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Hydrodynamic interactions play an important role in biological processes in cellular membranes,
a large separation of length scales often allowing such membranes to be treated as continuous, two-
dimensional (2D) fluids. We study experimentally and theoretically the hydrodynamic interaction
of pairs of inclusions in two-dimensional, fluid smectic liquid crystal films suspended in air. Such
smectic membranes are ideal systems for performing controlled experiments as they are mechanically
stable, of highly uniform structure, and have well-defined, variable thickness, enabling experimental
investigation of the crossover from 2D to 3D hydrodynamics. Our theoretical model generalizes the
Levine/MacKintosh theory of point-force response functions and uses a boundary-element approach
to calculate the mobility matrix for inclusions of finite extent. We describe in detail the theoretical
and computational approach previously outlined in Phys. Rev. Lett. 113, 128304 (2014) and extend
the method to study the mutual mobilities of inclusions with asymmetric shapes. The model predicts
well the observed mutual mobilities of pairs of circular inclusions in films and the self-mobility of a
circular inclusion in the vicinity of a linear boundary.

PACS numbers: 47.57.Lj, 83.80.Xz, 68.15.+e, 83.60.Bc

I. INTRODUCTION

Diffusion, aggregation and the long-range hydrody-
namic interaction of proteins are common in many pro-
cesses in fluid plasma membranes and the membranes of
organelles. These proteins are usually much larger than
the lipids that make up the membrane and the essen-
tial features of their dynamics can be captured by treat-
ing the membrane as a continuous, two-dimensional fluid.
Since the membrane is typically embedded in some bulk
fluid, with different viscosity, the motion of inclusions in
the membrane generates flow not only in the membrane
but in the surrounding fluid. Due to the momentum ex-
change between the membrane and the embedding fluid,
the dynamics of the membrane displays features of both
three-dimensional (3D) and two-dimensional (2D) hydro-
dynamics, behavior that has been dubbed “quasi-2D” hy-
drodynamics [1].

An accurate theoretical description of the hydrody-
namics of membranes is essential for understanding their
diffusive transport properties. Quasi-2D hydrodynamics
is fundamentally different from 3D hydrodynamics, with
the flow characterized by a characteristic length given by
the ratio of the 2D membrane viscosity to the viscosity of
the bulk fluid surrounding the membrane. This distance,
known as the Saffman length [2–4], governs whether en-
ergy is dissipated primarily in the membrane or in the
bulk and determines the spatial decay rate of the flow
field in the membrane due to a perturbation.

As with passive microrheology in 3D, the Brownian
motion of proteins and other inclusions in lipid mem-
branes can serve as a direct probe of such membrane
material properties as the viscosity. The translational
diffusion coefficient D of an inclusion is related to its
mobility µ by the Einstein relation D = µkBT , where
kB is the Boltzmann constant and T the temperature.
Within the linear response regime of the fluid to an ex-
ternal force F (at low Reynolds number), the particle
mobility is related to the particle velocity V by µ = V/F .
Analytical solutions for the mobility of an inclusion in 3D
and 2D fluids have been found only in a limited number
of cases. In 1975, Saffman and Delbrück (SD) proposed
ways to avoid the so-called Stokes paradox, concerning
the infinite mobility of a particle embedded in an un-
bounded 2D fluid in vacuum. SD showed that even in
the case of a membrane in an embedding bulk fluid (such
as air) with a viscosity much smaller than that of the
membrane, the momentum exchange between the mem-
brane and the surrounding fluid leads to a length scale
that cuts off the logarithmically diverging mobility, thus
avoiding the Stokes paradox [2].
Saffman went on to describe in detail the hydrody-

namic problem of a disk of radius a moving with constant
velocity in the plane of a 2D membrane of thickness h and
viscosity η embedded in another viscous fluid of viscosity
η′ [3] . Saffman modeled the membrane as an incompress-
ible fluid with uniform flow throughout the thickness of
the membrane and a 2D viscosity ηh. The presence of the
bulk fluid allows the introduction of a useful length scale,
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the so-called Saffman length, ℓS = ηh/(2η′), a character-
istic hydrodynamic distance within which the membrane
around the inclusion does not exchange momentum with
the embedding fluid [3, 5].
By applying the incompressible Stokes equations to

the bulk fluid and the membrane, and assuming no-slip
boundary conditions, Saffman arrived at a set of inte-
gral equations describing the flow fields in the membrane.
Obtaining an analytical solution for an arbitrary ratio of
disk radius to the Saffman length, a/ℓS, turned out to be
very difficult. Saffman applied a singular perturbation
technique to the particular case of a small inclusion in
a thick membrane, where aη′/(hη) = a/ℓS ≪ 1. In this
limit, the mobility of the inclusion depends only weakly
(logarithmically) on its size:

µ =
1

4πηh

[

ln

(

2ℓS
a

)

− γ

]

, (1)

where γ = 0.58 is the Euler constant. This is in contrast
to an unbounded 3D fluid, where the mobility of a sphere
is inversely proportional to its radius. By solving the
Stokes equations numerically, Heringa, Wiegel, and van
Beckum [6, 7] computed the mobility of cylindrical inclu-
sions of arbitrary size in embedded membranes, obtain-
ing results that are in good agreement with a more gen-
eral, analytical model developed subsequently by Hughes,
Pailthorpe, and White (HPW) [4], who heroically solved
Saffman’s integral equations for arbitrary a/ℓS ratios.
Their full solution for the disk mobility shows a crossover
from the 2D logarithmic behavior of Eq. (1) for small
a/ℓS to a 3D-like dependence µ ∝ 1/a when a/ℓS ≫ 1.
Petrov and Schwille subsequently derived an accurate ap-
proximation to the complicated HPW mobility expres-
sion [8].
Aspects of the SD/HPW predictions for single inclu-

sion have been verified experimentally [9–11]. The de-
pendence of mobility on inclusion size, and its crossover
from three-dimensional to two-dimensional behavior as
inclusion size decreases, have recently been confirmed in
experiments on thin smectic liquid crystal films [12].
There has, however, been comparatively little work on

the hydrodynamic interactions between multiple inclu-
sions in thin fluid films. When there is more than one
inclusion in the membrane, as is typical in biological sys-
tems, their mobilities depend not only on their size and
the drag from the surrounding fluid but also on hydrody-
namic interactions between the inclusions. Hammer and
collaborators [13] calculated the mobilities of two cylin-
ders in a membrane in the limit a ≪ ℓS . In the extreme
case of a pair of inclusions with one inclusion being much
larger than the other, the problem reduces to evaluating
the hydrodynamic interaction of a particle with a sta-
tionary or mobile geometric boundary.
Levine and MacKintosh (LM), in work prompted

by microrheology experiments on quasi-2D viscoelastic
membranes, derived the response tensor ααβ(x−x

′) that
determines the local displacement of the membrane at
position x

′ due to an in-plane, localized force f(x) =

fδ(x) [14]. In the case of a purely viscous membrane,
there is no elastic deformation of the membrane, and its
physical properties can be described by the velocity field
alone, given by

vα(x) = ααβ(x− x
′)fβ(x

′) . (2)

Here a summation is carried out over repeated indexes
and α, β = x, y. In our notation, ααβ corresponds to
−iωααβ in the LM theory. The response function ααβ in
Eq. (2) plays the role of the Oseen tensor in 3D hydro-
dynamics.
When the separation between two membrane inclu-

sions is much greater then their sizes, the inclusions may
be modeled as points on the membrane. In this limit,
the response function ααβ corresponds to the far-field
approximation of hydrodynamic coupling between the in-
clusions, the so-called mutual mobility.
As was shown by LM, the response function may be

split into ‘parallel’ and ‘transverse’ contributions:

ααβ(x) = α‖(|x|)x̂αx̂β + α⊥(|x|)[δαβ − x̂αx̂β ] . (3)

