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We contrast the dynamics in model unentangled polymer melts of chains of three different stiff-
nesses: flexible, intermediate, and rodlike. Flexible and rodlike chains, which readily solidify into
close-packed crystals (respectively with randomly oriented and nematically aligned chains), display
simple melt dynamics with Arrhenius temperature dependence and a discontinuous change upon so-
lidification. Intermediate-stiffness chains, however, are fragile glass-formers displaying Vogel-Fulcher
dynamical arrest, despite the fact that they also possess a nematic-close-packed crystalline ground
state. To connect this difference in dynamics to the differing microstructure of the melts, we exam-
ine how various measures of structure, including cluster-level metrics recently introduced in studies
of colloidal systems, vary with chain stiffness and temperature. No clear static-structural cause
of the dynamical arrest is found. However, we find that the intermediate-stiffness chains display
qualitatively different dynamical heterogeneity. Specifically, their stringlike motion (cooperative re-
arrangement) is correlated along chain backbones in a way not found for either flexible or rodlike
chains. This activated “crawling” motion is clearly associated with the dynamical arrest observed
in these systems, and illustrates one way in which factors controlling the crystallization vs. glass
formation competition in polymers can depend nonmonotonically on chain stiffness.

PACS numbers: 61.20.Ja,61.20.Lc,61.25.hk,64.70.km

I. INTRODUCTION

Polymers exhibit particularly complicated solidifica-
tion behavior that depends in detail on their rich liquid-
state dynamics. For example, the locally nematic align-
ment of chain molecules which typically precedes crys-
tallization is rate-limited by the slow dynamics of entan-
gled melts [1, 2]; high cooling rates that do not allow this
alignment to occur produce glass-formation. Both the
alignment propensity and single-chain dynamics in turn
depend strongly on the stiffness of the polymer chains
[3, 4]. Understanding the competition between crystal-
lization and glass-formation (CF-GF) in polymers there-
fore requires understanding how both the structure and
dynamics of polymer liquids depend on various molecu-
lar parameters. The goal of this paper is to improve our
understanding of how the microstructure and dynamics
of polymer melts depend on temperature and chain stiff-
ness, with an eye towards improving our understanding
of the solidification process.

We perform molecular dynamics simulations of a re-
cently developed coarse-grained polymer model that has
been used to study the CF-GF competition [5, 6]. For
simplicity, we employ unentangled chains. By tuning a
single model parameter (the chain stiffness kb), we show
that marked differences in solidification behavior coin-
cide with marked differences in melt dynamics. Flexi-
ble chains that form random-walk-close-packed (RWCP)
crystals upon solidification [6], wherein monomers are
close-packed but chains adopt random-walk-like config-
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urations, exhibit a simple melt dynamics that remains
“fast” down to solidification. Stiff chains that form ne-
matic melts and solidify into nematic close-packed (NCP)
crystals [6], wherein monomers are close-packed while
chains adopt rod-like configurations and are aligned ne-
matically, also exhibit such “simple, fast” melt dynam-
ics. In sharp contrast, for an intermediate chain stiff-
ness that produces glass-formation upon cooling [6], sys-
tems exhibit the dynamics of fragile glass-formers, includ-
ing Vogel-Fulcher dynamical arrest, even though their
ground state is NCP.
We attempt to connect these differences to static struc-

ture using various tools recently developed in studies of
colloidal glass- and crystal-formers, that have, however,
not yet been applied to polymeric systems. In contrast
to data for multiple colloidal systems [7–15], cluster-level
measures of static and dynamic structure do not exhibit a
clear signature differentiating our crystallizing and glass-
forming polymer melts. Instead, we find that a principal
apparent signature of the dynamical slowdown produc-
ing glass-formation in intermediate-stiffness systems is
that the stringlike cooperative motion [16, 17] associated
with dynamical heterogeneity becomes coordinated along
chain backbones in a fashion not found for either flexible
or stiff chains.

