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We numerically investigate the hydrodynamic interaction of swimming organisms at small to
intermediate Reynolds number regimes, i.e. Re ∼O(0.1-100), where inertial effects are important.
The hydrodynamic interaction of swimming organisms in this regime is significantly different from
the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds,
which involves strong flow separation and detached vortex structures. Using an archetypal swimmer
model, called “squirmer”, we find that the inertial effects change the contact time and dispersion
dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These
results are potentially important in investigating predator-prey interactions, sexual reproduction,
encounter rate of marine organisms such as copepods, ctenophora, and larvae.

I. INTRODUCTION

Collective dynamics in microorganism suspensions,
bird flocks and fish schools has received much attention
in the past few years. These flows share many similarities
despite the Reynolds number Re = ρUa/µ ranging across
several orders of magnitudes. Here U and a are the speed
and length scale of the organism, ρ and µ are the den-
sity and dynamic viscosity of the surrounding fluid. The
Reynolds number of typical swimmers are: Re ∼ 10−5 for
bacteria, 10−3 for Chlamydomonas, 0.01 ∼ 0.1 for Volvox
[1], 0.2 for Paramecia in the swimming mode and 2 in the
escaping mode [2], 100 for Pleurobrachia, and 20 ∼ 150
for copepod [3]. Within the low Reynolds number regime
(Re = 10−5 ∼ 10−3), bacteria in dense suspensions show
a collective motion, including large-scale flow structures
and vortices [4], locally correlated motions [5], spatial
inhomogeneities of the swimmer distribution, and en-
hanced diffusion and mixing [6]. Similar phenomena were
also observed in collective motions of microtubules [7],
spermatozoa [8], self-motile colloidal particles [9] and vi-
brating granular systems [10]. At higher Reynolds num-
bers (Re > 103), the schools of fish and flocks of birds
and insects are important for organisms to reduce the
predation risk, to increase the success rate of feeding and
reproduction [11]. At the base of each of these phenom-
ena is the hydrodynamic interaction between the moving
bodies and their detached vortical structures that leads
to higher swimming (or flying) efficiency [12, 13].
The hydrodynamic interaction between microorgan-

isms is essential to understand the dynamics of suspen-
sion of swimmers. In a dilute suspension, the leading-
order effect of a freely swimming organism in Stokes
regime behaves as a force dipole [14], whose induced ve-
locity field decays as 1/r2. Based on the sign of the force
dipole, microswimmers can be distinguished as push-
ers, which push the fluid away from the front and the
back of their bodies, such as bacteria and spermatozoa,
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and pullers, which do the opposite, such as algae. The
swimmer directly affects other cells by the induced ve-
locity field and reorients their swimming direction by
the induced velocity gradients. Even for two interact-
ing microswimmers, the trajectories of the swimmers are
strongly affected by the swimming mechanism, the rela-
tive displacement and orientation of the swimmers [15].

To fully understand the interaction between the mi-
croswimmers, it is important to consider the near-field
hydrodynamics. The pairwise interaction between two
swimmers is not negligible even at asymptotically large
separations [16]. Experiments show that the cell-cell in-
teraction between two swimming Paramecia is mainly
governed by the hydrodynamic effects, rather than the
biological interaction [2]. Two nearby Volvox colonies
close to a solid surface are attracted toward each other
and form stable bound states in which they dance around
each other [1]. When in a suspension, the surface-
mediated hydrodynamic interactions and the steric ef-
fects between the bacterial cells result in the formation
of dynamic clusters and two-dimensional crystals [17, 18].
Many theoretical and numerical works have been con-
ducted to investigate the hydrodynamic interactions be-
tween two model swimmers in the Stokes regime. Based
on the squirmer model, which comprises a spherical body
with a tangential surface deformation to generate swim-
ming motion, both analysis and simulations show that
the two pullers will first attract each other, then they
dramatically change their orientation during the near
contact and finally separate from each other [19]. Simi-
lar phenomena were also observed when including ther-
mal fluctuations [20]. Two swimming bacteria, which
use rotating helices to propel their cell bodies, consider-
ably change their orientations and avoid each other [21].
When considering the details of the swimming stroke,
the swimmer-swimmer interaction is complex depend-
ing on their relative displacement, orientation and phase,
leading to different scattering angles [22, 23] and various
types of motion, such as attraction, repulsion, or oscil-
lation [24]. Another interesting phenomenon caused by
the hydrodynamic interaction between two microswim-
mers is the enhancement of the swimming efficiency by
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synchronizing the phase of two adjacent flagella [25].
To the best of our knowledge all previous studies of

