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Abstract: 

We employ non-contact optical techniques to generate and measure stress waves in uncompressed, one-

dimensional microscopic granular chains, and support our experiments with discrete numerical simulations. 

We show that the wave propagation through dry particles (150 µm radius) is highly nonlinear and it is 

significantly influenced by the presence of defects (e.g., surface roughness, inter-particle gaps and 

misalignment). We derive an analytical relation between the group velocity and gap size, and define bounds 

for the formation of highly nonlinear solitary waves, as a function of gap size and axial misalignment. 

PACS: 05.45.Yv, 45.70.-n, 46.40.Cd, 79.20.Eb 

Main Text: 

I. INTRODUCTION 

Ordered granular systems, often referred to as granular crystals, are discrete arrays of solid particles arranged 

in periodic lattice geometries. Macroscopic granular crystals, composed of particles in the centimeter scale, 

have been subject of active research [1-6]. Granular crystals have been shown to mediate nonlinear wave 

phenomena such as solitary waves [1] and intrinsic localized modes [7], which are of fundamental scientific 

interest. The dynamic response of granular crystals is governed by highly nonlinear interactions between 

neighboring particles, which is determined by their contact geometry (e.g., Hertzian). More generally, by 

modifying the contact geometry and particle arrangements (i.e., changing the stress-strain relation and the 

direction of contact forces) [8], granular crystals can be designed to behave as highly flexible wave guides 

[9], focusing lenses [10] and filtering materials [11]. These features of granular crystals have inspired their 

use in engineering applications, such as shock mitigation [12-15], acoustic rectification [16], and logic 
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elements [17]. However, the macroscopic size of the particles tested experimentally to date imposes important 

limitations to their applicability. The particle diameters determine the length scale of the stress wave that can 

be transmitted through the granular assemblies. For example, applications in acoustic medical imaging or non-

destructive evaluation, which employ acoustic pulses in the ultrasonic range, require particle sizes in the order 

of micrometers. Recent numerical work investigated the stress propagation in nanometer-scale particle chains 

composed of buckyballs, detailing important dynamic effects rising at ultra-small scales [18]. However, not 

much is known to date about the response of granular chains in the micrometer range. 

In this work, we study the stress wave propagation in dry, one-dimensional microscopic granular chains, using 

experiments and numerical simulations. Despite the fundamental importance of understanding the dynamics 

of micro-particle assemblies, very little experimental work to date has been conducted at these scales. The 

lack of experimental investigation results from two major difficulties: (i) the absence of reliable methods to 

assemble and characterize dry micro-particles in controlled configurations; (ii) the need for a systematic way 

to excite microscopic granular particles without influencing the response of the system. Experimental 

techniques employed for macroscopic granular systems include manually assembled chains of particles, piezo 

transducers for applying excitation [19], and sensors embedded in particles for force measurements [20]. At 

the micro-scale, these techniques are not applicable. The nonlinear interactions in granular systems [21] are 

sensitive to the particle packing geometry and initial conditions. To ensure uniform contacts between micro-

particles, a high accuracy in particles’ positioning is necessary. In addition, the application of controlled 

excitations and the measurement of the propagating stresses cannot be achieved using contact methods, which 

are not sufficiently accurate and intrusive.  

To overcome these experimental challenges, we constructed an experimental apparatus (Fig. 1(a)), which 

employs a computer-controlled micro-manipulation system for the chains assembly, and non-contact optical 

techniques for the characterization [21], as described in the next section. 

II. EXPERIMENTAL SETUP AND THEORETICAL MODELING 

In this work, we study microscopic granular chains composed of stainless steel particles (type 316 and 440c) 

with radii of 150 μm. The steel 316 particles have a nominal surface roughness and radius variation of ~3 μm, 

while the steel 440c particles have a roughness of 0.1 μm and a radius variation of ~1 μm, as provided by the 

manufacturer specifications (New England Miniature Ball). The chains of particles are assembled on 

supporting micro-grooves, and aligned with a micro-manipulator, to ensure packing repeatability. The micro-

grooves have a v-shaped cross-section, which confines the motion of the micro-particles in one dimension. 

