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Frequency-dependent correlations, such as the spectral function and the dynamical structure
factor, help understand condensed matter experiments. Within the density matrix renormaliza-
tion group (DMRG) framework, an accurate method for calculating spectral functions directly in
frequency is the correction-vector method. The correction-vector can be computed by solving a
linear equation or by minimizing a functional. This paper proposes an alternative to calculate the
correction vector: to use the Krylov-space approach. This paper then studies the accuracy and per-
formance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard
models. The cases studied indicate that Krylov-space approach can be more accurate and efficient
than conjugate gradient, and that the error of the former integrates best when a Krylov-space
decomposition is also used for ground state DMRG.

PACS numbers: 78.70.Nx, 79.60.Bm, 02.70.Hm, 71.27.+a, 71.10.Fd, 74.20.-z, 75.10.Jm

I. INTRODUCTION

In the last two decades, several approaches have been
proposed for the calculation of frequency dependent cor-
relations or spectral functions of low dimensional strongly
correlated systems within the density matrix renormal-
ization group (DMRG) method.[1, 2] In 1995, Hallberg
proposed a Lanczos-vector method based on a contin-
ued fraction expansion.[3] Later, Kühner and White [4]
showed that this method is suitable only for spectra con-
sisting of few discrete peaks. The same paper introduced
the correction vector method to calculate spectral func-
tions. Jeckelmann later developed a variational improve-
ment to the correction-vector method—the dynamical
DMRG.[5] It has since been used successfully in several
studies[6] to calculate the dynamical properties, directly
in frequency. The main disadvantage of the correction-
vector method is two-fold: (i) dynamical properties need
to be computed in small intervals of frequency; (ii) the
artificial broadening, η, which always needs to be intro-
duced at some point in the calculation, is set from the
start, and to change it a new run needs to be carried out.
The η broadening can be viewed as convolution of the ex-
act spectral function with a Lorentzian of the same width.
Because one is interested in the exact spectrum, one
needs to perform a deconvolution of the spectrum—an ill-
defined operation. Many works have presented different
and successful deconvolution procedures for correction-
vector DMRG spectra of one dimensional[7, 8] and quan-
tum impurity problems.[9–12] Recently, ref. 13 has pro-
posed a blind deconvolution algorithm, having the advan-
tage of reproducing quite well sharp singularities such
as power-law band edges and excitonic peaks, but the
drawback of introducing artificial shoulder-like spectral
features.

Within the DMRG framework, another method for cal-
culating the dynamical properties consists of first com-
puting the correlation functions using time-dependent

DMRG,[14–16] and then space-time Fourier transform-
ing them into real frequency. Recently, ref. 17 presented
a highly efficient and accurate adaptive method using
Chebyshev polynomials in combination with MPS. In or-
der to compute time-dependent correlation functions over
a long time interval, ref. 18 has shown that one can apply
an efficient prediction method. In addition, ref. 19 has
shown that linear prediction can be used as a method
to extrapolate Chebyshev or Fourier expansions of spec-
tral functions. Within the MPS formulation of DMRG,
other powerful methods have been developed.[17, 20, 21]
Ref. 20 and 21 have proposed an improvement of the con-
tinued fraction expansion method of Hallberg in the MPS
language.

In this paper, we focus on the correction-vector DMRG
method, and propose an alternative method to calculate
the correction vector. In its traditional formulation, the
imaginary part of the correction-vector, being directly
proportional to the spectral function, is the solution of
an inhomogeneous set of linear equations. This set of
equations can be solved explicitly with the conjugate-
gradient method. The conjugate-gradient method’s con-
vergence error is independent of the ground state DMRG
error. Dynamical DMRG[5] recasts the calculation of
the correction-vector as an elegant variational principle,
defining a functional that one then minimizes. The main
advantage of dynamical DMRG is the possibility of find-
ing a solution with an error smaller than that of the tra-
ditional correction-vector method.

