includes the effect due to the ionic
concentration-induced variations of dielectric permittivity. We consider an electrolyte solu-
tion occupying the spherical shell Rm < r < Rshell as defined in previous section. We assume
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again that there are M species of microions in this region. An ion in the jth species has the
valence Zj, and thus carries the charge Qj = Zje. We denote by cj the local concentration

of the jth ionic species (1 ≤ j ≤ M), and by c =
∑M

j=1 cj the total ionic concentration.
We again assume all these concentrations depend only on r = |r|. We also assume as before
that the local dielectric coefficient ε = ε(c(r)) = ε(c(r)) with ε(c) given by (2.1) for region
r > Rm, and a constant value ε = εm for r < Rm.

Let Φ = Φ(r) be the electrostatic potential, assumed to be radially symmetric. The
following modified Poisson–Boltzmann (PB) equation for the electric potential is the main
equation of our self-consistent continuum model [41, 49–51]:

−∇ · ε(c)ε0∇Φ =
M∑

i=1

Qici, (3.1)

ci = c0i e
−β(Ui−Ub

i
), i = 1, . . . ,M, (3.2)

Here, the second equation describes generalized Boltzmann distributions, where c0j is the
bulk concentration of the jth ionic species, β = 1/(kBT ) is the inverse thermal energy with
kB the Boltzmann constant and T temperature, and for each j (1 ≤ j ≤ M),

Uj = QjΦ +
1

2
Q2

juj, (3.3)

is the electrostatic energy with its bulk value Ub
j [52–55].

In (3.3), uj = uj(r) (Rm < r < Rshell) is the self energy, defined by [46, 53, 54]

uj(r) = lim
r
′→r

[
Gj(r, r

′)−G0(r, r
′)
]
, (3.4)

where G0 is the free-space Green’s function defined by

−ε0∇2G0(r, r
′) = δ(r− r′) (3.5)

with G0(r, r
′) → 0 as |r − r′| → ∞, and Gj is the solution to the following generalized

Debye–Hückel (DH) equation [56]:

−∇ · εj(r, r′)ε0∇Gj(r, r
′) + 2Ij(r, r

′)Gj(r, r
′) = δ(r− r′), (3.6)

together with the far-field condition Gj → 0 as |r − r′| → ∞. In this DH equation, the
dielectric coefficient εj(r, r

′) and ionic strength Ij(r, r
′) are determined by

εj(r, r
′) =





1 if |r− r′| < aj ,

εm if |r| < Rm,

ε(c(r)) otherwise,

Ij(r, r
′) =






0 if |r− r′| < aj or |r| < Rm,

I(r) =
β

2

M∑

j=1

Q2
jcj(r) otherwise,
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where aj is an effective radius which is taken to be the same as the radius of an ion of the
jth species as in our hybrid MC simulations model. Note that, with εj(r, r

′) and Ij(r, r
′) so

defined, the self energy uj(r), defined in (3.4), is a smooth function at every point.
We impose the following boundary conditions for the potential Φ = Φ(r):

−εmε0Φ
′(Rm) = σ and Φ(Rshell) = Φ∞, (3.7)

where σ = Q0/(4πR
2
m) with Q0 the charge at the center (origin) of the macroion as set up

in the MC simulations and Φ∞ is a constant which we usually take it to be 0.
To solve the boundary-value problem of modified PB equation (3.1) and (3.7), we need

to first solve Eq. (3.6) to get the functions Gj(r, r
′) (1 ≤ j ≤ M). Then, we can obtain uj

by (3.4) and hence Uj from (3.3) for all j. However, Eq. (3.6) has variable coefficient and a
delta source term, and is hard to solve efficiently in general. Since our purpose is to obtain
uj(r), we generalize the method designed in [41] to decompose uj into three terms:

uj = uj,1 + uj,2 + uj,3,

where

uj,1(r) = lim
r
′→r

[
Gj(r, r

′)−G′
j(r, r

′)
]
,

uj,2(r) = lim
r
′→r

[
G′

j(r, r
′)−G′′

j (r, r
′)
]
,

uj,3(r) = lim
r
′→r

[
G′′

j (r, r
′)−G0(r, r

′)
]
.