The grooves are fabricated on silicon wafers by chemical etching with potassium hydroxide, and have opening 
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widths of 240 µm (Fig. 1(c)). To assemble the micro-particles in one-dimensional chains, the particles are 

first randomly deposited into the grooves, and then compressed from both ends and positioned adjacent to 

each other with the micro-manipulator (Zaber LSM025). The micro-manipulator tip, controlled by a stepper-

motor with a precision of 0.05 µm, is retracted after assembling the chains, leaving the chains with free 

boundaries. The resulting granular chains are not pre-compressed. In macroscopic granular systems, the 

application of a static, external pre-compressive force is commonly used to compact the chains and tune their 

dynamic response [22]. In microscopic chains, the application of a controlled, static compressive force is more 

difficult and the use of fixed boundary conditions (e.g., a wall at the end of the chain) can interfere with the 

initial excitation. In this work, we focus on the study of uncompressed micro-granular chains with free 

boundaries.  

During assembly, the chains (Fig. 1(d)) are inspected with a high-speed microscopy imaging system (Vision 

Research Phantom v12.1, Leica S6D), which can track their position with a 2 µm precision at 25 kHz. To 

reduce the effects of the particles polydispersity, we assemble each chain multiple times and measure the 

overall chain lengths. We select for testing only the chains with shorter and equal lengths. The maximum 

number of micro-particles that can be included in a chain is limited experimentally by the need for optical 

inspection of the assemblies and the micro-manipulator tip: The field of view of our imaging system is ~6 

mm, and allows for simultaneously visualizing the assembly of chains with maximum 20 particles. We select 

for testing chains composed of 15 particles. Macroscopic chains of similar lengths have been shown to support 

the formation and propagation of nonlinear solitary waves [1,2,4]. Also, numerical simulations (described 

below) of propagating stress waves in an ideal 15-particle chain showed that the pulse amplitude at the end of 

the chain differs by <1% from pulses in an infinite chain [2]. 

The selected micro-particle chains are excited by a striker particle (particle 1 in our assembly), identical to the 

others, set in motion by a Q-switched pulsed laser (Quantel Brilliant, 532 nm, 4 ns). The intense laser pulse 

induces vaporization and ejection of material from the surface of the illuminated particle (Fig. 2(a)), 

transferring an initial momentum [23]. The pulse laser energy intensity, the pulse duration and the thermal 

properties of the particle’s material all affect the momentum transfer [23]. We characterize the relation 

between pulse energy and the momentum gain for our specific experimental configuration, targeting 

individual particles initially resting on the v-shaped groove and monitoring the resulting particle trajectories. 

We vary the pulse energy of the laser beams from 0 to 0.8 mJ and test the momentum gained by particles 

made of both stainless steel type 316 and 440c (Fig. 2(b)). While these two materials have similar elastic 

properties, such as Young’s modulus and Poisson’s ratio, they have distinct thermal properties (for example, 

specific heat and thermal conductivity for stainless steel type 316 at 100°C are 0.50 kJ/kg/K and 16.2 W/m/K, 

and 0.46 kJ/kg/K and 24.2 W/m/K for type 440c) [24], which lead to a significantly different response to laser 
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ablation (Fig. 2(b)). Both types of particles show a linear momentum gain within the range of the tested pulse 

energy, but with different gain-to-energy ratios. We use this characterization to estimate the initial velocity of 

the striker particles later used in the experiments with granular chains. 