interacting micro-organisms are limited to the Stokes
regime. The inertial effects are important for many
planktonic swimmers in the transition regime [26], such
as copepods, larvae and Pleurobrachia. Inertial effects
play an important role in changing swimming direction
of small organisms, attacking a prey, or escaping from
a predator. For example, copepod nauplii exhibit un-
steady motion during escaping mode and the Reynolds
number is about 6 [27]. In our previous studies, we have
shown that the small but finite inertia causes a dramatic
change to the near-wall motion of a swimmer [28] and
the biogenic mixing efficiency [29]. One of the key differ-
ences due to the inertial effects is that the linearity of the
governing equations in the Stokes regime breaks. Also,
contrary to the zero Reynolds number regime, where the
input power is fully dissipated into the surrounding fluid,
in the inertial regime part of the power is used to accel-
erate the body.
In this work, we examine the hydrodynamic interaction

of model swimmers in the small to intermediate Reynolds
number regime, by means of direct numerical simula-
tions. The inertial effects cause a significant change in the
contact time and dispersion dynamics of swimmers. The
results are helpful in better understanding the organisms
encounter dynamics and their collective behavior.

II. GOVERNING EQUATIONS AND

NUMERICAL METHODS

The Navier-Stokes equations for an incompressible
Newtonian fluid are solved in the entire computational
domain

ρ
Du

Dt
= −∇p+∇2u+ f , (1a)

∇ · u = 0, (1b)

where u is the velocity, p is the pressure, and µ is the
viscosity. The density ρ is equal to the swimmer density
ρp inside the squirmer and equal to the fluid density ρf in
the fluid domain. In this study, we set ρp = ρf since the
density of organisms is usually close to the background
fluid. The swimmer is resolved by adding a forcing term
inside the swimmer body using a distributed Lagrangian
multiplier method [30], which is calculated by iteration
as

f = f∗ + α
ρφ

∆t
(U +Ω× r + ui − u), (2)

where U is the translational velocity of the squirmer, Ω
is the angular velocity, ui is the imposed velocity causing
the self-propulsion, f∗ is the force calculated in the pre-
vious iteration, α is a dimensionless factor whose value
affects the convergence rate but not the solution, φ is the

volume fraction occupied by the swimmer in each compu-
tational grid (φ = 1 inside, φ = 0 outside and 0 < φ < 1
for the grids at the surface of the swimmer).
The squirmer model is introduced by Lighthill [31] and

Blake [32] and has been historically used for swimmers
in the Stokes regime such as Volvox. However, more
recently squirmer model has been extended to low and
intermediate Reynolds number regimes [28, 29, 33–36].
This swimming model is the first step in understating the
effects of inertia and can predict the behavior of large
ciliates in oceans and lakes such as Pleurobrachia. We
consider the first two squirming modes and consequently
the magnitude of the tangential velocity on the squirmer
surface is written as

us
θ(θ) = B1 sin θ +B2 sin θ cos θ, (3)

where θ is the polar angle measured from the swim-
ming direction, B1 and B2 are the first two squirming
modes. The parameter β = B2/B1 distinguishes pullers
(β > 0) and pushers (β < 0). In the Stokes regime, the
swimming speed of a squirmer in an unbounded domain
is U0 = 2B1/3. To recover the tangential velocity us