The scalar functions α‖ and α⊥ are given by

α‖(z) =
1

4πηh

[

π

z
H1(z)−

2

z2
(4)

−
π

2
[Y0(z) + Y2(z)]

]

α⊥(z) =
1

4πηh

[

πH0(z)−
π

z
H1(z) (5)

+
2

z2
−

π

2
[Y0(z)− Y2(z)]

]

,

where Hν are Struve functions and Yν are Bessel func-
tions of the second kind [15]; z = |x|/ℓS is the non-
dimensionalized distance between the point of applica-
tion of the force and the point where the membrane ve-
locity response is measured. Both α‖(z) and α⊥(z) di-
verge logarithmically as z → 0, while for large z we have
α‖(z) ∼ 1/z and α⊥(z) ∼ 1/z2.
Here, α‖ (α⊥) corresponds to the far-field approxima-

tion of the mutual mobility of two inclusions when they
move parallel (perpendicular) to the line connecting their
centers. The expressions for the far-field mutual mobil-
ities in Eqs. (4) and (5) have no dependence on the in-
clusion size a. Oppenheimer and Diamant found an ana-
lytical correction of the order (a/r)2 to the far-field mo-
bilities α‖ and α⊥, where a is the size of the inclusions
and r is the distance between the inclusion centers [1].
They also showed that finite-size effects set in for dis-
tances r ≤ (a2ℓS)

1/3. We have developed an extension of
the LM model and a computational approach for mod-
eling the hydrodynamic interactions of pairs of oil drops
and thickness “islands” in smectic liquid crystal films and
have tested our predictions against experimental mea-
surements [16]. Noruzifar et al. [17] have also recently
described a computational regularized Stokeslets method
that confirms the analytical results of Oppenheimer and
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Diamant, is applicable to a broad range of parameters,
and can be generalized to many-body systems.

Many biological inclusions such as proteins and lipid
rafts are not perfectly circular and their mobilities are
expected to deviate from the idealized predictions of
Saffman and HPW. The approaches developed in [16] and
[17] both allow a straightforward extension to computing
the hydrodynamic interaction of inclusions of arbitrary
shape.

In biomembranes, it is difficult to measure viscosities
and to vary the length scales a and ℓS over a wide range.
Smectic liquid crystals, on the other hand, in which rod-
like molecules are arranged in stacks of liquid layers, are
ideal experimental systems for studying hydrodynamics
in 2D [18–20]. Ultra-thin, freely suspended smectic films
have a highly uniform structure and well-defined thick-
ness. Compared with soap films, smectic films are much
more stable against being distorted or ruptured, and less
sensitive to changes in temperature and humidity. Smec-
tic films can be made as thin as a few molecular layers
and are stable for hours and days [12, 16, 21]. Further-
more, in many fluid smectics, all of the hydrodynamically
relevant physical parameters have been measured.

In this paper, we describe in detail the theoretical and
computational approach for calculating the mutual mo-
bilities of inclusions in thin fluid membranes previously
outlined in [16] and compare the results with experiment.
We also report calculations of the mobility of a circular
inclusion in the vicinity of a linear boundary, motivated
by our recent experiments. A multipole expansion ap-
proach allows us to understand a peculiar characteristic
of the observed radial mutual mobility of two identical,
circular inclusions. We also discuss the hydrodynamic
interactions of two elliptical inclusions, and the effects of
asymmetrical inclusion shapes on their mutual mobility.

This article is organized as follows: In Sec. II we dis-
cuss the effect of a nearby boundary on the mobility of
a circular inclusion embedded in a quasi-2D membrane,
considering a range of inclusion sizes, Saffman lengths,
and separations between the inclusion and the boundary,
and compare the theoretical predictions with experiment.
In Sec. III we consider the hydrodynamic interactions of
two identical, circular islands. In Sec. IV we develop a
multipole expansion of the fluid velocity field around clus-
ters of small, disk-like inclusions that move as rigid bod-
ies within a quasi-2D membrane, and demonstrate the
dominant role of the leading order term in the hydrody-
namic interactions of such clusters that are geometrically
symmetric. Finally, in Sec. V we discuss our results and
suggest further avenues of investigation.

II. MOBILITY OF AN INCLUSION NEAR A

STRAIGHT BOUNDARY

In a three-dimensional fluid, the mobility of a sphere
of radius a with its center a distance x from a wall such

that x ≫ a is given by [22–24]

µ⊥

µ0
≈ 1−

9

8

(a

x

)

+
1

2

(a

x

)3

+O

(

(a

x

)4
)

, (6a)

µ‖

µ0
≈ 1−

9

16

(a

x

)

+O

(

(a

x

)3
)

, (6b)

where µ⊥ and µ‖ are the mobilities of the sphere for
motion perpendicular and parallel to the wall and µ0 is
the mobility of the sphere in unbounded fluid.
We have investigated the analogous problem of a disk-

like inclusion diffusing in a quasi-2D membrane in the
vicinity of a linear boundary. In our experiments, we ob-
served the Brownian motion of smectic islands embedded
in square, freely suspended smectic films in the proxim-
ity of a meniscus. These islands are disk-shaped, thicker
regions of the film bounded by edge dislocations, as in-
dicated in Fig. 1. The islands were between a few and
several hundred µm in radius a. The liquid crystal used
in our experiments is 8CB (4′-n-octyl-4′-cyanobiphenyl,
Sigma-Aldrich), a room-temperature smectic A material.
The density and viscosity of 8CB are ρ ≈ 0.96 g/cm3 [25]
and η = 0.052 Pa · s [26], respectively, while the viscos-
ity of ambient air is η′ = 1.827× 10−5 Pa · s [27]. Each
smectic layer has a thickness of 3.17 nm [28].
Freely suspended films were created by spreading a

small amount of the liquid crystal across a 5mm× 5mm
hole in a glass cover slip. The films were typically
from two to six molecular layers thick, corresponding to
Saffman lengths between 9 and 27µm, and were observed
using reflected light microscopy. Immediately after a film
is drawn, there are typically many islands present, with a
range of diameters. The film may then be gently sheared
using an air jet to break larger islands into smaller ones
for study. The films are carefully leveled to minimize
gravitational drift, allowing us to record the motion of
the islands, with high spatial resolution at a typical video
frame rate of 24 fps. In these experiments, isolated is-
lands far from other inclusions but in the proximity of the
meniscus along one of the film boundaries were selected
for study.

a)

b)

FIG. 1. Color online. Schematic illustration of a) a smectic A
film suspended across an aperture and b) the cross-section of
a circular island, eight molecular layers thick, embedded in a
three-layer film.