II. MODEL AND METHODS

A. Molecular dynamics simulations

Our study employs the soft-pearl-necklace polymer
model used in Refs. [5, 6]. It is based on the semiflexi-
ble version of the widely-used Kremer-Grest (KG) bead-
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spring model [18, 19], but uses a different potential for
covalent backbone bonds. All monomers have mass m
and interact via the truncated and shifted Lennard-Jones
potential
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where ǫ is the intermonomer binding energy and rc is the
cutoff radius. Attractive Van der Waals interactions are
included by setting rc = 27/6σ.
Covalent bonds connecting consecutive monomers

along chain backbones are modeled using the harmonic
potential

Uc(ℓ) =
kc
2
(ℓ− a)

2
, (2)

where ℓ is bond length, a is monomer diameter, and kc =
600ǫ/a2 is the bond stiffness. For this value of kc, the
energy barrier for chain crossing is at least 50kBT over
the whole temperature range considered herein.
Angular interactions between three consecutive beads

along chain backbones are modeled by the standard po-
tential [19]

Ub(θ) = kb(1− cos(θ)), (3)

where θi is the angle between consecutive bond vectors
~bi and ~bi+1; here ~bi = ~ri+1 − ~ri and ~ri is the position
of bead i. Note that θ is zero and Ub is minimized for
straight trimers. In this paper we consider three repre-
sentative chain stiffnesses examined in Ref. [6]: flexible
(kb = 0), intermediate (kb = 4ǫ), and stiff (kb = 12.5ǫ).
Another way of contrasting these three systems is to com-
pare how random-walk-like (or rodlike) their constituent
chains are. Table I compares the Kuhn lengths lK and
Kuhn segments per chain Na/lK at temperatures in the
middle of our range of primary interest. Flexible, inter-
mediate, and stiff chains are respectively random-walk-
like (Na/lK ≫ 1), marginal (Na/lK ≃ 1), and rodlike
(Na/lK ≪ 1) for T slightly above solidification.

TABLE I: Values of solidification temperatures Ts (in units
of ǫ/kB), and Kuhn lengths lK as well as Kuhn segments
per chain Na/lK at T = Ts + 0.1 [6]. Values of lK for these
short chains were determined using the identity lK = C∞ℓ0 =
ℓ0(1 + 〈cos(θ)〉)/(1− 〈cos(θ)〉).

.

kb/ǫ Ts lK/a Na/lK

0 0.56 1.34 19

4 0.60 10.8 2.3

12.5 1.40 83.5 0.30

The KG model is a good glass-former [20, 21] largely
because its equilibrium backbone bond length ℓ0 is in-
commensurable with its equilibrium nearest neighbor dis-
tance for nonbonded neighbors, r0. Specifically, it has

ℓ0 = 0.96a and r0 = 21/6a. In contrast, the current
model makes these lengths commensurable (ℓ0 = r0 = a).
We obtain polymer chains with ℓ0 = r0 = a by setting
σ = 2−1/6a. This property gives it a unique, well-defined
ground state for kb > 0: the nematic and close-packed
(NCP) crystal [6].

We study this model using molecular dynamics (MD)
simulations of cooling from high to low T , as well as
constant-temperature melt dynamics. All simulations are
performed using the LAMMPS [22] MD package. All
systems are composed of Nch = 500 chains, each with
N = 25 monomers. These chains are unentangled. Peri-
odic boundaries are applied along all three directions of
cubic simulation cells. Initial states are well-equilibrated
melts at temperatures well above their (kb-dependent) so-
lidification temperatures [6]: kBTinit/ǫ = 1.2 for flexible
and intermediate chains and 1.6 for stiff chains. Temper-
ature and pressure are controlled using a Nosé-Hoover
thermostat and barostat. After equilibration at zero
pressure, states are cooled (also at zero pressure) at rates

(kB/u0)|Ṫ | = 10−6/τLJ , 10−5/τLJ , and 10−4/τLJ , to

T = 0; here τLJ is the Lennard-Jones time unit
√

ma2/ǫ.

In Section III we present results from these cooling
runs, which are the same as those used in Ref. [6], and
also from NPT melt dynamics runs. The latter are pre-
pared by taking snapshots at different temperatures Ti

from the |Ṫ | = 10−6/τ cooling run, and allowing their
structure to relax at zero pressure and T = Ti, produc-
ing equilibrium liquids and metastable supercooled liq-
uids at the various Ti. Then systems are integrated for-
ward in time at fixed (zero) pressure and temperature for
up to a few million τLJ . The damping times of the ther-
mostat and barostat are (τT , τP ) = (τLJ , 10τLJ) during
the cooling runs and (τT , τP ) = (10τLJ , 100τLJ) during
the NPT dynamics runs. In all runs, the MD timestep
used is δt = τLJ/200. In the remainder of the paper, we
present all quantities in Lennard-Jones units.