We here propose an alternative approach: to calculate
the correction vector using a Krylov-space[22] decompo-
sition instead of solving a linear equation. Krylov space
decomposition approaches have found application in sev-
eral fields of science and engineering, where the compu-
tation of functions of large sparse matrices is often the
main problem to be solved. In physics, they have been
used in several contexts[23] as a technique to solve par-
tial or ordinary differential equations, such as numerical
general relativity and electrodynamics.[24]
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The correction vector is not then calculated with a
separate algorithm, be it conjugate gradient as originally
proposed, or minimization of an auxiliary functional as
in dynamical DMRG, but with the following algorithm
instead. At each DMRG step (i) tri-diagonalize and suc-
cessively diagonalize the Hamiltonian of the problem in
the current basis; (ii) calculate the correction-vector in
the diagonal basis and rotate it back to the current basis.
The error profile is then the same as standard DMRG
if Krylov-space decomposition is used for the ground
state computation, because Krylov-space decomposition
is needed at each step of the ground-state DMRG al-
gorithm. Our proposal therefore integrates better with
ground-state DMRG. Translated into MPS language, our
method works on the same space spanned by the effective
Hamiltonian where all but one site of the tensor network
(MPO-MPS product) has been contracted, where MPO
stands for matrix product operator. Moreover, to avoid
Lanczos ghost states,[25, 26] we have been careful not to
overconverge the Lanczos iterative process by not setting
the Lanczos error to be extremely small.

This paper is organized as follows. Sec. II presents
the Krylov-space approach for the calculation of the
correction-vector. Sec. III applies our equations to the
Heisenberg spin chain, to the t-J model, and to the Hub-
bard model. We have calculated the S(k, ω) for the
Heisenberg and Hubbard models, while the A(k, ω) for
a t-J chain. Section III D shows that Krylov approach
can efficiently calculate the dynamical spin structure fac-
tor of the t-J model on a ladder geometry. Section IV
compares the frequency resolution and the computational
performance of the conjugate gradient method with the
Krylov-space approach for the simulated models. The
last section presents a summary and conclusions.

II. CONJUGATE GRADIENT AND KRYLOV
METHODS

This section briefly recalls the basics of the correction-
vector method. One is interested in the calculation of the
Green’s function

G(z) = − 1

π
〈ψ0|B̂

1

z + E0 − Ĥ
Â|ψ0〉, (1)

where |ψ0〉 is the ground state of some Hamiltonian Ĥ

with ground-state energy E0, Â and B̂ are operators asso-
ciated with the dynamical correlation function to be cal-
culated, and z ≡ ω+iη, where ω is the real frequency and
η is a positive constant that provides a finite broadening
of the Green’s function peaks. This procedure is made
rigorous by realizing that what we call Green’s functions
are actually distributions.

The correction-vector associated with Eq. (1) is defined
by

|x(z)〉 =
1

z + E0 − Ĥ
|A〉, (2)

where the vector |A〉 ≡ Â|ψ0〉 is assumed to be real.
Within the traditional formulation of DMRG,[4] the
correction-vector method uses a multi-target approach:
at each step of the DMRG algorithm, one targets the
ground state of the system |ψ0〉, the vector |A〉 and the
|x(z)〉 in the reduced density matrix, for each frequency
value ω and broadening η. After one obtains the correc-
tion vector, one can calculate the Green’s function G(z)
using

G(z) = − 1

π
〈ψ0|B̂|x(z)〉. (3)

A direct approach to calculate the correction-vector is
to solve the following set of linear equations in the local
DMRG basis:

(z + E0 − Ĥ)|x(z)〉 = |A〉. (4)

Eq. (4) could be solved with the generalized minimal
residual or GMRES method, which uses the Arnoldi al-
gorithm to find a generalized decomposition of the ma-
trix M ≡ z + E0 − Ĥ onto a Krylov subspace of much
smaller dimension than the local Hilbert space.[27] But
such approach would have the drawback that the matrix
M ≡ z + E0 − Ĥ is not Hermitian due to the presence
of the factor η > 0 in z = ω + iη. The convergence error
of the algorithm is given by the condition number of the
matrix M , κ(M).[27] The larger the condition number,
the greater is the number of iterations needed for solving
the set of equations, and the smaller is the improvement
of the solution at each iteration step.