We test microscopic granular chains at varying initial striker velocity ( sv ), from 0.005 to 0.1 m/s, and measure 

the stress wave propagation. To measure the wave propagation through the chains, we employ two laser 

vibrometers (Polytec OFV-534), which monitor the velocity profiles of the 2nd and 13th particles. Because of 

the angles between the axis of the chains and the beams of the vibrometers, the output of the vibrometers 

include off-axis components (with respect to the chains axis). To ensure the correct detection of the on-axis 

velocities, we perform an independent calibration of both vibrometers. For the calibration, we focus the 

vibrometers on the targeted particles in the assembled chain and shift the computer-controlled sample stage 

with known on-axis velocities. The vibrometer output is monitored and compared with the stage velocity, to 

obtain a calibration factor. 

We use numerical simulations to inform our experiments. We model the granular chains with a discrete 

element model using Hertzian contact interactions and simulate the evolution of the system with a fourth-

order Runge–Kutta solver. The contact force 
cf  between two neighboring particles is 
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where mx  and nx  are the coordinates of the two particles, R  is the radius, E  the elastic modulus, and   

the Poisson ratio of the particles. The subscript to the bracket notation, defined by )0,max()( xx  , 

indicates the tensionless behavior of the system. All parameters used in the model are derived from 

experimental data and we neglect dissipation. 

III. MAIN RESULTS 

A typical velocity profiles measurement is shown in Fig. 3(a), for a wave excited by a striker with velocity 

0.1 m/s. The blue and red solid lines correspond to the velocity profile measured for particle 2 and 13, 

respectively. The corresponding numerical results are plotted for comparison in the lower panel with dashed 

lines. The difference in the pulse shape observed between the experiments and the numerical simulations can 

be partially attributed to the limited bandwidth of the laser vibrometers available for testing (2.5 MHz). The 

vibrometer’s limited bandwidth acts as a filter to the recorded signal. Reconstruction of the original waveform 
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profile requires a detailed calibration of the frequency and phase response of the vibrometer outside of its 

typical working frequency, in the particular experimental configuration selected. Due to difficulties in 

obtaining such reconstruction, we focus our discussions on the particle and group velocities of the propagating 

waves (which are not affected by the vibrometers’ bandwidth). We define 2max,v  and 13max,v  as the maximum 

particle velocities of the 2nd and 13th particles, respectively, and compare them with the numerical results, 

)(

2max,

sim
v  and 

)(

13max,

sim
v . In Fig. 3(b), we plot the measured 2max,v  and 13max,v  at different striker velocities, 

sv , together with the corresponding prediction from simulation (dashed lines). We obtain the average values 

of svv )09.057.0(2max,   and svv )07.046.0(13max,   (with a 95% confidence interval in a linear fitting 

model), which is 40% smaller compared to the numerical prediction, 
s

sim
vv 89.0

)(

2max,   and 

s

sim
vv 64.0

)(

13max,  . However, their ratio 08.080.0/ 2max,13max, vv  agrees well with the corresponding 

numerical prediction, 72.0/
)(

2max,

)(

13max, 
simsim

vv , shown in Fig. 3(c). This suggests that the deviation of 

the measured 2max,v  and 13max,v  from numerical data is a result of the waveform deformation due to the 

limited measurement bandwidth, in addition to the presence of dissipation in experiments. 

Although the measured relative particle velocity agrees well with numerical simulations, the wave’s group 

velocity is significantly lower in experiments than in numerical simulations. We plot the measured group 

velocity, 
)(meas

gv , as a function of the striker velocity (Fig. 4(a)). Here, tRv
meas

g  /2)213(
)(

, where 

t  is the time delay between the maximum amplitudes of 2v  and 13v . For both types of stainless steel 

particles tested, the measured group velocity (solid symbols with error bar) varies nonlinearly with the striker 

velocity, which is a clear indication that the wave propagation within the granular assemblies is governed by 

nonlinear interactions. However, the measured group velocities are significantly lower than the numerical 

prediction for close-packed microscopic granular chains (solid line in Fig. 4(a)). In addition, the stainless steel 

440c particles have higher group velocities than stainless steel 316, despite the two types of stainless steel 

have similar elastic properties.  