θ

on the surface of the squirmer, we impose the following
solenoidal velocity ui inside the squirmer

ui=

[

( r

a

)m

−
( r

a

)m+1
]

(us cot θ +
dus

dθ
)er

+

[

(m+ 3)
( r

a

)m+1

− (m+ 2)
( r

a

)m
]

uθ
seθ, (4)

where a is the radius of the squirmer, er and eθ are
the unit vectors along r and θ directions, m is an arbi-
trary positive integer, where the simulation results are
independent of its value. The particle translational and
angular velocities are calculated as

U =
1

Mp

∫

Vp

ρp(u− ui)dV, (5)

IpΩ =

∫

Vp

ρpr × (u− ui)dV, (6)

where Vp,Mp and Ip are the volume, mass and moment
of inertia of the particle. Iterations are repeated until
the maximum of Euclidean norm of (f − f∗)/f and the
normalized residual fall below the specified tolerance of
10−3.
When the squirmer approaches another squirmer, the

high pressure in the thin film between the squirmers pre-
vents any unphysical overlaps. However, a very small
grid resolution is needed to resolve the thin liquid film
and consequently it is computationally expensive. A re-
pulsive force is imposed during the collision to prevent
the unphysical overlap [37]:

F r =
Cm

ε

(

d− dmin − dr

dr

)2

e, (7)

where Cm = MpU
2
0 /a is the characteristic force, ε = 10−4

is a small positive number, d is the distance between two
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FIG. 1. (Color online) (a) Swimming speed of a squirmer
of β = ±0.5 and ±5 at different Reynolds numbers. The
symbols show the current results, and lines show previously
published simulation results for a squirmer with a fixed orien-
tation [36]. (b) Time history of the velocity components of a
single squirmer of β = ±5 at Re = 50. U⊥ represents the ve-
locity component perpendicular to the direction of squirmer’s
orientation.

squirmers, dmin = 2a is the minimum possible distance,
dr is the force range and is set to be twice the smallest
grid size ∆. The direction of the repulsive force e is along
the line of center of the two squirmers.
Simulations are conducted using a finite volume

method on a fixed staggered grid implemented in the
code developed by Sadegh Dabiri and coworkers [38–
40]. A conventional operator splitting method is applied
to enforce the continuity equation. The second-order
TVD (total variation diminishing) Runge-Kutta method
is used for time marching. The spatial derivatives in
the convection term are evaluated using the QUICK
(Quadratic Upstream Interpolation for Convective Kinet-
ics) scheme and the diffusion terms are discretized using
the central difference scheme. The results are normalized
by the characteristic length a, velocity U0 = 2B1/3 and
time a/U0. The mesh size and time step are ∆ = 0.06
and ∆t = 2.5×10−4 for all the cases, except for Re = 0.1,
where we use ∆ = 0.1 and ∆t = 10−3, and the diffusion
terms are implicitly solved. Validation of the numerical
method and the convergence studies are given in sections
III A and III B. Additional validation and verification
tests using this code can be found in our previous publi-
cations [28, 29, 41, 42].

III. RESULTS

A. Swimming motion of a single squirmer

The motion of a single squirmer in an unbounded fluid
is first investigated. Fig. 1(a) shows the magnitude of
the swimming speed at various Reynolds numbers. A
pusher swims faster while a puller swims slower with
increasing Re. From the perturbation theory [34], the
swimming speed of a squirmer in an unbounded domain
is U ≈ 1 − 0.15βRe and holds well for Re < 0.1 [28].
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FIG. 2. (Color online) Velocity magnitude away from an iso-
lated squirmer at Re = 0 and 10 along the swimming direc-
tion.

FIG. 3. (Color online) (a) Vorticity field ωz around a single
pusher of β = −5 (top) and puller of β = 5 (bottom) at
Re = 50. (b) Schematic representation of inertial effects on
the swimming motion of a single pusher and puller.