To avoid dealing with non Hermitian matrices, the
imaginary part of the correction-vector, |x(z)〉Im, is cal-
culated by solving the following set of linear equations

[(E0 + ω − Ĥ)2 + η2]|x(z)〉Im = −η|A〉, (5)

instead of Eq. (4). The real part of the correction-vector
|x(z)〉Re is then calculated from its imaginary part using

|x(z)〉Re =
Ĥ − E0 − ω

η
|x(z)〉Im. (6)

In this case, the matrix M ′ ≡ [(E0 + ω − Ĥ)2 + η2] is
real, symmetric, and positive definite, therefore at each
DMRG step, Eq. (5) can be solved with the conjugate
gradient method.[27] This method can be thought of as
a particular case of GMRES for real symmetric and pos-
itive definite matrices.[27] The main problem with this
second approach is that the condition number of the ma-
trix M ′, κ(M ′) in Eq. (5) is larger: roughly the square
of the condition number of Eq. (4).

Recall that, for a system of inhomogeneous set of equa-
tions Mx = b for the unknown vector x, the error in the
conjugate-gradient algorithm at step k is given by the
norm of the residual rk = b−Mxk, where xk is the ap-
proximate solution at that step [27]. In the next sections,
we assume that a measure of the error for the conjugate-
gradient algorithm is given by the number of iterations
required for reaching a certain tolerance on the solution.
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In this paper, we propose an alternative for calculat-
ing the correction-vector in Eq. (2). At each step of the
DMRG, we perform a Lanczos tri-diagonalization of the
Hamiltonian and a successive diagonalization in the cur-
rent DMRG basis; the vector |x(z)〉 is then calculated
directly as

|x(z)〉 = V †S†
1

E0 + ω −D + iη
SV |A〉, (7)

where D is the diagonal form of the Hamiltonian operator
Ĥ in the current basis. We have assumed that

Ĥ = V †TV = V †S†DSV (8)

is a faithful representation of the Hamiltonian when ap-
plied to the starting vector. V represents the matrix
of the Lanczos vectors spanning the Krylov space, and
T the representation of the Hamiltonian in tridiagonal
form. The tri-diagonalization is then followed by a small
full diagonalization of T , yielding the matrix of eigenvec-
tors S. The first equality in Eq. (8) holds with the Lanc-
zos error, unlike in the conjugate gradient method, where
the error is separate from the DMRG. Therefore, for the
Krylov method the error coincides with the Lanczos er-
ror which occurs in the tri-diagonalization of the Hamil-
tonian Ĥ. The accuracy of the approximation Eq. (7)
can be estimated from the high frequency expansion of
the Green’s function Eq. (1) in the limit of η → 0[28]

lim
η→0

G(z) =

∞∑
r=0

1

ωr+1
〈ψ0|B̂(Ĥ − E0)rÂ|ψ0〉. (9)

Using approximation Eq. (8) in the above equation—
usually satisfied after n Lanczos iterations for a certain
required accuracy—the approximated Green’s function
reproduces the first n coefficients of the expansion

lim
η→0

G(z) '
∞∑
r=0

1

ωr+1
〈ψ0|B̂[V †(Ĥ −E0)V ]rÂ|ψ0〉, (10)

because (Ĥ −E0)rÂ|ψ0〉 ' [V †(Ĥ −E0)V ]rÂ|ψ0〉 within
Lanczos error because the vector belongs to the Krylov
space for all r ≤ n − 1. We have here neglected the er-
ror in the determination of the ground state |ψ0〉. The
expansion Eq. (10) therefore produces a good approx-
imation for the first n moments of the spectral func-
tion

∫
dω ωrA(ω), with r ≤ n − 1, where A(ω) =

−Im[G(z)]/π.[28] As will be confirmed numerically in
the next sections, the accuracy and efficiency of this ap-
proach is then best at low frequencies, and worsens for
high excitation energies. In our later analysis, we shall
find that the number of iterations required to reach a
certain accuracy in our Krylov approach is of the order
of
√
κ(M ′), showing evidence that that the conjugate

gradient method is less efficient. When the number of
Lanczos iterations is sufficiently small, then the dimen-
sion of the matrix T is of the order of a few hundreds; for
all the models and geometries investigated in this paper,

we find that about 150 iterations n are at most needed in
our simulations. The computational cost of the diagonal-
ization S is then negligible. On the contrary, the number
of conjugate gradient iterations necessary to obtain the
same accuracy is much larger.