The functions G′
j and G′′

j are defined by

−∇ · ε′j(r, r′)ε0∇G′
j(r, r

′) + 2Ij(r, r
′)G′

j(r, r
′) = δ(r− r′),

−∇ · ε′′j (r, r′)ε0∇G′′
j (r, r

′) = δ(r− r′),

respectively, where

ε′j(r, r
′) =





1 if |r− r′| < aj ,

ε(c(r′)) if |r| < Rm,

ε(c(r)) otherwise,

and ε′′j (r, r
′) =

{
1 if |r− r′| < aj ,

ε(c(r′)) otherwise.

We now describe our approximations of uj,k = uj,k(r) (k = 1, 2, 3). By using the method
extended from the WKB method developed in [57], we obtain the following approximation
of uj,1:

uj,1(r) ≈
qK(r)

4πεε0|r− rK|
+

∫ rK

0

qline(x)

4πεε0|r− x| dx, (3.8)

where ε = ε(c(r)), rK = rR2
m/r

2, x = xr/r, and the strengths of the Kelvin and line images
are given, respectively, by

qK(r) = −(εm − ε)Rm

(εm + ε)r
e4πεε0ũ|r−rK|,
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qline(x) =
(εm − ε)ε

(εm + ε)2Rm

(rK
x

) εm
εm+ε

e4πεε0ũ|r−x|,

with ũ defined later in (3.9). We can use Gauss quadrature to approximate the numerical
value of the integral in Eq. (3.8) as the sum of potentials due to a finite number of image
charges [43].

As in [41], we approximate uj,2 by

uj,2(r) ≈
ũ(r)

1− 4πε(c(r))ε0ũ(r)aj
,

where ũ does not depend on aj . It is defined by

ũ(r) = lim
r
′→r

[
G̃′(r, r′)− G̃′′(r, r′)

]
, (3.9)

where

−∇ · ε((c(r))ε0∇G̃′(r, r′) + 2I(r)G̃′(r, r′) = δ(r− r′), (3.10)

−∇ · ε(c(r′))ε0∇G̃′′(r, r′) = δ(r− r′). (3.11)

Note that

G̃′′(r, r′) =
1

4πε(c(r′))ε0|r− r′| .

We use the method developed in [41] to solve for ũ(r). Briefly, we introduce H(r, r′) =√
ε(c(r))ε(c(r′))ε0G̃

′(r, r′), and transform Eq. (3.10) into ∇2(H −H0) = v2H, and further
into

H(r, r′)−H0(r, r
′) = − 1

4π

∫
v(r′′)2H(r′′, r′)

|r− r′′| dr′′,

where

H0(r, r
′) = ε(c(r′))ε0G̃

′′(r, r′) =
1

4π|r− r′| ,

v(r)2 =
ε0
√

ε(c(r))∇2
√
ε(c(r)) + 2I(r)

ε(c(r))ε0
.

Replacing H on the left-hand side of the integral equation by H(n) and that on the right-hand
side by H(n−1), we get an iteration scheme to compute an approximation of H. Finally, we
obtain

ũ(r) =
1

ε(c(r))ε0
lim
r
′→r

[H(r, r′)−H0(r, r
′)] .

Direct calculations lead to [41]

uj,3(r) =
1

4πajε0

(
1

ε(r)
− 1

)
.
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This is the Born energy.
Our self-consistent continuum model consists of all the equations and boundary conditions

(3.1)–(3.7). To solve this system of equations, we use a self-consistent iterative algorithm
that consists of the following main steps:

Step 1. Initialize the concentrations fields c
(0)
j (j = 1, . . . ,M) and electrostatic potential

Φ(0). Set k = 0.
Step 2. Compute c(k) =

∑M
j=1 c

(k)
j . Compute ε(c

(k)
r ) by (2.1). Calculate

u
(k)
j = u

(k)
j,1 + u

(k)
j,2 + u

(k)
j,3 , j = 1, . . . ,M,

as described above.
Step 3. Use an iterative scheme to solve the modified PB equation (3.1), together with

the boundary condition (3.7):
(1) Set Φ[0] = Φ(k). Set l = 0.
(2) Solve

−∇ · ε[l]ε0∇Φ[l+1] − γ[l]Φ[l+1] =

M∑

i=1

Qic
[l]
i − γ[l]Φ[l],

to get Φ[l+1], where

ε[l] = ε(c[l](r)),

γ[l](r) =

∣∣∣
∑M

i=1Qic
[l]
i (r)

∣∣∣
|Φ[l](r)|+ δ0

,

c
[l]
i (r) = c0i e

−β(U
[l]
i

−Ub
i
),

U
[l]
i = QiΦ

[l] +
1

2
Q2

iu
(k)
i .