To characterize T - and kb-dependent structure, we
monitor the packing fraction φ(T ), the fraction of atoms
with close-packed order fcp(T ), and the bond -scale ne-
matic order parameter [23] O(T ) during the cooling runs.
Here φ(T ) = πρ(T )/6 where ρ is monomer number den-
sity, fcp is determined by Characteristic Crystallographic
Element (CCE) analysis [24], and O is given by [23]

O =

√

3

2
Tr(q2), qαβ =

〈

b̂αb̂β −
1

3
δαβ

〉

. (4)

Here, Tr is the trace operator, 〈· · · 〉 denotes averaging

over all normalized bond vectors ~b in each sub-cell fol-
lowed by averaging over all subcells (cubic cells of side

length 2 − 3a) in the simulation [6, 23], and b̂α and b̂β
are Cartesian components of ~b/|~b|. O = 1 corresponds to
perfect alignment of bonds within subcells, while O = 0
corresponds to random bond orientation.

To monitor melt dynamics, we calculate the self-
intermediate scattering function S(qpeak, t) for the NPT
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runs:

S(qpeak, t) =

〈

1

NtotN~q

N~q
∑

j

Ntot
∑

i

e−i~qj ·(~ri(t)−~ri(0))

〉

, (5)

where qpeak is obtained by fitting a Gaussian function to
the first peak of the structure factor S(q), and N~q ∼ Ntot

is the number of wavevectors with magnitude in the range
[qpeak−0.1/a, qpeak+0.1/a]. Following standard practice
[25], the alpha time τα is first defined as the time at which
S(qpeak, t) reaches 1/e.

B. TCC analyses

The Topological Cluster Classification (TCC) [26] is a
method for identifying inhomogeneous local structure in
simulations of condensed matter systems. It groups par-
ticles into N -body “clusters” and then distinguishes dif-
ferently structured clusters by their differing interparticle
topology. Differently structured clusters have different
thermodynamic stabilities, and thus both their formation
propensities and characteristic lifetimes vary differently
with temperature. Recent studies aimed at understand-
ing solidification at a microscopic level and employing
TCC [12–15] have led to much progress in our under-
standing of the CF-GF competition. These studies have
identified key structural features within liquids, corre-
sponding to clusters of ∼ 10 particles, that dramatically
influence solidification. They have identified long-lived,
stable amorphous clusters that strongly promote glass-
formation; clusters that are fivefold symmetric [7] and/or
are subsets of icosahedra [13, 14] are particularly effec-
tive glass-promoters. However, TCC has not yet been
applied to polymeric systems.
Here we employ TCC to track the formation propensi-

ties and lifetimes of various microstructural motifs within
our systems, during both the cooling and NPT dynam-
ics runs. The idea is to connect any differences in the
dynamics to differences in microstructure.
During the cooling runs, we monitor the fractions

fX(T ) of particles belonging to at least one cluster of
type X . These show how microstructure varies with tem-
perature; of particular interest are changes in the ratios
fX/fY of differently structured clusters. We use the same
procedures detailed in Ref. [26], and identify fX for many
different clusters. Figure 1 shows four clusters that are of
particular interest here, denoted (according to the nam-
ing scheme of Doye et. al. [27]) 6A, 6Z, 8A, and 8B. 6A
is the octahedron and is compatible with crystalline close-
packing. 6Z is the other locally favored structure (LFS
[7]) for N = 6, possesses a partial fivefold-symmetric
structure, and is a subset of the icosohedron and there-
fore incompatible with crystallization. The two N = 8
clusters are similarly “amorphous”; 8B is a subset of the
icosohedron, while 8A is not.
During the dynamics runs, we monitor the lifetimes

of the various clusters. A cluster is considered “alive” at

FIG. 1: (Color online) The four clusters of primary interest
here, as identified by TCC. The cluster-identification notation
follows Refs. [13, 14, 26, 27].

time t if the same N atoms formed a cluster at time zero.
We monitor

AX(t) =
1

NX(0)

NX(0)
∑

i=1

GX,i(0, t) (6)

where GX,i(0, t) is unity if the same N atoms make up
the ith X-cluster at times t′ = 0 and t′ = t, and zero oth-
erwise. NX(0) is the number of X-clusters at time t′ = 0,
so A(0) = 1. AX(t) decreases nearly monotonically (to
zero at large t) since monomers diffuse away from each
other in the melt, only rarely returning to their origi-
nal positions. The T -dependent cluster lifetimes τX are
determined by identifying AX(2τX) = 1/e2 [28].