Our method is similar to DMRG continued-fraction-
expansion or CFE in that it uses a tridiagonal decom-
position of the Hamiltonian to compute the correction
vector. The approach is therefore equivalent to fully di-
agonalizing the tridiagonal Hamiltonian and obtaining
the matrix S on the one hand, or doing a CFE on the
other. Our method is dissimilar to DMRG CFE in that
it is a correction-vector method, and thus Lanczos vec-
tors are not targeted. In fact, DMRG CFE refers to the
method where all or some of the Lanczos vectors are tar-
geted in the reduced density matrix at each DMRG step.
In the original paper[3] by K. Hallberg all the Lanczos
vectors are targeted, while in an improved version[20] by
P.E. Dargel et al. only three Lanczos vectors at a time
are targeted as the lattice is swept.

III. NUMERICAL RESULTS

A. Dynamical spin structure factor of Heisenberg
chains

We begin by studying the antiferromagentic Heisen-
berg model on an open 1D chain of L sites

ĤHeis = J

L−1∑
i=1

Si · Si+1, (11)

where Si denotes the spin operator at site i. We choose
J = 1 as unit of energy for this model. As in the original
paper of Kühner and White,[4] the longitudinal dynam-
ical spin structure factor is calculated with correction-
vector DMRG as

Sj,c(ω + iη) = − 1

π
Im

[
〈Ψ0|Szj

1

ω − Ĥ + E0 + iη
Szc |Ψ0〉

]
,

(12)
where the operator Szc is applied to the ground state at
the center of the lattice for calculating the correction vec-
tor |x(ω + iη)〉. Then, the correlator

Sj,c(ω + iη) = − 1

π
Im

[
〈Ψ0|Szj |x(ω + iη)〉

]
(13)

is computed for all the sites j of the lattice, and for a
fixed value of frequency ω and broadening η. The above
quantity is finally transformed to momentum space as

S(k, ω) =

√
2

L+ 1

L−1∑
j=1

sin((j − c)k)Sj,c(ω + iη), (14)

where the quasi-momenta k = πn
L+1 with n = 1, .., L are

appropriate for open boundary conditions. The DMRG
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implementation used throughout this paper is discussed
in the supplemental material.[29]

It is known from the Bethe ansatz solution[30–33] of
Hamiltonian Eq. (11) that the upper and lower bound-
ary of the spin excitation manifold of the infinite system,
called the des Cloiseaux-Pearson (dCP) dispersion rela-
tions, are given by

ωl(q) = (Jπ/2) sin(q), ωu(q) = Jπ| sin(q/2)|, (15)

where q represents the momentum and not the quasi-
momentum. Moreover, it is known that the S(k, ω) di-
verges as

S(k, ω) ∼ [ω − ωl]−1/2
√

ln[1/(ω − ωl)] for k 6= π,

S(π, ω) ∼ ω−1
√

ln(1/ω),
(16)

as ω approaches the lower boundary ωl from above. This
divergence has its profound origin in the Luttinger liquid
nature of the ground state, and describes the instability
of the model toward antiferromagnetic ordering. Numer-
ically, because one has always finite size systems, one
usually cuts off the divergences at ω − ωl ' 1/L, so that
one has peaks of finite height

max[S(k, ω)] ∼ [L ln(L)]1/2 for k 6= π,

max[S(π, ω)] ∼ L ln(L)1/2.
(17)

Fig. 1 shows the dynamical spin structure factor of an
antiferromagetic (J = 1) Heisenberg spin chain of size
L = 64. The Krylov-space correction-vector method de-
scribed in the previous section has been applied. We
use mmin = 64 and a maximum of m = 1000 DMRG
states by keeping the truncation error no bigger than
10−8. Moreover, we set the maximum number of Lanc-
zos iterations necessary to calculate the correction-vector
to 1000, keeping the tri-diagonalization error no bigger
than 10−7. For all the models and geometries investi-
gated in this paper, we have found that the number of
Lanczos iterations needed is at most about 150. Even at
a finite system size, the dCP relations, which are exact
in thermodynamic limit, are very well reproduced by the
DMRG data.