Here δ0 > 0 a small number set to ensure the convergence of iteration.
(3) Check if |Φ[l+1] − Φ[l]| < δ1 for some given tolerance δ1. If not, set l := l + 1 and go to

(2). If yes, set k := k + 1 and Φ(k) = Φ[l+1].

Step 4. Compute c(k) =
∑M

j=1 c
(k)
j . Compute ε(c

(k)
r ) by (2.1). Calculate

u
(k)
j = u

(k)
j,1 + u

(k)
j,2 + u

(k)
j,3 , j = 1, . . . ,M,

Check if |u(k)
j − u

(k−1)
j | < δ2 for all j = 1, . . . ,M for some given tolerance δ2. If not, go to

Step 3.

4 Simulation Results and Discussions

We perform NVT-ensemble Metropolis MC simulations based on the hybrid scheme for
the extended primitive model, and study the effect of dielectric variations under different
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system settings. The following parameters are assumed to be constant throughout the paper:
Rm = 2 nm; Rshell = 7 nm and the volume fraction of macroion remains to be the constant
∼ 2.3%; all ai = aion = 0.225 nm; εm = 2; εw = 80; εinit = 80; T = 300K; and p = 60.
We choose p = 60 based on some numerical tests as well as a rough estimate on the error
in the spherical harmonic approximation. The worst case for the convergence of spherical
harmonics series is when an ion touches the interface. In this case, the expansion coefficients
for the self energy are about R2n

m /(Rm+ aion)
2n. In the simulations, we have Rm = 2 nm and

aion = 0.225 nm. Hence, with n = 60, this coefficient is 2.78 · 10−6. A further estimate on
the truncation error for the self energy leads to at least a five-digit accuracy.

We use kBT as the energy unit, where kB is the Boltzmann constant. We use 1 : 1, 2 : 1,
and 3 : 1 salts; so the coions are always monovalent. We focus on studying the influence of the
variance of counterions. In the meantime, we fix the concentration of coions to be 100 mM,
allowing a relatively fair comparison. Clearly, the presence of multivalent counterions makes
the underlying system strongly correlated. We thus expect that an adequate treatment of
electrostatic self-energy is essential. Finally, we choose the macroion surface charge density σ
to satisfy that 0 < −σ < 3 e/nm2, describing many realistic biological and physical systems.

In each of our hybrid MC simulations, we begin with a uniform dielectric coefficient εinit =
εw = 80. We then iteratively update the dielectric coefficient function for 50 loops to make
sure that we obtain the converged dielectric coefficient function. Each loop consists of 103

MC cycles followed by the calculation of the total ionic concentration and the corresponding
dielectric coefficient function ε(c(r)). In each cycle, we move all the N microions one by
one. Each single move is followed by the calculation of interaction potential U and either
acceptance or rejection of this move as described in MC1 in Subsection 2.3. After the
dielectric function reaches convergence, we perform another 106 cycles for equilibration of
the ionic distribution, and then sample 105N cycles for statistics.

4.1 Convergence analysis

We first analyze numerically the convergence of our iterative scheme. From the first K = 105

MC samples, we compute the ACF of the total energies. Figure 2 shows the ACFs with
surface charge densities (a) σ = −0.318 e/nm2 and (b) σ = −1.214 e/nm2, respectively. For
each of these two cases, we plot three ACF curves corresponding to three different counterion
valences, respectively. For the case of low surface charge, Figure 2 (a), the ACFs decay to less
than 0.2 at about 1500 sampling lags. Furthermore, by comparing the three different curves,
we find the ACF for trivalent ions shows the slowest decay. This is reasonable because of
the strongest electrostatic coupling in this case, leading to a longer relaxation process for
the system to decorrelate. Meanwhile, in the case of higher surface charge, Figure 2 (b),
all the three ACF curves decay to less than 0.2 at more than 3000 sampling lags, and even
more than 5000 for the trivalent counterions. Clearly, a stronger surface charge density will
lead to a much slower system de-correlation. Finally, the ACF curves help us understand
how many numbers of moves are needed within each iteration for updating the dielectric
coefficient function. Obviously more steps are needed for σ = −1.214 e/nm2 than that for
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σ = −0.318 e/nm2, especially when trivalent ions are present.
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Figure 2: The autocorrelation function (ACF) with the surface charge density (a) σ = −0.318
e/nm2 and (b) σ = −1.214 e/nm2, and with different ionic valences.