In order to explain this deviation between measurement and numerical simulations, we study the role of 

defects and packing imperfection in the wave propagation. We focus on the presence of inter-particle gaps, 

which are expected to be in the order of magnitude of the particles’ surface roughness (<< R), and as such 

below optical resolution of our experimental characterization system. We model the dynamics of 1-D chains 

with inter-particle gaps varying between 0 and 200 nm and investigate how the gaps affect the group velocity 

of the propagating wave. We generate random initial configurations of 15 particles with average gap sizes (
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 ) per particle of 10, 20, 47 and 190 nm, and calculate the group velocities for different striker velocities. 

For each gap size and striker velocity, we simulate 100 configurations and plot the distribution of the resulting 

group velocities (shaded bands in Fig. 4(a)). As the average gap sizes increase, the calculated group velocity 

deviates more from the group velocity expected in a perfectly packed system. The difference of the measured 

group velocities between the stainless steel 316 and 440c micro-particle chains could therefore be explained 

by assuming bigger, effective inter-particle gaps between the 316 particles. This can be related to the 

difference in surface roughness and size variation of the two materials, reportedly higher in the 316 particles. 

While our sample preparation procedures include micro-manipulator compression and visual inspection of 

the chain, an ideal close-packing condition cannot be guaranteed. We thus expect larger inter-particle gaps in 

chains of free, non-compressed particles with higher polydispersity. However, the average gap sizes suggested 

by the numerical fitting (in Fig. 4(a)) are smaller than the polydispersity for the 316 and 440c particles. This 

can be partially explained by considering three-dimensional effects in the particles’ positioning within the 

support grooves. Variations in the radii (arising from the particles’ polydispersity) result in a vertical 

misalignment of the particles’ centers from the main chain’s axis. This misalignment reduces the effective 

center-to-center distance between the particles and results in smaller gaps in the one-dimensional model used 

in our analysis. 

Accounting for the presence of average gaps in the chains, the deviation of the group velocity from the close-

packed configuration can be explained by the following relation: 
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where 
)0(

gv  is the group velocity of the solitary wave propagating in an ideal, uncompressed close-packed 

granular chain. Equation (2) assumes that the measured time-of-flight for the pulse is the sum of the traveling 

time of a solitary wave propagating in a close-packed granular chain and the traveling time of the individual 

particles to close the gap to reach the next particle. We plot the values predicted by Eq. (2) with dashed lines 

in Fig. 4(a), which lies above the distribution of group velocities obtained in simulation of chains with 

corresponding average gaps. The particle velocity can lie between two bounds: (i) For an ideal chain excited 

by a striker particle with equal mass has the particles in the system, the maximum particle velocity is 
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c  is the sound speed in the material of the particle [1] and 

  is the density; (ii) For a chain with all particles separated from each other, in the absence of losses, 
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momentum conservation imposes that each particle velocity is equal to the striker velocity. Equation (2) 

defines the relation between the group velocity and the presence of inter-particle gaps, when chains in an 

experimental system lie between these two bounds. By fitting Eq. (2) with different average gap sizes, we can 

explain the reduction of group velocity in the different steel chains tested experimentally. For example, the 

measured group velocity for a chain composed of stainless steel 316 particles, with a rougher surface finish, 

agrees well with the numerical model, if we assume an average, effective, average inter-particle gap of 190.4 

nm. Similarly, the effective, average gaps for the chain of 440c steel particles (with a smoother surface) is 

estimated to be 47 nm. Note that relatively small gaps (in our case, ~0.03-0.1% of the radii of the particles) 

can have a significant impact on the measured group velocities. This results from the fact that the striker 

velocity is about four orders of magnitude smaller than the group velocity in an ideal chain. 