The motion of inclusions in smectic films is thermally



4

driven and occurs in the low Reynolds number regime
(Re = ρva/η ≪ 1 and Re′ = ρ′va/η′ ≪ 1). In this limit,
we have creeping flow, where viscous forces dominate,
inertial effects are negligible, and the Stokes equations
apply.
Suppose a mobile inclusion is subjected to an external

force F applied in the plane of the membrane. The lin-
earity of the Stokes equations implies that the resultant
velocity of the inclusion is a linear function of the force,

V = MF, (7)

where M, the mobility tensor, depends on the shape of
the inclusion and the boundary conditions. For simplicity
we model the meniscus as an infinite linear boundary that
lies in the plane of the membrane.
When the distance between the inclusion and the

boundary is much greater than the inclusion radius, it
is reasonable to apply a simplified method of reflections,
similar to the 3D version described by Happel and Bren-
ner [29]. We approximate the flow field due to a moving
circular inclusion by the flow field due to a single force
applied to the membrane at the inclusion center. We in-
troduce a continuous distribution of ‘image’ forces along
the boundary and impose a no-slip boundary condition
at the stationary boundary. A coordinate system is cho-
sen with an origin in the center of the inclusion, and the
linear boundary is located at x = d (see Fig. 2). Let us
suppose that the inclusion moves with velocity V = V x̂
perpendicular to the boundary. In the zeroth approxi-
mation (in the absence of a boundary), the viscous drag
force on the inclusion is given by the known HPW rela-
tion F

(0) = −V x̂/µ0(a), where µ0(a) is the mobility of a
disk of radius a in unbounded membrane [4].
The magnitudes and orientations of the image forces

at the boundary must be adjusted to ‘cancel’ the flow
field due to the moving island and preserve the no-slip
boundary condition at the boundary. The image forces,
in turn, generate a ‘reflected’ flow field in the membrane.
We denote the ‘reflected’ fluid velocity at the island cen-

ter as v
(1)
r . Due to the linearity of the Stokes equations

and the y → −y symmetry, this fluid velocity is propor-

tional to F(0), and we may write v
(1)
r ≡ −γ(d)F(0), where

γ(d) is an initially unknown coefficient of proportionality
that depends on the distance d to the boundary. The
first correction to the viscous drag force on the inclusion
is given by

F
(1) = −

v
(1)
r

µ0(a)
=

γ(d)F(0)

µ0(a)
= −

γ(d)

(µ0(a))2
V x̂. (8)

Therefore, the inclusion exerts an additional force −F
(1)

on the membrane. By assumption, this force is local-
ized at the inclusion center. In the next order of the
method of reflections, the velocity field ‘reflected’ from

the boundary gives the fluid velocity v
(2)
r = −γ(d)F(1)

at the inclusion center, and the next correction to the
drag force on the inclusion becomes

F
(2) = −

v
(2)
r

µ0(a)
=

γ(d)F(1)

µ0(a)
= −

1

µ0(a)

[

γ(d)

(µ0(a)

]2

V x̂.

(9)
Continuing this process we find that the total viscous
drag force on the inclusion is given by

F = F
(0) + F

(1) + F
(2) + ...

= −
V

µ0(a)

(

1 +
γ(d)

µ0(a)
+

[

γ(d)

µ0(a)

]2

+ ...

)

x̂

= −
V

µ0(a)(1 − γ(d)/µ0(a))
x̂ . (10)

We can define the ‘renormalized’ mobility of an inclusion
due to the presence of a boundary as

µ⊥(a, d) = µ0(a)
(

1− γ(d)/µ0(a)
)

. (11)

A similar equation may be derived for µ‖(a, d), the mobil-
ity of an inclusion moving parallel to the boundary. We
describe the computation of the reflected velocity field
and the parameter γ(d) in Eq. (11) in more detail in Ap-
pendix A.
The approximate method of reflections that we have

just outlined is relatively simple but it does not allow us
to assess the accuracy of its predictions. To test the range
of applicability of the far-field approximation, we devel-
oped a more rigorous approach to computing the renor-
malized mobilities µ⊥ and µ‖ that we call the boundary-
element method (BEM). In this expanded computational
approach, we assume that the velocity field due to an in-
clusion can be modeled as the velocity field due to a con-
tinuous distribution of (initially unknown) force densities
applied to the membrane along the inclusion circumfer-
ence and the stationary boundary (see Fig. 2). The lin-
earity of the Stokes equations dictates that the net flow
field is a superposition of the flow fields generated by all
of the forces applied to the membrane. The force den-
sities are determined by the boundary conditions on the
fluid velocity. This is an extension of the technique in-
troduced by LM to compute the mobility of an infinitesi-
mally thin, cylindrical inclusion embedded in a quasi-2D
membrane [30].
The flow field at point x′ in the membrane due to the

motion of the inclusion is found by superposing the effects
of the localized forces distributed both on the inclusion
circumference and along the film boundary:

vα(x′) =

∫ 2π

0

fβ(φ)ααβ(x
′ − x(φ)) dφ

+

∫ ∞

−∞

gβ(y)ααβ(x
′ − x(y)) dy , (12)

where α, β = x, y, x(φ) = a cosφ x̂ + a sinφ ŷ and
x(y) = dx̂+yŷ describe respectively the loci of the inclu-
sion and film boundaries, fβ(φ) and gβ(y) are the (ini-
tially unknown) strengths of the point forces on these
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μ

μ⊥

FIG. 2. Cartoon of a circular smectic island in the vicinity of
a linear boundary (top view). In the far-field limit, the flow
field due to the island may be approximated as the flow field
due to a single force applied at the center of the island. In
the BEM computations, we consider continuous distributions
of forces along both the inclusion’s circumference and along
the linear boundary.

boundaries, and ααβ is the LM response function shown
in Eq. (3).

The smectic islands observed in our experiments do
have fluid interiors. However, the permeative flow across
the island boundaries and circulatory flow inside the is-
lands induced by their Brownian motion through the
background film are expected to be strongly suppressed,
so that they behave hydrodynamically like solid discs.
The permeative flow in smectics well below the nematic–
smectic A phase transition is very slow [31, 32]. Indeed,
on the time scale of our experiments, the island radii
(typically tens to hundreds of µm) are essentially con-
stant, changing only very slowly with time. Since the
islands have more smectic layers than the surrounding
film, they are intrinsically much more viscous, and the
flow within the islands can be neglected. We, therefore,
assume that the islands move as rigid bodies and that
every point of an island moves with the same velocity V.

Strictly speaking, a rigid inclusion should be modeled
by a continuous distribution of forces over the entire in-
clusion area, not only by those on its rim. However, even
when the forces are applied only at the inclusion’s circum-
ference, the computed fluid velocity field inside the rigid
perimeter is found to be essentially uniform (see Fig. 3),
and the calculated mobilities of isolated rigid rings with
experimentally relevant radii (0.1ℓS < a < 10ℓS) agree
within 3% with the results of HPW for a rigid disk [4].
We therefore conclude that modeling the inclusion using
only the forces on its circumference is sufficiently accu-
rate for our purposes. Tiling the entire area of an in-
clusion with regularized Stokeslets may be necessary for
modeling larger rigid inclusions [17, 33] but is computa-
tionally much more expensive.

The force densities fβ(φ), gβ(y) in Eq. (12) are found
by demanding the no-slip conditions vα = V α, vα = 0 on
the circular and linear boundaries, respectively, and then
numerically solving Eq. (12). The numerical procedure
is outlined in Appendix A.

The viscous drag force on the inclusion is found by inte-
grating the localized forces fβ(φ) at the inclusion bound-

0.1

10-2 

10-1 

1 

101.0

y

x

x

y

10-4 

10-2 

1 

102 103 10 

(a)

(b)

FIG. 3. Calculated x-component of the fluid velocity field vx
along the x-axis (dashed line) and along the y-axis (solid line)
due to a single circular inclusion modeled as a rigid ring of
radius (a) a = 0.1ℓS and (b) a = 10ℓS moving with velocity V

along the x-axis in a 2D unbounded membrane. Note that the
computed velocity field inside the rigid ring is nearly uniform,
validating our simplified modeling of a disk-like inclusion us-
ing point forces only on the inclusion boundary. For distances
r < ℓS from the center of the ring and comparable to the size
of the inclusion, vx falls off (a) logarithmically along both x
and y in the case of small inclusions, (b) as 1/r along x and
as 1/r2 along y when the inclusions are large.

ary:

Fα =

∫ 2π

0

fα(φ)dφ. (13)

When the coupling between the translational and ro-
tational motion of an island can be neglected (see Ap-
pendix A), it is sufficient to consider two special cases,
with the inclusion moving either parallel or perpendicu-
lar to the boundary. In the case of parallel motion, the
drag force has by symmetry only a y-component, and
the velocity of the inclusion is directly proportional to
the force:

V = µ‖F, (14)

where µ‖ denotes the inclusion mobility for motion par-
allel to boundary. In our numerical computations, we set
the island velocity V to a unit vector along ŷ. From

Eq. (13), the mobility is then µ‖ = [
∫ 2π

0
fy(φ)dφ]−1.