As explained thoroughly in ref. 5, finite size scaling
of dynamical correlation functions with correction-vector
DMRG should be done carefully: the artificial broaden-
ing η of the spectral function peaks should be rescaled as
function of system size, such that limL→∞η(L) = 0. We
find that the scaling of the peaks maxima in Eq. (17) is
well reproduced by imposing η = c/L, where c is a con-
stant of the order of the width of the full spectrum. Pan-
els (a) and (b) of fig. 2 show the cuts of the S(k, ω) spec-
trum at k = π and k = π/2 as a function of ω for different
system sizes. When using open boundary conditions, we
use the convention that k = π refers to k = πL/(L+ 1),
while k = π/2 refers to k = πL/(2(L + 1)). We have
also verified that, for all system sizes investigated, there
is no qualitative difference between open and periodic k
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FIG. 1: (Color online) S(k, ω) for an antiferromagnetic
Heisenberg chain of L = 64 sites calculated with the Krylov-
space approach. We have used η = 0.075, mmin = 64 and
m = 1000 DMRG states, with a truncation error kept at
10−8. Solid (red) lines indicate the lower boundary of the
Bethe ansatz spin excitation continuum, ωl(k); see Eq. (15).
Dashed-dotted (green) line indicates the upper boundary of
the spin excitation continuum, ωu(k).
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FIG. 2: (Color online) Panel (a) (panel (b)): S(π, ω)
(S(π/2, ω)) for a Heisenberg chain for different system sizes.
Panel(c): max[S(π, ω)] extracted from panel (a) as a function

of L ln(L)1/2. Panel (d): max[S(π/2, ω)] extracted from panel

(b) as a function of (L ln(L))1/2.

values used in the Fourier transform. Panel (a) shows a
shift of the peak position toward ω → 0, which is the
expected position of the divergence at k = π in the ther-
modynamic limit. The position of the peak in panel (b)
is approximately constant as a function of the system size
and approximately close to the expected thermodynamic
limit value ωl(π/2) ' π/2. Panels (c) and (d) show the
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maxima of the peaks obtained in panel (a) and (b) as a
function of the system size. With a linear fit, we have
verified that the peaks maxima have the correct scaling
as described by the relations in Eq. (17).

Fig. 3, panels (a) and (c) show the dynamical struc-
ture factor for a Heisenberg chain with L = 48 sites,
calculated with the Krylov-space and the conjugate gra-
dient method, respectively. In this figure, η = 0.1 and
m = 800 DMRG states were kept in our simulations.
The frequency resolution of the Krylov-space approach is
much better than that provided by the conjugate gradient
method. While in the Krylov-space approach the spectral
weight outside the region defined by the dCP relations is
practically zero, the conjugate gradient method gives a
spectral weight spread everywhere in the frequency in-
terval investigated, with much less defined peak features.
We have tried to use the same parameters for both ap-
proaches, but could not do so precisely, as we now ex-
plain.

We have set the maximum number of conjugate gradi-
ent iterations to 1000 trying to keep the error no bigger
than 10−7. Unfortunately, we have found that, for most
of the frequency interval investigated, a number of itera-
tions much larger than 1000 is necessary to reach conver-
gence. The conjugate-gradient error can thus be as high
as 10−1. This explains why the spectrum shown in panel
(c) has much less frequency resolution than the spec-
trum calculated with the Krylov-space approach. Panel
(e) shows a more detailed comparison between the spec-
tra calculated with the two approaches. Cuts at k = π
and k = π/2 are examined, indicating that conjugate-
gradient is able to capture only qualitatively the main
features of the spectra. For the cut at k = π the po-
sition of the peak at low frequency ω ' 0 is correctly
reproduced, but the spectral weight is smaller than that
provided by the Krylov-space approach by a factor of
3. A different behavior is observed for the peak at
k = π/2. Here, the position of the spectral peak is shifted
to lower frequency, while the spectral weights are also re-
distributed to lower frequencies; see dashed (red) line in
panel (e).

B. Dynamical spin structure factor of Hubbard
chains

In the same figure 3, panels (b) and (d) show the dy-
namical spin structure factor calculated with the two
methods outlined above for a Hubbard chain of L = 48
sites at half-filling and at U/t = 4. The Hubbard model
Hamiltonian is given by

ĤHubbard = −t
L−1∑
i=1

(c†i ci+1 + h.c.) + U

L∑
i=1

n↑,in↓,i, (18)

where we have used standard notation. In these panels,
t = 1 is assumed as unit of energy. Notice the similar-
ity between the Hubbard and the Heisenberg chain spec-
trum in panels (a) and (b) calculated with Krylov-space
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FIG. 3: (Color online) Panels (a-b-c-d): S(q, ω) calculated
with the Krylov-space approach (a-b), and the conjugate gra-
dient method (c-d) for a Heisenberg (panels (a-c)) and a Hub-
bard (panels (b-d)) chain of L = 48 sites, using η = 0.1 and
m = 800 DMRG states (mmin = 64). Panel (e-f) shows cuts
at k = π and k = π/2 of the spectra in (a-c) and (b-d) as
a function of frequency. In the conjugate gradient method, a
maximum of 1000 iteration steps has been imposed, regardless
of the error.