To gain more insight on the influence of inter-particle gaps in the dynamics of these systems, we compare the 

wave propagation properties in an ideal chain composed of 15 particles with the response of the chain with 

only 10 nm average inter-particle gaps. We perform numerical simulations and plot the velocity profiles of 

the 15 particles in Fig. 4(b). The particle velocities in an ideal, close-packed chain follow the profile expected 

from the formation of a highly nonlinear solitary wave [1]. However, the particle velocity profile calculated 

for the chain with randomly distributed inter-particle gaps shows irregular oscillation as the wave propagates 

along the chain (and their value is larger than the ideal case). We study experimentally the relation between 

the group velocity and the average gap sizes. While our experimental apparatus is not able to resolve the 

nanometer-size gaps between individual particles, it is possible to estimate the effective, average gap size   

measuring variations in the length of the chains assembled in our setup. We construct loosely packed 

microscopic granular chains by assembling chains of particles without the use of precise micro-manipulator 

compression, and measure the total distance L  between the 2nd and 13th particles. We calculate the average 

gap sizes in the different chains assembled as, RL 2)213/(  , and estimate it to be between 250 and 

500 nm, with a 30% accuracy limited by the optical resolution of the system. We strike each chain with a 

striker velocity of 0.01 m/s and plot the distribution of measured group velocity for 45 different chains with 

the corresponding uncertainty. For each average gap, Eq. (2) provides an upper bound for the corresponding 

group velocity. We define the “allowed” (below the bound) and “forbidden” (above the bound) zones for the 

measured group velocities at varying average gaps and illustrate them in Fig. 4(c), as the orange and white 

areas, respectively. Due to the uncertainty in the experimental estimation of the striker velocity in Eq. (2), the 

boundary between the allowed and forbidden zones is not a simple curve but shown as an area with gradient 

color between orange and white and width resulted from the uncertainty of sv  (1 standard deviation). The 

experimental data is plotted in the graph with error bars, calculated with the uncertainty due to the optical 
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inspection of the total length of the chain. It is evident that the measurements agree with the predicted zone. 

The results provide experimental evidence of the suppression of group velocity in the presence of inter-particle 

gaps. 

In the presence of large inter-particle gaps, the highly nonlinear solitary waves that characterize close-packed 

granular chains (described by the Nesterenko [2]) cease to exist. However, if the gaps are sufficiently small, 

the behavior of the system approximates the ideal, close-packed case. This occurs when 
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Here, we use the relation between striker velocity and maximum particle velocity, svv 64.0~max , which is 

obtained numerically for an uncompressed, close-packed, non-dissipative granular chain with Hertzian 

interaction. This inequality shows that for stainless steel particles ( 4100c  m/s) excited by a striker with 

velocity around 0.1 m/s, the average inter-particle gaps should be << 0.05% of the particle’s radius in order 

to approximate the ideal chain response. As the size of the granular assemblies decreases, the required 

assembly precision increases. Additionally, this requirement increases even further if other types of 

imperfections are considered. For example, misalignment between micro-particles lead to an offset 

(eccentricity) of the particles’ centers from the axis of the chain, which also affects the wave propagation. For 

two neighboring particles with slightly different radii ( 1mR  and mR ), the off-axis component of the contact 

force is Refc 2/ , where mm RRe  1 . If this contribution exceeds the particle’s confinements, confinef , 

the chain fragments laterally. This suggests that in general, for the stabilities of granular assemblies, the 

condition, confinec fRef 2/ , need to be satisfied during the excitation of the systems. In our analysis, we 

assume that the particles’ confinement is provided by the particle’s own weight ( mgfconfine  , where m  is 

the mass of the particle and g  is the gravity of Earth), and neglect adhesive and frictional forces, for 

simplicity. To estimate the maximum contact force ( max,cf ) between the particles of a granular chain, we 

consider collisions between two free particles, assuming one is stationary and the other approaches with an 

initial velocity 
sv . If the particles interaction is Hertzian, as shown in Eq. (1), the maximum inter-particle 

force can then be derived as: 
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where m  is the mass, R  the radius, E  the elastic modulus, and   the Poisson ratio of the particles. 