In the case of an inclusion moving perpendicular to the
boundary, on the other hand, we have

V = µ⊥F, (15)
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where µ⊥ is the inclusion mobility for perpendicular mo-
tion. With V a unit vector along x̂, we have µ⊥ =

[
∫ 2π

0 fx(φ)dφ]−1.

(a)

1 93 5 7

0.4
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1.0

0.2

(b)

1 93 5 7
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0.6

0.8

1.0

0

far-field

far-field

FIG. 4. Color online. Calculated mobility of a circular in-
clusion (scaled by the HPW mobility µ0) moving a) parallel
and b) perpendicular to a linear film boundary as a function
of the distance d from the inclusion center to the boundary
(scaled by the inclusion radius a). The colored (gray) curves
are the results of BEM computations, with the black dashed
curves showing the far-field approximations.

The predictions of the LM far-field approximation and
of the BEM calculations are compared in Fig. 4, where we
plot the translational mobilities µ‖ and µ⊥ scaled by the
HPW mobility µ0 of a disk of radius a in an unbounded
membrane vs. distance d to the boundary. Surprisingly,
the far-field approximation reproduces the BEM compu-
tations down to distances to the boundary as small as two
or three inclusion radii. For island radii a < ℓS , where
the energy dissipation occurs primarily in the membrane
rather than in the bulk fluid, we observe a slower ap-
proach of µ‖ and µ⊥ to the HPW mobility µ0 with in-
creasing distance d from the boundary than in the case
of inclusions with a > ℓS. This is consistent with the
slower (logarithmic) decay of the flow field characteristic
of 2D hydrodynamics.

In the next section, we compare these predictions with
experimental measurements.

Comparison with experiment

We tracked the motion of inclusions in 8CB films at
different distances from the film boundary using digital
video microscopy, using Canny’s method for edge detec-
tion [34] and Taubin’s method [35] to find the positions
and sizes of inclusions. We analytically removed the ef-
fect of residual drift [12] and computed the mean square
displacements 〈∆r

2(t)〉, where ∆r is the displacement of
an island in time interval t. The inclusion mobility µ was
then determined using the Einstein relation:

〈∆r
2(t)〉 = 4µkBT t. (16)

The experimentally measured mobilities µ‖ and µ⊥

(scaled by 4πηh) are shown, together with the theoret-
ical predictions, in Fig. 5. We observe reasonably good
correspondence between the predictions of our model and
the experimental measurements, supporting the assump-
tion that the long-range hydrodynamic interaction be-
tween the inclusion and the boundary dominates all other
possible interactions, confirming that a no-slip boundary
condition at the meniscus is justified [36].

Experiment Theory

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14

FIG. 5. Color online. Measured and predicted translational
mobilities µ‖ and µ⊥ of islands of different sizes as a function
of the dimensionless distance d/ℓS to a linear boundary.

III. THE MUTUAL MOBILITY OF TWO

CIRCULAR INCLUSIONS

In this section we briefly review our recent experiments
on Brownian motion of pairs of circular inclusions embed-
ded in smectic A freely suspended films [16] and provide
an expanded description of our theoretical and computa-
tional method for studying the hydrodynamic interaction
of the inclusions.
In the experiments we recorded the Brownian motion

of isolated pairs of smectic islands (with diameters of tens
and hundreds of µm) and smaller silicone oil droplets
(with diameters of a few and tens of µm) embedded in
freely suspended films, shown in Fig. 6.
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20 µm

0.61 µm

a1
a2

67 µm

6.3 nm

s

F2

F1

(c)

(d)

(b)

(a)

FIG. 6. Color online. Island and silicone oil droplet pairs
in thin 8CB films viewed in reflection. (a) Islands with radii
a1 and a2 and center-to-center separation s subject to the
forces F1 and F2. (b) Schematic cross section of a five-layer
island in a two-layer film (the vertical dimension is greatly
exaggerated for clarity). (c) Silicone oil droplets embedded in
a six-layer film. (d) Cross-section of a typical silicone oil in-
clusion (drawn with expanded vertical scale), measured using
optical interference in monochromatic light [37].

Using the approach discussed in the previous section,
we computed the cross-correlation functions 〈∆r1(t) ·
∆r2(t)δ(r12(0) − s)〉, where ∆rk(t) = rk(t) − rk(0) are
displacements of the k-th inclusion in time interval t and
r12(0) and s are respectively the distances between the
centers of the inclusions at t = 0 and at time t (see
Fig. 6a). The cross-correlation functions contain infor-
mation about long-range hydrodynamic interactions of
the inclusions mediated by the smectic film and can be
expressed in terms of the so-called mobility matrices.
If the inclusions are subjected to external forces F1

and F2, respectively, the linearity of the Stokes equations
dictates that the velocity of each inclusion is a linear
function of all of the forces. For example, the velocity of
inclusion ‘1’ is

V1 = M11F1 +M12F2 , (17)

where M11 is the self-mobility matrix and M12 the mu-
tual mobility matrix.
For a pair of circular inclusions the only non-vanishing

components of the mobility matrices are the diagonal el-
ements M rr

11 , M
θθ
11 , M

rr
12 , and Mθθ

12 , where rr refers to the

radial motion of the inclusions (along the line connecting
their centers), and θθ to tangential motion (perpendicu-
lar to this line). All other terms in the mobility matrices
vanish due to the mirror symmetry about the line con-
necting the inclusion centers. The mutual mobilities can
be extracted directly from the cross-correlation functions
(see Appendix C):

〈∆r1(t) ·∆r2(t)δ(r12(0)− s)〉 =

2kBT (M
rr
12 (s) +Mθθ

12 (s)) t . (18)

Similarly to our treatment of an inclusion in the vicin-
ity of a boundary, we model the flow field in the mem-
brane due to the moving inclusions by the flow field due
to a continuous distribution of forces along the inclu-
sions’ circular boundaries. The flow field at point x

′ in
the membrane is then given by

vα(x′) =
∑

j=1,2

∫ 2π

0

fβ
j (φ)ααβ(x

′ − xj(φ))dφ , (19)

where α, β = x, y; j = 1, 2 label the inclusion, fβ
j (φ) are

the strengths of the point forces, and the points xj(φ)
are along the circumference of the jth inclusion.
We apply the same arguments that we presented in

the previous section, assuming no-slip boundary condi-
tions for both smectic islands and oil drops. Silicone oil
drop inclusions can be considered as solid-like because the
tremendous increase of the areal viscosity in the bound-
ary regions allows the velocity field of the film to pene-
trate only a very short distance into the thicker regions
of these lens-shaped objects. As is the case with islands,
experimental measurements confirm that the diffusion of
oil droplets is also well described by SD-HPW theory,
suggesting that any internal flow within the oil droplets
can safely be ignored [36].

We find the force densities fβ
j (φ) in Eq. (19), with the

no-slip conditions vαj = V α
j on both circular boundaries

and then solve Eq. 19 numerically. These computations
are described in more detail in Appendix B.
The viscous drag on the jth inclusion is given by the

sum of the localized forces fα
j (φ):

Fα
j =

∫ 2π

0

fα
j (φ)dφ, j = 1, 2. (20)

By considering the four special inclusion configurations
shown in Fig. 7, we computed the drag forces and deter-
mined the self- and mutual mobilities M rr

11 , M
θθ
11 , M

rr
12 ,

and Mθθ
12 .

We have also computed the self-mobilities M rr
11 and

Mθθ
11 of an inclusion in the presence of a neighbor.