In Figure 3, we show that too fast updating of the dielectric coefficient function can lead
to discrepancy in the final statistical averaging. In Figure 3 (a), we consider the slowest con-
vergence at σ = −1.214 e/nm2 with trivalent counterions. We compare the final equilibrium
integrated charge distribution functions (ICDFs) with respect to the three different rates of
updating the dielectric coefficient function: every 50, 1000, and 10000 MC cycles. Clearly, if
we update the dielectric coefficient function every 50 MC cycles, then the resulting ICDF will
be different from the other two curves, even the total number of samples is kept the same.
In Figure 3 (b), we also present the evolution of the dielectric coefficient function within the
iterative process, for the case of updating the dielectrics every 1000 cycles. The dashed line
is the initial dielectric coefficient function, which is taken to be a constant. At the second
iteration loop, we find that the dielectric coefficient function exhibits a significant change.
This is actually already quite close to the final equilibrated dielectric function. Then, in the
next loops, the dielectric coefficient function slowly converges.

We remark that, with the adjustment of dielectric function and step size, our Monte
Carlo simulation algorithm can be non-Markovian. Convergence and correct description
of ergodicity of a non-Markovian algorithm have been partially established in [58]. Our
extensive tests have shown that our algorithm indeed converges.

4.2 Influence of surface charges and multivalent counterions

We now study the effect of concentration-dependent dielectric permittivity ε(c(r)) under the
influence of surface charges, with both low and high densities, and counterion multivalences.
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Figure 3: (a) The integrated charge distribution functions (ICDFs) for three different rates of
updating dielectric coefficient function: every 50, 1000, and 10000 MC cycles; (b) The evolu-
tion of dielectric coefficient function at different iteration loops with the dielectric coefficient
updated every 1000 MC cycles. Both (a) and (b) are calculated with the surface charge
density σ = −1.214 e/nm2 and with 3:1 electrolyte (trivalent counterions and monovalent
coions).

We also compare our hybrid MC simulations with the standard MC simulations in which
the dielectric coefficient in the region of electrolyte is taken to be εw = 80. The simulated
radial distribution functions (RDFs) are shown in Figure 4.

We first consider the case of a weakly charged surface with the surface charge density σ =
−0.318 e/nm2. We find the following from the left three plots in Figure 4: (1) The counterion
distribution decreases monotonically in the case of 1:1 salt (Figure 4 (a)), and become non-
monotonic when the counterions are multivalent (Figure 4 (c) and (e)). This is mainly due to
the stronger image charge repulsion that scales quadratically with respect to the counterion
valence, resulting a depletion zone and thus the non-monotonicity; (2) There is a little
discrepancy in the RDFs between the case of concentration-dependent dielectric coefficient
and that of a constant dielectric coefficient, even when trivalent counterions are present.
Such discrepancy indicates that, when the interface is weakly charged, the EDL structure is
hardly affected by variations in the local dielectric permittivity. This is mainly due to the
relatively small difference of the ionic concentration near the interface compared with the
bulk value. It results a dielectric coefficient function without drastic change according to
Eq. (2.1).