In this case, to ensure no instabilities in a one-dimensional chain excited by a striker, this condition 

corresponds to an upper bound for eccentricity, e : 

 
2

5/45/6
3.5 R

cv

g
e

s

 . (5) 

Combining Eqs. (3) and (5), we obtain an expression, 
3/43/73/23/2 3.7  cRge , to define an approximate 

bound for the imperfections without dependence on the striker velocity. Knowing fabrication limits, in terms 

of achievable average gap sizes,  , and misalignment, e , we can determine the minimal size of particles in 

a granular assembly that can support the formation and propagation of highly nonlinear solitary waves. In our 

experiment, we assume 200  nm (which is estimated to be the positioning precision of the particles in a 

chain) and 1e  µm (which corresponds to the nominal value of the particle radii variation for stainless steel 

440c). These parameters lead to an estimate for the minimum particle radius 670R  µm required to support 

highly nonlinear solitary waves. This value is four times larger than the size of our particles, partially 

explaining the discrepancies observed between the experimental measurements of group velocities and the 

corresponding values calculated for an ideal granular chain (see Fig. 4). 

IV. CONCLUSIONS 

In this work, we investigated the stress wave propagation in one-dimensional chains of micro-particles. For 

the experiments, we constructed an apparatus employing laser-based excitation, non-contact high speed 

microphotography and vibrometry, and a micro-manipulator system. The setup allowed us to excite and study 

stress wave propagation in micro-granular assemblies. We informed our experiments with discrete finite 

element simulations and modeled the system with Hertzian contact interaction. We obtained good agreement 

between experimental and numerical results for the decaying of the stress wave amplitude. However, a large 

deviation of the group velocity from theory was observed. We found that microscopic granular chains can 

support the propagation of highly nonlinear solitary waves under ideal conditions, but are very sensitive to 

the presence of imperfections. We derived an analytical expression to relate the group velocity to the presence 

of inter-particle gaps and support it with direct experimental evidence. In further analysis, we characterized 
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the role of defects (gaps and misalignments) in the dynamic propagation of stress waves in one-dimensional 

granular chain and defined analytical bounds for the scalability of granular system with given assembling and 

fabricating precision. These findings can be used as guiding principles for implementation of engineering 

applications and scientific studies of microscopic granular systems. 
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Figures: 

 

FIG. 1: Schematic diagram of the experimental setup. (a) The system consists of a laser excitation system, a 

high-speed microscopy imaging system, two vibrometers and a micro-manipulator. (b) The incoming focused 

laser beam (15 µm beam waist) is used to excite stress waves in the chains. The imaging system is used to 

record the particles motion in high-speed and the vibrometers are used to measure the velocity profiles of 

selected micro-particles. (c) SEM image of the v-shaped groove supporting the chain (the angle between two 

inclined planes is 70.6º). (d) Optical microscope image of a microscopic granular chain assembled on the 

supporting structure. 
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FIG. 2: Excitation of micro-particles via pulsed laser ablation. (a) The high-speed images of a particle before 

and after being illuminated by pulsed laser. The light pattern on the particle changes after excitation due to 

laser induced surface damages. (b) The observed momentum gains of stainless steel type 316 (red square) and 

440c (blue circle) particle at varying pulse energy. The error bars represent one standard deviation for each 

data point derived from 20 experimental runs. 

 

FIG. 3: Measured particle velocities profile in a microscopic granular chain of 15 stainless steel 440c particles 

with laser excitation (a) Experimental measurement (solid lines) and numerical prediction (dashed lines) of 
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velocities of the 2nd (blue) and 13th (red) particles in the chain (normalized to the striker velocities). (b) 

Measured maximum velocities at varying striker velocities, compared with the corresponding numerical 

prediction (dashed lines). Error bars represent one standard deviation. (c) Ratio between maximum velocities 

of the two monitored particles at varying striker velocities. The corresponding numerical prediction is plotted 

with a dashed line. Error bars represent one standard deviation. 