approach. The Bethe ansatz solution[34] at half-filling
and in the limit of large Coulomb repulsion U � t, con-
firms that the Hubbard model on a chain is gapless in
the spin sector. In this case, the Hubbard model behaves
as the Heisenberg model. Similar to the Heisenberg case,
the quality of the spectrum obtained with the conjugate
gradient is much worse than that obtained with Krylov.
Here again, the spectral weight is distributed everywhere
outside the region delimited by the dCP relations. A
detailed comparison of cuts of the spectrum at k = π
and k = π/2 in panel (f) show again that the position of
the spectral peaks is only qualitatively captured by the
conjugate gradient.

C. Spectral function of a t-J chain

Fig. 4 shows the spectral function A(k, ω) for a one
dimensional t-J chain of L = 48 sites and filling N/L =
2/3. The t-J model Hamiltonian is given by

ĤtJ = −t
L−1∑
i=1

(c†i ci+1 +h.c.)+J

L∑
i=1

(
Si ·Si+1−nini+1/4

)
,

(19)
where we have used standard notation. For this model,
we choose the unit of energy t = 1, and study the
case where J = 0.5. The spectral function A(k, ω) =∑
ξ=±A

ξ(k, ω) consists of two branches: the photoemis-
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FIG. 4: (Color online) Panel(a-c): A(k, ω) for a t-J chain of
L = 48 sites with Krylov-space approach for m = 100 and
η = 0.1 (a), m = 400 η = 0.02 (c). Panels (b-d): same as
panels (a) and (c) but with the conjugate gradient method.
The chemical potential µ ' 0.44 is indicated with a solid black
line.

sion ξ = −, and the anti-photoemission ξ = +.

Aξj,c(ω + iη) = − 1

π
Im

[
〈Ψ0|cξ̄j

1

ξω − Ĥ + E0 + iη
cξc|Ψ0〉

]
,

(20)
where ξ̄ = −ξ and c−x ≡ cx (destruction operator), while
c+x ≡ c†x (construction operator) at site x. The two
branches of the spectrum are calculated with correction-
vector DMRG and Fourier transformed to momentum
space, as described in the previous subsection for the dy-
namical spin structure factor S(k, ω).

Panels (a) and (b) of Fig. 4 show the spectral func-
tion of the t-J chain calculated with the Krylov-space
and conjugate gradient approaches with η = 0.1 and
keeping a small number mmin = m = 100 of DMRG
states. The spectral function of the t-J model contains
the phenomenon of spin-charge separation. Below the
Fermi level (indicated by a solid black line), the spectral
weight is concentrated on the spinon and holon bands.
The spinon band forms an arch of amplitude J ' 0.5
connecting the two Fermi points (−kF , ω − µ = 0) and
(kF , ω − µ = 0). Because the filling is N/L = 2/3, then
kF = π/3. The holon bands depart from the spinon band
at the Fermi points in two approximately straight lines
with slope 2t/kF . As expected for a Luttinger liquid, the
shadow bands extend in frequency well beyond |kF |.

Panel (c) and (d) of Fig. 4 show the spectral function
with a larger number of DMRG states, m = 400. Re-
gardless of the method used, the frequency resolution of
the spectrum is improved. The frequency resolution of
the holon and spinon branches of the spectrum is worse in
the conjugate gradient case. Nevertheless, the qualitative

features of the spectrum are captured by the conjugate
gradient method too.