Our results agree with the previous simulations [36] for
pushers and for pullers at Re < 10. At higher Re, the
puller becomes unstable and the previous results of a
squirmer with a fixed orientation [36] does not describe
the behavior of a freely swimming squirmer. The swim-
ming motion of a pusher is always stable in the range of
Reynolds number investigated in this manuscript. The
velocity field around a squirmer at finite Reynolds num-
ber decays as |u| ∼ r−3 and is faster than a squirmer in a
Stokes flow which behaves as a force dipole |u| ∼ r−2 (see
figure 2). Velocity decay of swimming zooplankton, such
as Mesodinium rubrum and Podon intermedius is closer
to an inertial squirmer than a Stokes squirmer [43].

Fig. 1(b) shows the time history of a single squirmer of
β = ±5 atRe = 50. For a pusher, the initial oscillation in
the speed eventually dampens out and it will swim with
a constant speed. A pusher has a long vorticity wake as
shown in Fig. 3(a). In contrast, the swimming motion of
a puller becomes unstable at Re ∼ 10, leading to a three
dimensional swimming trajectory. The vorticity field is
also more complex for an unstable puller. These observa-
tions can be explained by the following arguments. With
increasing Re, the history effects become important and
the swimmer is more affected by the flow field induced
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FIG. 4. (Color online) (a) Comparison of the trajectories of
two colliding pullers. Present results correspond to Re = 0.1
and previous results are obtained for Stokes flow [19]. (b)
Comparison of the trajectories of two squirmers at Re = 10
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FIG. 5. (Color online) (a) Trajectories of two pullers of β = 5
at different Reynolds numbers. (b) Trajectories of two pullers
at Re = 10 and different dy.

by itself at a previous time (see Fig. 3(b)). The pusher is
“pushed” to swim faster due to the velocity field induced
by itself at an earlier time (dashed swimmer), while the
puller is “pulled” and swims slower. The stability of the
swimmer is also related to the hydrodynamic interaction
between its body and the velocity field created by its
movement. A pusher will return to its original trajectory
due to the hydrodynamic attraction if it is laterally per-
turbed away from the straight trajectory. The response
of a puller is exactly opposite, and its trajectory becomes
unstable with increasing inertial effect.

B. Pair-wise interaction of two pullers

In this section, we consider the pair-wise interactions
of two pushers (β = −5) and two pullers (β = 5) which
are initially located in the same plane (z = 0). They
initially swim towards each other and their swimming
orientations are initially parallel. The distance between
their centers is dx and dy in the x and y directions, re-
spectively. We set dx = 10 and dy = 1 unless otherwise

mentioned. As shown in Fig. 4(a), our results of two
pullers at Re = 0.1 agree well with the previous results
[19] in the Stokes regime. Further, convergence stud-
ies performed for squirmers at higher Reynolds number
(Re = 10) show that the results are independent of mesh
size (see Fig. 4(b)).

The hydrodynamic interaction of two pullers are dra-
matically modified due to the presence of inertia. The
comparison of the trajectories of two pullers at differ-
ent Reynolds numbers are shown in Fig. 5(a). Fig. 6
shows the time evolution of the flow field and the pullers’
swimming trajectories at different Reynolds numbers. At
Re = 0.1 and 1, the two pullers rotate away from each
other during the collision and eventually escape with pos-
itive scattering angles. The recirculating regions with
high vorticity value ωz in front of and behind an isolated
swimmer atRe = 0.1 have similar shape and size (see Fig.
6(a1)). At higher Reynolds numbers, the pullers gener-
ate larger recirculating regions behind their body, which
are similar to the ones observed for a cruising Metridia