 

FIG. 4: (a) Group velocities of signal traveling in uncompressed microscopic granular chains. Experimental 

data for the two types of stainless steel particles are shown as solid dots and squares with error bars (one 

standard deviation). The shaded bands represent the group velocities of random samples of uncompressed 

chains with average inter-particle gap sizes of 0 (close-packed), 10, 20, 47, 190 nm. The dashed lines are the 

corresponding prediction obtained with Eq. (2). (b) Comparison of particle velocities (normalized to the striker 

velocity) in a close-packed microscopic granular chain and in a randomly generated chain with an average 

gap of 10 nm. The chains consist of 15 stainless steel particles (440c) with a radius of 150 µm, excited by an 

initial striker velocity of 0.1 m/s. (c) Distribution of group velocity at different average inter-particle gaps 

based on 45 measurements and their corresponding experimental uncertainty. The orange and white area 

represents the “allowed” and “forbidden” zone for the measured group velocity defined by the analytical upper 

bound from Eq. (2). The boundary between the allowed and forbidden zones is illustrated with gradient color 

between orange and white, due to the uncertainty in estimation of the striker velocity in Eq. (2).  



 13 

References: 

[1] V. F. Nesterenko, J Appl Mech Tech Phys 24, 733 (1983). 

[2] V. F. Nesterenko, Dynamics of Heterogeneous Materials (Springer, 2001). 

[3] N. Boechler, G. Theocharis, S. Job, P. G. Kevrekidis, M. A. Porter, and C. Daraio, 

Physical Review Letters 104, 244302 (2010). 

[4] S. Sen, J. Hong, J. Bang, E. Avalos, and R. Doney, Physics Reports 462, 21 (2008). 

[5] Y. Starosvetsky and A. F. Vakakis, Physical Review E 82, 026603 (2010). 

[6] V. Tournat, V. Zaitsev, V. Gusev, V. Nazarov, P. Béquin, and B. Castagnède, Physical 

review letters 92, 085502 (2004). 

[7] C. Chong, F. Li, J. Yang, M. O. Williams, I. G. Kevrekidis, P. G. Kevrekidis, and C. 

Daraio, Physical Review E 89, 032924 (2014). 

[8] D. Sun, C. Daraio, and S. Sen, Physical Review E 83, 066605 (2011). 

[9] A. Leonard, L. Ponson, and C. Daraio, Extreme Mechanics Letters 1, 23 (2014). 

[10] A. Spadoni and C. Daraio, Proceedings of the National Academy of Sciences 107, 7230 

(2010). 

[11] F. Li, C. Chong, J. Yang, P. G. Kevrekidis, and C. Daraio, Physical Review E 90, 053201 

(2014). 

[12] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin, Physical Review Letters 96, 

058002 (2006). 

[13] F. Fraternali, M. A. Porter, and C. Daraio, Mechanics of Advanced Materials and 

Structures 17, 1 (2009). 

[14] R. Doney and S. Sen, Physical Review Letters 97, 155502 (2006). 

[15] J. Hong, Physical Review Letters 94, 108001 (2005). 

[16] N. Boechler, G. Theocharis, and C. Daraio, Nature materials 10, 665 (2011). 

[17] F. Li, P. Anzel, J. Yang, P. G. Kevrekidis, and C. Daraio, Nat Commun 5 (2014). 

[18] J. Xu, B. Zheng, and Y. Liu, Scientific Reports 6, 21052 (2016). 

[19] C. Coste, E. Falcon, and S. Fauve, Physical Review E 56, 6104 (1997). 

[20] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin, Physical Review E 72, 016603 

(2005). 

[21] L. Feng, Z. Liuxian, T. Zhenhua, Y. Lingyu, and Y. Jinkyu, Smart Materials and 

Structures 22, 035016 (2013). 

[22] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin, Physical Review E 73, 026610 

(2006). 

[23] X. Ni, P. Rizzo, and C. Daraio, Physical Review E 84, 026601 (2011). 

[24] J. R. Davis and A. S. M. I. H. Committee, Stainless Steels (ASM International, 1994). 

 