D. Dynamical spin structure factor of a t-J ladder

We now show that our Krylov based approach can
be used to calculate efficiently the magnetic excitation
spectrum of systems with more complex geometries than
chains. As a case study, we analyze a t-J model on a
ladder geometry, with Hamiltonian

H = −tx
∑
〈i,j〉

σ,γ=0,1

(c†i,γ,σcj,γ,σ + h.c.)− ty
∑
i,σ

c†i,0,σci,1,σ

+ J
∑

i,γ=0,1

(
~Si,γ · ~Si+1,γ −

1

4
ni,γni+1,γ

)
. (21)

Recently, the ground state properties and the spectral
function A(k, ω) in the limit of one hole doping have been
studied with DMRG on large system sizes.[35, 36] Yet it is
well known that finite dopings are more difficult to treat
with DMRG, therefore our calculation required a com-
parable effort. In the past, this model was thoroughly
studied in the context of cuprates.[37–39] In the undoped
limit, it has been well established that the t-J model has
a spin gap due to the particular ladder geometry, and,
as in the chains’ case, the physics can be described in
terms of the Heisenberg ladder. Upon doping, supercon-
ductivity mainly occurs in the d-channel, as described in
refs. 37, 40–43. As suggested in ref. 44, neutron scatter-
ing data could provide important evidence for a pairing
mechanism based on the exchange interaction J . The
physics of t-J (and Hubbard) two leg ladders has been
studied with many techniques ranging from bosonization
to DMRG to exact diagonalization. The mostly studied
case has been the isotropic regime, where tx = ty = t.
The possibility of pairing has been also investigated in
the anisotropic limit, where Jy/Jx 6= 1 and ty/tx 6= 1.
At half-filling a Heisenberg description applies, and the
spin gap has been shown to persist until very small val-
ues of the Jy parameter.[37] Away from half-filling, the
authors of ref. 45 studied the spin gap and the super-
conducting binding energy of the hole pairs showing that
they can be maximized by tuning the anisotropic ratios
to ty/tx ' 1.25, and Jy/Jx ' 1.56.

Fig. 5 shows our results obtained with DMRG for the
spin structure factor. In the case of the ladder, the dy-
namical structure factor in momentum space has two
components because the momentum in the y direction
has only two possible values: ky = 0 and ky = π.

Let tx = 1 be our unit of energy, and let us study the
spectrum for the set of parameters ty = Jy = Jx = 1.
The characteristics of the spectrum are completely dif-
ferent from the case of decoupled chains (not shown).
Indeed, a spectral gap appears clearly, both in the ky = 0
and in the ky = π components of the spectrum. In par-
ticular, a very dispersive gap arises in the ky = 0 com-
ponent with amplitude at k = 0 ωgap(0) ' 0.75. In
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FIG. 5: (Color online) Panel (a): S(kx, 0, ω) component for
two leg ladder t-J model with L = 48 × 2 sites at tx = ty =
J = 1.0 and filling n = 0.8125. m = 600 states are kept in
the DMRG simulations. Panel (b): S(kx, π, ω) component of
the spectrum for the same parameter values of panel (a).

the same component, the spin excitations form a trian-
gular structure where all the spectral weight is concen-
trated. Two separate dispersive arcs can be noticed. The
S(k, π, ω) component shows a very defined and peculiar
shape. A spin gap can be observed, with ωgap ' 0.5,
a value smaller than the gap in the other component of
the spectrum. Above that gap, the dispersion curves of
the spin excitations describe the low energy boundary of
the non-interacting tight-binding chain results. As in the
case of a t-J chain, the spectral weight is redistributed to
low energy, but the weight decreases rapidly away from
the low boundaries.

IV. COMPUTATIONAL PERFORMANCE

This subsection compares the computational perfor-
mance of the Krylov-space and conjugate gradient meth-
ods for the dynamical spectra studied in the previous
sections. Panel (a) of fig. 6 shows the CPU time needed
at each frequency ω for the two methods, when calculat-
ing the dynamical spin structure factor of the Heisenberg
model, investigated in section III A. With the Krylov-
space approach, the CPU time is smaller in the low fre-
quency regime than in the high frequency one. At larger
frequencies, larger CPU times are needed. As outlined
in the previous section, we have set a maximum number
of Lanczos iterations equal to 1000, and kept the error
no larger than 10−7. This accuracy is reached in about
50 iterations in the low frequency regime 0 < ω < 0.5,
while the number of iterations needed increases up to
150 in the large frequency regime. The conjugate gradi-
ent method has a similar CPU time profile; see the circle
(red) symbols. As already mentioned in the previous sec-
tion, we have set the maximum number of conjugate gra-
dient iterations to 1000, and have considered the method
converged if the error is smaller than 10−7. However,
for most of the frequency interval investigated, the error
can be as high as 10−1 with 1000 iterations or less. We
have found that increasing the maximum number of it-
erations needed by the algorithm to reach an error less
than 10−7 increases the CPU time even more that what
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L=64, Heisenberg, m=1000 (a)