longa [43]. The rotation of the swimmer is so strong that
the trajectories become circular after the separation. The
vorticity field is strongly disturbed due to the spinning
motion of the pullers (see Fig. 6(b1− b4) and (c1− c4)).
Notably, the two pullers at Re = 10 are hydrodynami-
cally entrapped near each other as they are rotating in
circular trajectories for a long time. At Re = 50, the two
pullers swim away from each other following circular tra-
jectories with small radii of curvature. The trajectories of
two pullers at Re = 10 under different initial configura-
tions dy = 0.02 and dy = 2.2 are plotted in Fig. 5(b). It is
clear that the details of trajectories are closely related to
the initial condition, but the hydrodynamic entrapment
in circular trajectories exists for different Reynolds num-
bers above Re ∼ 10 and different initial lateral distances.
These observations are qualitatively similar to the bound
states of two dancing spherical alga Volvox near a sur-
face [1]. However, the mechanisms in the two cases are
very different. The corresponding Reynolds number of
a Volvox is around 0.03, and the formation of a bound
state occurs due to the Volvox swimming motion near a
boundary. Here, the inertial effects lead to the instability
of the swimming motion of a single puller as discussed in
section III A, which dramatically modifies the hydrody-
namic interaction between the two swimmers.

Fig. 7 shows the time evolution of the U -velocity com-
ponent and the angular velocity Ωz of the pullers at dif-
ferent Reynolds numbers. The U -velocity of the pullers
quickly drops during the collision and then it recovers and
reaches to a peak value. After they separate from each
other, the puller at low Re swims with a roughly constant
speed, which is reduced compared to the swimming speed
of a single squirmer due to the flow field induced by the
other squirmer. At higher Re, the U -velocity oscillates.
The pullers always rotate in a clockwise direction dur-
ing the collision as shown in Fig. 7(b). The vorticity in
the gap region between the two swimmers is first neg-
ative as the swimmers get close to each other (see Fig.
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FIG. 6. (Color online) Time sequence of the swimming motion of two pullers of β = 5 at (a1− a4) Re = 0.1, (b1− b4) Re = 10
and (c1− c4) Re = 50. The contour plots show the vorticity ωz in the plane z = 0. The black lines show the trajectories of the
swimmers. For movies see [46].
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FIG. 7. (Color online) Time history of (a) U -velocity com-
ponent and (b) angular velocity Ωz of two pullers of β = 5
at different Reynolds numbers. Legends are the same as Fig.
5(a).

6(a2)). Then the magnitude of Ωz decreases after the two
swimmers pass each other (see Fig. 6(a4)). At low Re,
the angular velocity becomes positive due to the strong
induced rotating effects from the vorticity field, it then
gradually goes to zero as the two swimmers separate from
each other. At high Re, the inertial effects greatly en-
hance the initial rotation in the clockwise direction, the
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FIG. 8. (Color online) Trajectories of two pushers of β = −5
at different Reynolds numbers.

pullers maintain a high angular velocity after their sepa-
ration and swim in circular trajectories.

C. Pair-wise interaction of two pushers

In Fig. 8, we compare the trajectories of two pushers
of β = −5 at different Reynolds numbers. Their flow
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FIG. 9. (Color online) Time sequence of the swimming motion of two pushers of β = −5 at (a1−a4) Re = 0.1, (b1−b4) Re = 10
and (c1− c4) Re = 50. The contour plots show the vorticity ωz in the plane z = 0. The black lines show the trajectories of the
swimmers. For movies see [46].
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FIG. 10. (Color online) Time history of (a) U -velocity com-
ponent and (b) angular velocity Ωz of two pushers of β = −5
at different Reynolds numbers.

fields are shown in Fig 9. At Re = 0.1, the two push-
ers stay in close contact for a long time after the colli-
sion. Meanwhile, they rotate towards each other and get
trapped. This state is unstable, the two pushers eventu-
ally swim away and leave their initial swimming plane.
At higher Reynolds numbers, the squirmers keep swim-
ming in their initial plane after collision, and the scat-
tering angle strongly depends on the Reynolds number.

At Re = 5, the scattering angle is negative, while at
Re = 50, the scattering angle is almost positive 90 de-
grees. A long vorticity wake is formed behind the pushers
at Re = 10 and 50 as shown in Fig. 9, where its mag-
nitude is stronger than the wake vorticity at Re = 0.1.
After the two pushers pass each other, their vorticity
wakes have strong effects on their motion, causing them
to rotate in a clockwise direction. The interaction be-
tween the two wakes is stronger at higher Re. As seen
in Fig. 9(c4), the elongated wakes become unstable and
generate ring-like vortical structures in three dimensions.