We then consider the case of a strongly charged surface with the surface charge density
σ = −1.214 e/nm2. The corresponding RDFs are presented in the three plots of the right
column of Figure 4. We can observe several interesting phenomena: (1) The counterion
distribution decreases monotonically for both monovalent and divalent counterions (Figure 4
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Figure 4: Counterion and coion radial distribution functions (RDFs) of the distance to the
surface of macroion. RDFs for monovalent, divalent, trivalent counterions, and coions with
the ionic concentration dependent dielectric function ε(c(r)) are denoted by g+, g2+, g3+,
and g−, respectively. RDFs for monovalent, divalent, trivalent counterions, and coions with
a constant dielectric coefficient ε = 80 are denoted by g0+, g02+, g03+, and g0−, respectively.
The anion concentration is fixed to be 100 mM. (a) 1:1 electrolyte and σ = −0.318 e/nm2.
(b) 1:1 electrolyte and σ = −1.214 e/nm2. (c) 2:1 electrolyte and σ = −0.318 e/nm2. (d)
2:1 electrolyte and σ = −1.214 e/nm2. (e) 3:1 electrolyte and σ = −0.318 e/nm2. (f) 3:1
electrolyte and σ = −1.214 e/nm2.
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(b) and (d)), and the depletion zone finally appears when trivalent counterions are present
(Figure 4 (f)). Clearly, comparing with the low surface charge density, it becomes harder to
form the depletion zone. This is mainly due to the stronger attraction between the surface
charges and the counterions. Such attraction overwhelms the image charge repulsion; (2) As
shown in Figure 4 (f), even the coion distribution profiles are non-monotonic, indicating the
occurrance of charge inversion. This is also verified in their profiles of integrated charge dis-
tribution function (ICDF) shown in Figure 3 (a): the ICDFs change their sign from negative
to positive at a certain radial distance; (3) Comparing the counterion RDFs between the case
of concentration-dependent dielectric coefficient and that of constant dielectric coefficient,
we find a very interesting phenomenon: as the counterion valence increases from monovalent
to trivalent, the effect of dielectric variation changes from attraction into repulsion. This is
mainly due to the complicated interplay between the Born energy and dielectric-boundary
induced repulsion and the correlation energy induced attraction. The dielectric-boundary
repulsion energy scales as ∼ z2 with z being the valence. When the valence is high, this
energy cannot be completely screened by the surface charge, and is also enhanced by the
Born energy, leading to a stronger depletion interaction.

4.3 Comparison between hybrid MC simulations and the self-

consistent continuum model

We now compare our hybrid MC simulations results with the SCCM calculations as well
as the classical PB model. All parameters in the finite difference schemes for the SCCM
and PB calculations are consistent with those in MC simulations. Note that if we drop the
self-energy term in (3.2), then we obtain the classical PB model. The computational region
r −Rm is from 0 to 4 nm and is discretized with 1600 grid points in the radial direction.

In Figure 5, we compare the profiles of cation density (which is the same as anion density)
obtained by the MC simulations and our SCCM model for a 1:1 dilute electrolyte (13 mM)
with ε(c(r)) = 80 around a neutral macro particle (i.e., the surface charge density σ = 0).
We find that the two profiles are almost the same, indicating that our SCCM can capture
the dielectric boundary effect. Note that the PB equation would predict a zero electrostatic
potential and hence constant ionic density.

In Figure 6, the scaled RDFs computed from the self-consistent continuum model (gCM
i )

and the classical PB theory (gPBi ) are plotted for two cases: (a) a weakly charged surface with
the surface charge density σ = −0.318 e/nm2 and 2 : 1 salts; (b) a strongly charged surface
with the surface charge density σ = −1.214 e/nm2 and 1 : 1 salts. In Figure 6 (a), the results
of self-consistent continuum model (SCCM) are in very good agreement with those of the
hybrid MC simulations. Note that Figure 4 (c) has already shown that the effect of variable
ε is not significant in this case. Thus the dielectric boundary effect dominates here and the
corresponding approximation technique in Eq. (3.8) performs excellently. In the classical PB
theory where both correlation and dielectric boundary effects are neglected, RDFs are shown
to be monotonically decreasing, qualitatively different from what is expected. This indicates
that when considering the dielectric boundary effect, classical PB theory fails even when the
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Figure 6: Counterion and coion radial distribution functions (RDFs) of the distance to the
macroion surface from three different models: MC simulations (gi), self-consistent continuum
model (gCM

i ), and PB model (gPBi ). Two cases are considered here: (a) A 2 : 1 electrolyte
with a low surface charge density σ = −0.318 e/nm2 (a); (b) A 1 : 1 electrolyte with a high
surface charge density σ = −1.214 e/nm2.
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surface is weakly charged. In Figure 6 (b), with a high surface charge density, the dielectric
profile near the surface varies significantly. This affects the accuracy of approximation for
uj,2 in the SCCM, although the dielectric boundary effect is highly screened by the dense
ionic concentrations. This leads to a slight deviation between the RDFs of the self-consistent
continuum model and the hybrid MC simulations at the vicinity of the interface. Meanwhile,
in the classical PB theory, the RDF of counterions is much larger than both the SCCM and
the hybrid MC simulations, since it ignores both the Born energy and dielectric boundary
effect in ui,1, These are in fact crucial in this case.