These are plotted in Fig. 8 as a function of the non-
dimensionalized center-to-center distance s/ℓS between
the neighbors for inclusions of different sizes, scaled by
the corresponding mobility of an isolated inclusion µ0.
Both the translational and rotational self-mobilities are
predicted by the model to be reduced when the inclu-
sion is in close proximity to a neighbor but this effect is
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relatively short-ranged and weak and has proven to be
difficult to measure in our experiments.

The mutual mobilities M rr
12 and Mθθ

12 computed using
the BEM model are shown in Fig. 9. In the following
section, we compare these predictions with experiment.

(a)

(c)

(b)

(d)

FIG. 7. Pairs of membrane inclusions moving in response
to applied forces. The arrows represent simultaneously the
forces applied to the inclusions (which all have the same mag-
nitude) and the resultant velocities of the inclusion centers.
The fluid at infinity is assumed to be at rest. Determination
of the viscous drag force found by applying Eq. 17 to each case
yields the following mobility combinations: (a) Mrr

11 + Mrr
12 ,

(b) Mrr
11 −Mrr

12 , (c) Mθθ
11 + Mθθ

12 , (d) Mθθ
11 −Mθθ

12 .

(a)

3 42 5

1

0.96

0.92

0.88

0.84

(b)

3 42 5

1

0.96

0.92

0.88

FIG. 8. Color online. Calculated self-mobilities scaled by
the mobility of an isolated inclusion in an unbounded domain
for inclusions moving a) along the line connecting their cen-
ters b) perpendicular to the line connecting their centers as a
function of the non-dimensionalized center-to-center distance
s/ℓS between the inclusions for various inclusion radii scaled
by the Saffman length.

Comparison with experiment

When the centers of two inclusions in the film are sepa-
rated by distances much larger than the inclusion radius,
we observe, as expected, that their mutual mobilitiesM rr

12

andMθθ
12 follow the far-field solutions given by the LM re-

sponse functions α‖ and α⊥, and the self-mobilities M11,
M22 follow the HPW predictions for isolated inclusions.
These experimental results are consistent with the obser-
vations of Prasad et al. [38], who studied the correlated
motion of colloidal particles diffusing along an air-water
interface. In their investigation of the crossover of the
hydrodynamics from 2D, interface-dominated behavior
at high surface viscosities to bulk fluid dependent behav-
ior at lower surface viscosities, the authors treated the
particles explicitly as points.

We might expect this far-field approximation to break
down when the inclusions are close together, a situa-
tion that is common, for example, in cellular membranes.
However, in the 2D limit, when the inclusion pairs have
small radii a < ℓS , and the energy is primarily dissi-
pated in the membrane [39], our experiments with small
oil drops in 8CB films indicate that the mutual mobilities
do not in fact depend on the inclusion size. Remarkably,
even when the separation between the drops is compara-
ble to or smaller than the Saffman length, the mutual mo-
bilities M rr

12 and Mθθ
12 in this regime closely approximate

the ‘parallel’ α‖ and ‘perpendicular’ α⊥ components of
the LM response function tensor ααβ [16]. This result
can be understood qualitatively by considering the flow
induced by the motion of a single, isolated inclusion of
small radius a/ℓS < 1 (see Fig. 3a). For small inclusions,
the fore-aft vector field and the flow beside the inclusion
are seen to fall off logarithmically in the vicinity of the
inclusion, implying that a finite-sized second inclusion
experiences the same mean flow as a point at the center
of that inclusion when the two inclusions move radially
or tangentially.

It is above the crossover from 2D to 3D hydrodynam-
ics, with larger islands in the regime a > ℓS, when the
energy dissipation primarily occurs in the air surround-
ing the smectic film, that experiments performed with
larger smectic islands show deviations of the mutual mo-
bilities from the far-field solutions given by the LM re-
sponse functions α‖ and α⊥, as shown in Fig. 9. The
deviation is particularly pronounced for the tangential
mutual mobility Mθθ

12 , with the experimental values de-
parting significantly from the far-field approximation α⊥,
especially at shorter distances and for larger values of
a/ℓS (Fig. 9b). Since the Mθθ

12 is a much weaker (and
harder to measure) quantity than M rr

12 , the experimental
error bars in Fig. 9b are bigger. For larger a/ℓS ratios,
the flow due to the motion of a single, isolated inclu-
sion decays faster (asymptotically as 1/r and 1/r2 in the
fore-aft direction and in the regions beside the inclusion,
respectively) than the flow field due to an inclusion of a
small radius, as seen in (see Fig. 3b). In this case, the
flow that a finite-sized second inclusion experiences can
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no longer be approximated by the mean flow at the cen-
ter of that inclusion but depends both on the radius of
the inclusions and on their proximity.

Experiment Theory

5 15 25 35 45

0.02

0.00

0.04

0.06

(b)

5 15 25 35 45

(a)

0.10

0.05

0.15

0.20 Experiment Theory

FIG. 9. Color online. Measured and calculated mutual mobil-
ities (a) Mrr

12 (radial) and (b) Mθθ
12 (tangential) as a function

of dimensionless separation s/ℓS for smectic islands of various
sizes in the regime a > ℓS [16].

It is interesting to note that the radial mutual mobil-
ity M rr

12 of a pair of circular inclusions of equal radius
(Fig. 9a) is quite accurately described by the response
function α‖ of Levine and MacKintosh for point-like par-
ticles even when the inclusions are close together. When
inclusions have different radii, however, or do not have
circular symmetry (for example, if they are elliptical),
then our calculations show that the radial mutual mo-
bility becomes size-dependent, and can no longer be ap-
proximated by α‖ of Levine and MacKintosh.

IV. MULTIPOLE EXPANSION OF THE FLUID

VELOCITY FIELD

To explore further the effect of inclusion symmetry on
radial mutual mobility, we considered the hydrodynamic
interactions of pairs of clusters, each represented by a
discrete arrangement of small blobs on the surface of the
model membrane. We assume that these clusters move as
rigid bodies with prescribed velocities. The fluid velocity

field due to the motion of such clusters is then modeled
as a linear superposition of the velocity fields due to lo-
calized, point-like forces acting on the membrane at the
blob centers. We avoid the logarithmic divergence of the
response functions α‖(z) and α⊥(z) in Eqs. (4) and (5)
in the limit z → 0 by allowing the forces to be ‘smeared’
over the blobs and evaluating the fluid velocity at their
rims. This approach is similar to that of the Kirkwood
approximation used in [30, 40, 41] and the regularized
Stokeslet method used in [17]. In the following section,
we derive a multipole expansion of the fluid velocity field
due to the motion of the rigid clusters and investigate the
dependence of the leading order term in the expansion on
the number and spatial arrangement of the blobs. Using
this multipole expansion, we show that the contributions
of the higher-order terms to the radial mutual mobility
are small for any symmetric arrangement of the blobs
but that this is not the case for the tangential mutual
mobility. We now outline the calculation of the leading
order term in the expansion.
BEM calculations with no-slip boundary conditions on

both inclusion boundaries, outlined in Appendix D, show
that the dependence of the radial mutual mobility M rr

12 of
a particular class of moving, rigid clusters on the distance
s between the cluster centers quickly converges to the
LM response function α‖(s). The clusters that exhibit
such behavior are collections of discrete points at the
vertices of regular polygons that have 2n-fold rotational
symmetry (such as squares, hexagons, and octagons) and
are oriented so that there is mirror symmetry about the
x− and y− axes.

x

y

s

FIG. 10. Two discrete clusters, each comprising, in this ex-
ample, four small blobs arranged on the vertices of a square
oriented so that there is reflection symmetry in x and y. The
mutual- and self-mobilities are computed by allowing the clus-
ters to move along the x- and y-axes with velocity V , as in
Fig. 7.