The U -velocity and the angular velocity Ωz of the
pushers are shown in Fig. 10. At Re = 0.1, the swim-
ming speed of the pushers gradually decreases as they ap-
proach each other. As the swimmers get close, they lose
enough momentum and are not able to pass each other.
Meanwhile, the swimmers keep rotating in a counter-
clockwise direction before their heads-on collision. They
spend a long time in the heads-on configuration till even-
tually small perturbations lead to their reorientation and
they eventually escape. At higher Reynolds numbers
(Re = 10, 50), the pushers swim much faster and their an-
gular velocity only slightly increases before they collide.
The swimmers at higher Reynolds numbers maintain a
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FIG. 11. (Color online) Contact (∆r ≤ 2.12) and near-by
(∆r ≤ 4) time τ of two squirmers of β = ±5 at different
Reynolds numbers.

high momentum before collision and they easily pass each
other. The inertial effects also cause the swimmers to ro-
tate in a clockwise direction (Fig. 9(b2)) as opposed to
courter-clockwise rotation in the low Reynolds number
regime (Fig. 9(a2)). Eventually, the two swimmers es-
cape from each other staying in their initial plane.

D. Contact time of two swimmers

In Fig. 11, we quantify the inertial effects on the con-
tact time τ of the two squirmers. The contact time is
defined as the time duration when the distance between
the center of the squirmers is smaller than ∆r = 2.12,
where the repulsive collision force is non-zero. The col-
lision time is greatly reduced for pushers at higher Re,
while it is less affected for pullers. We also define the
nearby time which is the time duration when the dis-
tance between the center of squirmers is smaller than
twice their diameter. For the pushers, the same trend is
observed for the near-by time as the contact time. For
the pullers, nearby time is affected due to the entrap-
ment of the pullers in a circular loop. The two pullers at
Re = 10 stay around each other for a much longer time.
These results are important in estimating the encounter
time for organisms, which is important in reproduction,
feeding and escaping from a predator. For example, ex-
periments show that the male calanoid copepod species
T. longicornis locate and pursue females within twice the
body length of a female’s swimming path following odour

tracers [44]. They accelerate and the Reynolds number
changes from 5−15 in a normal swimming mode to 20−40
in a pursuit [45]. In this example, both their hydrody-
namic interaction and the evolution of the odour tracers
are greatly affected by the inertial effects.

IV. CONCLUSIONS

In this study, we numerically investigated the effects of
inertia on the swimming motion and the pair-wise hydro-
dynamic interactions of small organisms. The squirmer
model is used, representing two types of swimming strate-
gies typically encountered in motile cells: pullers and
pushers. With increasing Re, a squirmer interacts with
the flow field induced by itself at an earlier time. As a
result, a pusher swims faster in a straight line, while a
puller swims slower and its swimming trajectory is un-
stable. The contact time of two interacting pushers is
reduced by increasing inertial effects, In contrast, a pair
of pullers at Re ∼ 10 are hydrodynamically bounded in
circular trajectories near each other. The pair-wise in-
teraction of organisms is the first critical step to gain
fundamental understanding of the collective behavior of
small organisms. Our results show that the inertial ef-
fects can greatly affect the decisive biophysical interac-
tions of small organisms. In this work, we focus on the
inertial effects on the swimmer, and the swimmer model
is simplified to have a tractable number of parameters
in the problem. While in nature, the swimming motion
of many organisms are highly unsteady. Previous stud-
ies have used a squirmer model with an unsteady slip
velocity [33, 47], which involves more parameters in the
physical space. The details of the unsteadiness and the
swimming kinematics could have important effects on the
hydrodynamic interaction of swimmers. Further studies
are required to include these effects.
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