5 Conclusions

This work aims at understanding the effect of ionic concentration-induced dielectric varia-
tions to the electric double layer (EDL) structure of an electrolyte solution near a charged
surface. Our starting point is the experimentally observed dependence ε = ε(c) of the di-
electric coefficient ε on the local, total salt ionic concentration c; cf. Eq. (2.1). This simple
relation can be explained as a result of local molecular polarization and inhomogeneous re-
sponse to an applied field. Yet, the many-body effect arising from such dependence is quite
delicate and often significant.

We have constructed a hybrid model combining Monte Carlo (MC) simulations of ions
and continuum description of electrostatics. The Hamiltonian of ionic interactions consists
of the hard-sphere potential, pair-wise charge-charge interactions, and self energies. Both
the second and third parts of this Hamiltonian are defined through Poisson’s equation in
which the dielectric coefficient varies with the local ionic concentration. This is different
significantly from the equation with a uniform dielectric coefficient where the interaction
potentials have a simple analytic formula. We have implemented the harmonic interpolation
method to efficiently solve Poisson’s equation within our underlying geometry. We have also
developed a self-consistent continuum model in the form of a modified Poisson–Boltzmann
(PB) equation that includes various effects, such as the concentration dependent dielectric
variations and self energy due to the inhomogeneity of dielectric environment. To obtain
the self energy efficiently, we decompose it into different parts that correspond to different
dielectric coefficients, and hence different Green’s functions. These Green’s functions can be
obtained by analytical formulas and approximations.

We have verified the convergence of our numerical methods implementing the hybrid MC
and continuum model as well as the self consistent continuum model. By examining the
ionic radial distributions and integrated charge distributions with our extensive numerical
computations, we have also found that the effect due to the ionic concentration dependence
of dielectric permittivity is quite strong if the surface charge density is high. Otherwise,
such effect is very small, if the surface is weakly charged. Moreover, with a high surface
charge density, the effect is much stronger for a 3:1 than 1:1 electrolyte. In particular,
with our hybrid approach, we have captured the depletion of ions near the charged surface
and the charge inversion. Our continuum self-consistent model produces results that agree
quantitatively with the hybrid MC simulations.
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The current work is the first step in developing hybrid models and computational methods
for complex systems of electrostatic interactions. With several parameters and approxima-
tions, our approach is somewhat ad hoc and is still in its early stage. While our initial
tests have shown that such an approach can capture some of the many-body effects arising
from the interplay between the ionic concentration-induced dielectric variations and ion-ion
correlations, there is clearly much needed to be improved. First, we have assumed a radially
symmetric geometry in our models and methods. This can be limited to many applications
that may need a more general geometrical set up. Therefore, extending our approach to
general geometries will be of interest. The difficulty in such an extension can be in the
construction of efficient numerical methods for solving for the Green’s function, using ideas
similar to what have been used in this and previous works. Second, we have included several
effects in our models. But we have not done enough computations to understand which
effects are more significant than the others. For instance, it is unclear how important the
self energy is in comparison with the effect due to the ionic concentration dependent dielec-
tric variations. Third, we have not taken into account the ionic size effect in our model.
Such effects can be quite significant to the EDL structure near a charged surface. It will be
interesting then to develop an efficient model to describe such effects [49–51,59], particularly
in terms of the ion-ion correlations, and to couple them with other effects in a systematic
way. Improved treatments such as a modified fundamental measure theory [60] can be use-
ful for a more accurate description of such correlations. Finally, we have applied different
approximate techniques in solving Poisson’s or Debye–Hückel equation that define various
Green’s functions. The accuracy of these numerical methods depend on the smoothness of
the dielectric permittivity and ion concentration profiles in electrolytes. Thus, for systems
with strong coupling or large gradients in dielectric profiles, we need to develop more robust
computational methods.
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