The fluid velocity field due to two discrete clusters gen-
erated at an arbitrary position x in the two-dimensional
membrane is given by

vα(x) =

2
∑

i=1

N
∑

j=1

ααβ(x− x
(i)
j )f

(i)
j,β , (21)

where the index i = 1, 2 labels the cluster, j = 1, ..., N

labels the vertices in a cluster, and f
(i)
j,β are the point

forces. We may expand the response tensor ααβ about

the geometrical centers x
(i)
c of the clusters, obtaining
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vα(x) =

2
∑

i=1

N
∑

j=1

ααβ(x − x
(i)
c + x

(i)
c − x

(i)
j )f

(i)
j,β

=

2
∑

i=1

ααβ(x− x
(i)
c )

N
∑

j=1

f
(i)
j,β +

2
∑

i=1

∇γααβ(x− x
(i)
c )

N
∑

j=1

(x(i)
c − x

(i)
j )γf

(i)
j,β + ...(22)

This expansion resembles the multipole expansion com-
monly used in 3D hydrodynamics [42]. The flow field may
be approximated by the leading term in the expansion of
Eq. (22) as

vα(x) ≈

2
∑

i=1

ααβ(x − x
(i)
c )F

(i)
β , (23)

where F
(i)
β =

∑N
j=1 f

(i)
j,β is the β-component of the net

force on the i-th cluster.
Let us assume that each cluster moves as a rigid body

with velocity V in the x-direction. We may choose x in

Eq. (23) to be one of the vertices x
(1)
j of the first cluster.

We then sum over all vertices j:

V =
1

N

2
∑

i=1

N
∑

j=1

αxx(x
(1)
j − x

(i)
c )F (i)

x

= M̃ rr
11F

(1)
x + M̃ rr

12F
(2)
x , (24)

where

M̃ rr
11 =

1

N

N
∑

j=1

αxx(x
(1)
j − x

(1)
c ) (25)

and

M̃ rr
12 =

1

N

N
∑

j=1

αxx(x
(1)
j − x

(2)
c ) (26)

are the approximate expressions for the self- and mu-
tual mobilities within the leading order of the 2D ‘mul-
tipole’ expansion. Similarly, if the clusters move instead
along the y-axis, with velocities V = V ŷ, we find approx-
imately

M̃θθ
11 =

1

N

N
∑

j=1

αyy(x
(1)
j − x

(1)
c ) (27)

M̃θθ
12 =

1

N

N
∑

j=1

αyy(x
(1)
j − x

(2)
c ). (28)

The relative deviation of the radial mutual mobility
computed within the first order of multipole expansion
(Eq. (26)) from the BEM result assuming no-slip con-
ditions on the inclusion boundaries (see Appendix D),

∆M rr
12 = (M rr

12 − M̃ rr
12 )/M

rr
12 , is plotted in Fig. 11a as a

function of the scaled distance s/ℓS between the clus-
ter centers for clusters with different numbers of ver-
tices N . The difference is rather small (less than 5%
for clusters with more than 20 points). However, the
first-order approximation of the tangential mutual mo-
bility (see Eq. (28)) deviates significantly from the BEM
calculations, even when N is large. It is clear that in the
tangential case, the higher order terms in the multipole
expansion cannot be neglected.

22 26 30

N=4

N=8

N=12

N=16

N=20

N=40

N=80

(a)
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20

40

22 26 30

(b)

40

60

80
N=4

N=8

N=12

N=16

N=20

N=40

N=80

60

FIG. 11. Color online. Relative deviation of the approxi-
mate radial and angular mutual mobilities given by the lead-
ing term in the multipole expansion from the extended BEM
calculations. The relative deviations (a) ∆Mrr

12 (b) ∆Mθθ
12

are plotted vs. the dimensionless distance s/ℓS between the
cluster centers. The radii of the small blobs forming the
clusters were set to ε = 0.01ℓS . The vertices of the clus-
ters lie on circles of radius a/ℓS = 10 at angular positions
φj = 2π(j − 1)/N , with j = 1, ..., N , where N is the number
of blobs in each cluster and the angles φj are measured from
the x-axis.

When the inclusion does not have more than two-fold
rotational symmetry, the radial mutual mobility becomes
strongly size-dependent, and can no longer be approxi-
mated by the leading term in the multipole expansion.
By way of example, the radial mutual mobilities of pairs
of elliptical inclusions computed using the BEM method
are plotted as a function of their dimensionless separa-
tion s/ℓS in Fig. 12. The computed M rr

12 also deviates
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from the LM response function α‖ except when a = b,
i.e., when the inclusions are circular, as shown in Fig. 12.
Since we have no measurements of the mobilities of ellip-
tical inclusions, we are unable to compare the theoretical
predictions with experiment.

 

 0  10  20 5  15  25

 0.1

 0.3

 0.5

 0.7

a

b V V

FIG. 12. Color online. Radial mutual mobility of two el-
liptical inclusions with different aspect ratios plotted against
distance s between their centers scaled by the Saffman length.
The black dashed curve is the LM response function α‖, de-
scribing well the case of two circular inclusions of radius ℓS .

V. CONCLUSION

We have probed experimentally and theoretically the
hydrodynamic behavior of a circular inclusion in a thin
fluid membrane in the vicinity of a linear boundary, and
of a pair of inclusions near one another. We have devel-
oped a computational method that generalizes the point
particle approach of Levine and MacKintosh [14] using a
boundary-element technique in order to model inclusions
of finite extent and arbitrary separation.
The agreement between our model predictions and ex-

perimental measurements of the mobilities of inclusions
moving parallel and perpendicular to the film bound-
ary (meniscus) is very good. We observe that the in-
clusion mobility is reduced by the presence of a bound-
ary, as expected, and that the rate at which the mobil-
ity approaches the HPW mobility of a disk in an un-
bounded membrane as the distance from the boundary
increases depends on the ratio of the inclusion radius to
the Saffman length, a/ℓS. This dependence on a/ℓS re-
flects the crossover from 2D hydrodynamics (a/ℓS < 1)
to 3D hydrodynamics (a/ℓS > 1), with, correspondingly,
slower and faster decay rates of the flow fields. Quite
surprisingly, a far-field approximation for the inclusion
mobilities based on a simplified version of the method of
reflections works rather well, even down to distances be-
tween the inclusion and the boundary of as little as two
or three inclusion radii. The far-field approximation can
confidently be used to compute flow fields and mobili-
ties for both moderate and large separations between an

inclusion and the boundary and is much less computa-
tionally expensive than the expanded boundary-element
calculations.
The boundary-element model gives estimates of the

mutual mobilities of two inclusions that are in good
agreement with experiment. We observe that when
a > ℓS , the radial mutual mobility of two identical cir-
cular inclusions is independent of their radius, a conse-
quence of the rotational symmetry of the inclusions. The
leading order multipole expansion gives a good approx-
imation of the velocity field in the membrane in the ra-
dial case. When the inclusions lack circular symmetry,
the model predicts the radial and tangential mutual mo-
bilities to be dependent on both the distance between
inclusions and on their shape. These latter predictions
have not yet been tested experimentally.
The computational scheme described here can be read-

ily extended to study the hydrodynamic interactions of
inclusions of arbitrary shape and number, both mobile
and immobile.
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Appendix A: Island Near a Boundary

1. Far-field approximation

We assume a coordinate system with the origin in the
center of the inclusion and the linear boundary at x = d.
To apply the simplified method of reflections, we approx-
imate the flow field due to the moving inclusion by the
flow field due to a single force F applied to the mem-
brane at the inclusion center. The fluid velocity due to
this force at the linear boundary is determined according
to Eq. (2) as

vαF (y) = F βααβ(|dx̂+ yŷ|). (A1)

Since the linear boundary is stationary, a no-slip bound-
ary condition requires the fluid velocity at the boundary
to vanish. To ‘cancel’ the fluid field due to the inclu-
sion, Eq. (A1), we introduce a continuous distribution of
‘image’ forces gβ(y) along the boundary. The force dis-
tribution gβ(y) is determined from the integral equation:

− vαF (y) =

∫ ∞

−∞

dy′ gβ(y′)ααβ(|y
′ − y|). (A2)

We solved equations (A2) numerically by discretizing the
integrand, truncating along the linear boundary the lim-
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its of integration,
∫∞

−∞
→
∫ L

−L
, and replacing the integral

by a sum. We then obtain

− vαF (yi) = ∆y

Ny
∑

j=1
i6=j

gβ(yj)ααβ(|yj − yi|) + J α(yi), (A3)

where Ny is the number of grid points, ∆y = 2L/Ny is
the grid spacing along the linear boundary, and J α(φi)
denotes the diagonal term (i = j) in the sum. We typ-
ically choose the truncation parameter L to be between
10d and 20d and the number of grid points Ny between
300 and 500.
Special treatment was applied to the diagonal i = j

element J α(yi) in the sum due to the logarithmic di-
vergence of the functions α‖(z) and α⊥(z) for z → 0
(see Eqs. (3)-(5)): we expanded the functions α‖(z) and
α⊥(z) about z = 0 and performed integrations analyti-
cally over a small interval in the vicinity of z = 0.
To calculate the terms J α(yi) in Eq. (A3), we inte-

grated over (−∆y/2,∆y/2) near z = 0:

J y(yi) = gy(yi)

∫ ∆y/2

−∆y/2

α‖

(∣

∣

∣

z

ℓS

∣

∣

∣

)

dz

=
2gy(yi)

4πηh
lim
ε→0

∫ ∆y/2

ε

[

1

2
− γ +

2z

3ℓS
+ log

2ℓS
z

]

dz

=
gy(yi)

4πηh
∆y

[

3

2
+

∆y

6ℓS
− γ + log

(

4ℓS
∆y

)]

. (A4)

Here γ is the Euler constant. Similarly,

J x(yi) = gx(yi)

∫ ∆y/2

−∆y/2

α⊥

(∣

∣

∣

z

ℓS

∣

∣

∣

)

dz

=
gx(yi)

4πηh
∆y

[

1

2
+

∆y

3ℓS
−

γ

6
+ log

(

4ℓS
∆y

)]

. (A5)

We solved the linear algebraic equations (A3) in MatLab.
The ‘reflected’ velocity field at the inclusion center due

to the forces gβ(y) on the boundary is calculated as

vαr (0) = ∆y

Ny
∑

j=1

gβ(yj)ααβ(|dx̂ + yj ŷ|) (A6)

For an island moving perpendicular (parallel) to the
boundary we set F = 1 · x̂ (F = 1 · ŷ) in Eq. (A1). There-
fore, the parameter γ(d) in Eq. (11) is equal to vαr (0)
in Eq. (A6) for motion perpendicular (parallel) to the
boundary.

2. Boundary-Element Method

Let us assume that an island moves with translational
velocity V and rotates with angular velocity Ω about
its geometric center. Therefore, each point on the island
circumference has the total velocity

v(φ) = V +Ω× r(φ), (A7)

with r(φ) = a cosφx̂+ a sinφŷ.
As follows from Eq. (12) and the no-slip boundary con-

ditions, the fluid velocity at an azimuth φ on the island
circumference is given by

vα(φ) =

∫ 2π

0

dφ′ fβ(φ′)ααβ(|χ(φ, φ
′)|)

+

∫ ∞

−∞

dy′ gβ(y′)ααβ(|ξ(φ, y
′)|), (A8)

where vα(φ) is given by Eq. (A7), χ(φ, φ′) = a(cosφ −
cosφ′)x̂ + a(sinφ − sinφ′)ŷ, ξ(φ, y′) = (a cosφ − d)x̂ +
(a sinφ − y′)ŷ. Similarly, the fluid velocity at the linear
boundary is equal to zero and is related to the localized
forces fβ(φ) and gβ(y′) via

vα(y) = 0 =

∫ 2π

0

dφ′ fβ(φ′)ααβ(|ζ(φ
′, y)|)

+

∫ ∞

−∞

dy′ gβ(y′)ααβ(|η(y, y
′)|), (A9)

where ζ(φ′, y) = (a cosφ′−d)x̂+(a sinφ′−y)ŷ, η(y, y′) =
(y′ − y)ŷ.
We solved Eqs. (A8) and (A9) for fβ(φ′) and gβ(y′)

numerically by replacing the integrals by sums. Thus,
for Eq. (A8) we obtain:

vα(φi) = ∆φ

Nφ
∑

j=1
i6=j

fβ(φ′
j)ααβ(|χ(φi, φ

′
j)|)

+ Iα(φi)

+ ∆y

Ny
∑

j=1

gβ(yj)ααβ(|ξ(φi, yj)|) . (A10)

Here ∆φ = 2π/Nφ and ∆y = 2L/Ny are the grid spacings
along the circumference and on the linear boundary re-
spectively, and Iα(φi) denotes the diagonal term (i = j)
in the first sum. As in the far-field computations, we
typically choose the truncation parameter L to be be-
tween 10d and 20d and the number of grid points Nφ, Ny

between 300 and 500.
A similar discretization was performed for Eq. (A9):

0 = ∆φ

Nφ
∑

j=1

fβ(φj)ααβ(|ζ(yi, φj)|)

+ ∆y

Ny
∑

j=1
i6=j

gβ(yj)ααβ(|η(yi, yj)|)

+ J α(yi), (A11)

where J α(yi) stands for the diagonal term (i = j) in the
second sum.
To calculate the term Iα(φi) in Eq. (A10), we inte-

grated over a small arc length (−a∆φ/2, a∆φ/2) near
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z = 0, where a is the radius of the inclusion:

Ix(φi) = fx(φi)

∫ a∆φ/2

−a∆φ/2

α‖

(∣

∣

∣

z

ℓS

∣

∣

∣

) dz

a

=
2fx(φi)

4πηh
lim
ε→0

∫ a∆φ/2

ε

[

1

2
− γ +

2z

3ℓS
+ log

2ℓS
z

]

dz

a

=
fx(φi)

4πηh
∆φ

[

3

2
+

a∆φ

6ℓS
− γ + log

(

4ℓS
a∆φ

)]

. (A12)

Similarly,

Iy(φi) = fy(φi)

∫ a∆φ/2

−a∆φ/2

α⊥

(∣

∣

∣

z

ℓS

∣

∣

∣

)dz

a

=
2fy(φi)

4πηh
lim
ε→0

∫ a∆φ/2

ε

[

−
1

2
− γ +

4z

3ℓS
+ log

2ℓS
z

]

dz

a

=
fy(φi)

4πηh
∆φ

[

1

2
+

a∆φ

3ℓS
−

γ

6
+ log

(

4ℓS
a∆φ

)]

. (A13)

The terms J α(yi) in Eq. (A11) were calculated according
to Eqs. (A4) and (A5).
In general, the integral equations (A8) and (A9) were

reduced to a large system of linear algebraic equations
that we solved simultaneously in MatLab.
The translational and rotational motions of the island

are coupled in the proximity of a boundary. The vis-
cous drag force F and torque T on the island are linear
functions of its translational and rotational velocities:

(

F

T

)

= ζ

(

V

Ω

)

, (A14)

where ζ is the resistance matrix. Rewriting this equation
in components we arrive at





F x

F y

T



 =





ζ⊥ 0 0
0 ζ‖ ζ‖,R
0 ζ‖,R ζR









V x

V y

Ω



 , (A15)

The resistance matrix was calculated numerically. For
example, to find the third column of the resistance ma-
trix, we set V x = V y = 0 and Ω 6= 0 and solved the
system of equations (A10) and (A11) for the force densi-
ties fα(φi) and gα(y). The net force and the torque on

the island are calculated as Fα = ∆φ

∑Nφ

i=1 f
α(φi) and

T = a∆φ

∑Nφ

i=1(cosφif
y(φi)− sinφif

x(φi)), respectively.
The force-torque vector determines the third column of
the resistance matrix.
The mobility matrix M is the inverse of the resistance

matrix:

M = ζ−1 =





µ⊥ 0 0
0 µ‖ µ‖,R

0 µ‖,R µR



 (A16)

Our computations predict very weak coupling of trans-
lational and rotational motions for islands of experi-
mentally relevant radii (0.1ℓS < a < 10ℓS), with off-
diagonal coupling terms µ‖,R being at least two orders

of magnitude smaller than the diagonal terms in the mo-
bility matrix. We, therefore, neglected the rotational-
translational coupling and followed the simplified com-
putational scheme described in the main text.