L=48, t-J, m=400

(b)

FIG. 6: (Color online) Panel (a): CPU times for a DMRG run
as a function of the frequency ω performed with Krylov-space
and Conjugate gradient methods for a Heisenberg model.
Panel (b): same as panel (a) but for the t-J chain model
investigated in sec. III C.

we have shown in this paper. As seen in panel (a) of fig. 7,
the Krylov method is faster than the conjugate gradient
by more the one order of magnitude in the very low fre-
quency regime. But it is not just faster, the conjugate
gradient has not even converged despite having used a
large amount of CPU time and iterations. Panel (b) of
fig. 7 compares the CPU time performance of the two
methods for the spectrum of the Hubbard model. Here
the performance of the conjugate gradient is better, but
still at least a factor of 3 smaller than that of the Krylov-
space approach.

Panel (b) of fig. 6 shows the CPU time as function of
the frequency for the spectral function A(k, ω) of the t-J
model studied in sec. III C. The Krylov-space approach
is again substantially faster than the conjugate gradient.
Even if slightly visible, the Krylov approach has its best
performance at low energy, that is, for ω−µ ' 0, where it
is 20% faster than at higher frequencies. On the contrary,
because of the convergence issues, we have not been able
to obtain a well defined CPU dependency on frequency
for the conjugate gradient method. Panel (c) of fig. 7
shows the comparison between the two methods in the
low frequency regime. As with the other models inves-
tigated, the Krylov method is faster than the conjugate
gradient by a factor of 3.
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FIG. 7: (Color online) CPU times for a DMRG run performed
with Krylov and Conjugate gradient methods for a Heisenberg
(panel (a)), Hubbard (panel (b)) and t-J model (panel (c)).
In panels (a) and (b), the grey and red bars indicate the CPU
times for ω = 0 and ω = 2, respectively. In panel (c), the
grey and red bars indicate the CPU times for ω − µ = 0 and
ω − µ = 1, respectively.

V. SUMMARY AND CONCLUSIONS

This paper proposes an alternative method for comput-
ing correction-vectors based on a Krylov-space decompo-
sition. We have tested the quality of our approach by
studying the dynamical spin structure factor of a Heisen-
berg and Hubbard chain, and the spectral function of
a t-J chain. We have also shown that the method is
general, and applicable without restriction or further ap-
proximations to both more complex models and geome-
tries. Beyond chains, we have shown in section III D
that our method can be successfully applied to the cal-
culation of the dynamical spin structure factor of a t-J
model on a ladder. The supplemental material [29] pro-
vides a pointer to the full open source code, input decks
and additional computational details.

In all cases investigated, we have found that the
Krylov-space approach not only provides frequency spec-

tra with much higher frequency resolution, but that it
also requires much less CPU time than the the conju-
gate gradient method. When DMRG ground state itself
uses Krylov space, then the calculation of the correc-
tion vector integrates better with DMRG. In those imple-
mentations that use the Davidson method[46] for ground
state, the Davidson method could perhaps be used to
calculate the correction vector, as we have used Krylov
space here. On the other hand, Chebyshev or Fourier-
based methods for the computation of spectral functions
with DMRG should be computationally less expensive
than the correction-vector method. But correction vector
should be better suited for problems where a constant res-
olution is needed, and where Chebyshev or Fourier-based
methods might have limited resolution in parts of the
spectrum. For example, in neutron scattering and pho-
toemission spectra—properties much needed to under-
stand quantum magnets, superconductors, and transition
metal oxides—resolving fine features of the low-frequency
spectrum is of great importance. The correction-vector
method can be very precise in the estimation of these
small energy gaps, with the only limitation given by the
finite broadening η.

Using DMRG to obtain dynamical functions is mean-
ingful because the only other unbiased method, quantum
Monte Carlo, does not work directly in real frequency. In
the future, we plan to extend our present work on dynam-
ical properties to finite temperature.[47, 48]
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Journal of Statistical Mechanics: Theory and Experi-
ment 2004, P04005 (2004), URL http://stacks.iop.

org/1742-5468/2004/i=04/a=P04005.
[17] A. Holzner, A. Weichselbaum, I. P. McCulloch,
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