Appendix B: Hydrodynamic Interactions of Two

Circular Inclusions

The origin of the coordinate system is chosen in this
case to be the center of the circular inclusion with index
‘1’. The center of inclusion ‘2’ is at s x̂. The inclusions are
assumed to have equal radii a. From Eq. (19), the fluid
velocity at azimuth φ on the circumference of inclusion
‘1’ is given by

vα1 (φ) = V α
1 =

∫ 2φ

0

dφ′ fβ
1 (φ

′)ααβ(|u(φ, φ
′)|)

+

∫ 2φ

0

dφ′ fβ
2 (φ

′)ααβ(|z(φ, φ
′)|), (B1)

where u(φ, φ′) = a(cosφ − cosφ′)x̂ + a(sinφ − sinφ′)ŷ
and z(φ, φ′) = (a cosφ−s−a cosφ′)x̂+a(sinφ−sinφ′)ŷ.

Similarly, for the fluid velocity at a point on the bound-
ary of the second inclusion we have

vα2 (φ) = V α
2 =

∫ 2φ

0

dφ′ fβ
1 (φ

′)ααβ(|u
′(φ, φ′)|)

+

∫ 2φ

0

dφ′ fβ
2 (φ

′)ααβ(|z
′(φ, φ′)|), (B2)

where u′(φ, φ′) = (a cosφ − s − a cosφ′)x̂ + a(sinφ −
sinφ′)ŷ and z′(φ, φ′) = a(cosφ − cosφ′)x̂ + a(sinφ −
sinφ′)ŷ.

Using the same approach as in Appendix A, we may

solve Eqs. (B1) and (B2) for fβ
1 (φ) and fβ

2 (φ) numerically
by discretizing the integrands and replacing the integrals
by sums. For example, for Eq. (B1) we arrive at

V α
1 (φi) = ∆φ

Nφ
∑

j=0
i6=j

fβ
1 (φ

′
j)ααβ(|u(φi, φ

′
j)|)

+ Iα(φi)

+ ∆φ

Nφ
∑

j=0

fβ
2 (φ

′
j)ααβ(|z(φi, φ

′
j)|), (B3)

where Nφ is the number of grid points on the boundary,
∆φ = 2π/Nφ is the grid spacing, and Iα(φi) denotes the
diagonal element (i = j) in the first sum. The logarith-
mic divergence in these terms is dealt with in the same
manner described in Appendix A.

The integral equations (B1), (B2) were thus reduced
to a large system of linear algebraic equations that we
solved numerically in MatLab.
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Appendix C: Generalized Stokes-Einstein Relations

The cross-correlation function of particle velocities V α
i

is related to their mutual mobilities by the generalized
fluctuation-dissipation theorem [43]:

〈V α
i (0)Ṽ β

j (p)〉 = kBT (M̃ij(p))
αβ . (C1)

Here i, j are particle indices (i, j = 1, 2), α, β = r, θ rep-

resent the radial and angular coordinates, and M
αβ
ij are

the self- and mutual mobilities of the particles. The tilde
(̃ ) denotes the Laplace transform:

F̃ (p) ≡ L(F (t)) =

∫ ∞

0

e−ptF (t)dt . (C2)

In the experiments, we measure the inclusion displace-
ments rather than their velocities and, therefore, turn to
the cross-correlation function for the particle displace-

ments 〈∆rαi (t)∆rβj (t)〉, where ∆r(t) = r(t) − r(0). The
particle displacement correlation function is related to
the velocity correlation function by [44]

〈∆rαi (t)∆rβj (t)〉 = 2

∫ t

0

dt′ 〈V α
i (0)V β

j (t′)〉(t− t′) . (C3)

The Laplace transform of the displacement correlation
function is

L(〈∆rαi (t)∆rβj (t)〉) = 2
〈

V α
i (0)L

(

∫ t

0

dt′ V β
j (t′)(t− t′)

)〉

=
2

p2
〈V α

i (0)Ṽ β
j (p)〉 , (C4)

where we first interchanged the order of ensemble av-
eraging and the Laplace transform and then used the
convolution theorem. From Eqs. (C1) and (C4) we have

L(〈∆rαi (t)∆rβj (t)〉) =
2kBT (M̃ij(p))

αβ

p2
, (C5)

where M̃αβ
ij (p) is the Laplace transform of Mαβ

ij (t − t′).
Assuming that the smectic film is a simple viscous fluid,

we have Mαβ
ij (t− t′) = Mαβ

ij δ(t− t′).

Performing the inverse Laplace transform of Eq. (C5),
we obtain

〈∆rαi (t)∆rβj (t)〉 = 2kBT (Mij)
αβ t (C6)

Since the islands have mirror symmetry about the line
connecting their centers, (Mij)

αβ = 0 for α 6= β. In

particular, the cross-correlation function for two islands
with their centers separated by a distance s is:

〈∆r1(t) ·∆r2(t)δ(r12(0)− s)〉 =

2kBT (M
rr
12 (s) +Mθθ

12 (s)) t . (C7)

Here ∆r1(t) and ∆r2(t) refer to displacements of islands
1 and 2 respectively in time interval t.

Appendix D: Hydrodynamic Interactions of Two

Clusters

In the discrete approximation, each cluster comprises
an even number of small disks (blobs) of radius ε. Each
such cluster moves as a rigid body with prescribed veloc-
ity V. The origin of the coordinate system is placed at
the geometric center of the cluster with index ‘1’. The
center of the second cluster is at position sx̂. The fluid
velocity at the i-th vertex of the cluster with index ‘1’ is
given by

Vα =
N
∑

j=1
i6=j

ααβ(x
(1)
i − x

(1)
j )f

(1)
j,β + ααβ(ε)f

(1)
i,β

+

N
∑

j=1

ααβ(x
(1)
i − x

(2)
j )f

(2)
j,β , (D1)

where α, β = x, y; j = 1, ..., N labels the vertices in the

cluster, x
(i)
j is the position of j-th vertex (blob) in the

i-th cluster, and f
(i)
j,β are the point forces. To avoid the

logarithmic singularity in ααβ(z) as z → 0, the diagonal
term in the first sum is evaluated at the rim of each blob.
A similar expression can be written for the flow field

at the i-th vertex of the cluster with index ‘2’ :

Vα =

N
∑

j=1
i6=j

ααβ(x
(2)
i − x

(2)
j )f

(1)
j,β + ααβ(ε)f

(2)
i,β

+

N
∑

j=1

ααβ(x
(2)
i − x

(1)
j )f

(1)
j,β . (D2)

By imposing no-slip boundary conditions on the ver-
tices of the clusters (i. e. on the blobs), from Eqs. (D1)
and (D2) we arrive at a set of 2N algebraic equations
that we solved in MatLab. In our computations we grad-
ually reduce the magnitude of the parameter ε, the size
of the blobs at the vertices of the clusters, until the so-
lution converges, showing changes smaller than 1% with
further reduction of the parameter ε.
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