III. RESULTS

A. Evolution of structure during cooling

We now present basic results from the cooling runs, in
order to place the dynamics results that follow in the con-
text of the CF-GF competition for these systems. Figure
2 shows the evolution of several measures of structure
during |Ṫ | = 10−6 cooling runs. These results were also
presented in Ref. [6], but are represented here to illus-
trate these systems’ very different solidification behav-
ior. Panel (a) shows the packing fraction φ(T ). At very
high T , results for all systems fall on a universal curve
corresponding to isotropic fluids. Flexible (kb = 0) and
stiff (kb = 12.5ǫ) chains show sharp, first-order-like tran-
sitions upon crystallization, respectively at Ts ≃ 0.56
and Ts ≃ 1.40 [29]. Stiff chains show another transi-
tion, from isotropic to nematic fluids, at Tni ≃ 1.52; den-
sity increases as chains nematically align. In contrast,
intermediate-stiffness (kb = 4ǫ) chains show character-
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istically glassy behavior wherein only the slope ∂φ/∂T
changes noticeably upon solidification at Ts ≃ 0.60 [30].
These differences are reinforced by examining the

fraction fcp(T ) of monomers possessing locally close-
packed environments.[24] For flexible and stiff chains,
fcp increases sharply to a large value at Ts, as close-
packed crystalline order develops. In contrast, fcp for
intermediate-stiffness chains increases only slightly as T
decreases and remains small even at T = 0; this system
forms an amorphous glassy state [6].

FIG. 2: (Color online) Gross measures of structure across
the liquid-solid transition for flexible (kbend = 0; blue lines),
intermediate-stiffness (kbend = 4ǫ; green lines), and stiff

(kbend = 12.5ǫ; red lines) systems during |Ṫ | = 10−6/τLJ

quenches. Panel (a): packing fraction φ(T ). Panel (b): frac-
tion of close-packed sites[24] fcp(T ). Panel (c): nematic order
parameter O(T ) (Eq. 4).

Another kb-dependent difference is illustrated by ex-
amining the bond-scale nematic order O(T ). For flexible
chains, nearby chain segments remain nearly randomly
oriented; the finite value of O arises partially from the
pearl-necklace structure [3] and partially from the finite
size of the subcells used to calculate O (Section IIA).
Stiff chains show two transitions: the isotropic-nematic
transition at Tni, and crystallization at Ts. For tem-
peratures slightly above solidification, the flexible and
stiff melts possess very different structure; the former

are isotropic while the latter are nematic. Intermediate-
stiffness chains show (as expected [3]) intermediate be-
havior; some local nematic order is present at high T ,
and increases slightly upon cooling as chains uncoil and
locally align. However, this order is only short-ranged,
in sharp contrast to stiff-chain systems where a single
nematic domain spans the simulation cell.[6]
Note that the above results are for the cooling rate

|Ṫ | = 10−6, which is the slowest feasible given current

computational power. Larger |Ṫ | of course produce glass-
formation over a wider range of kb [6]. However, our goal
in this paper is not to fully characterize the model’s so-
lidification kinetics, but rather to examine the character
and causes of the strong and nontrivial kb-dependence of
its melt dynamics. For the remainder of this paper (ex-
cept Section III C), we focus on melts above Ts: specif-
ically, results from the NPT runs described in Section
IIA. We have verified that our melt-equilibration proce-
dure (Section II A) produces results for these runs that

are independent of |Ṫ |.

B. Self-intermediate scattering function

Figure 3 shows the self-intermediate scattering func-
tion S(qpeak, t) for the three stiffnesses at various tem-
peratures above solidification. For flexible- and stiff-
chain melts (panels a,c), the decay of S(qpeak, t) is close
to the single-exponential form typical for simple liquids
[35]. Slight deviations from single-exponential relaxation
likely result either from the underlying Rouse dynamics
of chains [1, 18] or from α and β relaxations occurring on
timescales that are not well-separated [35]. Relaxation
in these systems is fast; τα increases only to ∼ 100τLJ

for temperatures as low as 0.02 above Ts. Note that
there is a sharp, discontinuous change in dynamics upon
crystallization; gray curves in these panels correspond
to systems that crystallized during sample preparation.
Panel (d) shows that above Ts the temperature depen-
dence of relaxation for these systems is almost Arrhenius;
T log10(τα/τhigh), where τhigh is equal to τα at the high-
est tested T , remains less than ∼ 1/3 over the studied
temperature ranges.
Panel (b) shows that intermediate-stiffness chains ex-

hibit markedly different relaxation. S(qpeak, t) is well-fit
by the classical two-step stretched-exponential form

F (q, t) = (1−A)exp(−t/τβ) +Aexp(−(t/τFα )β) (7)

where τβ and τFα are the fast and slow relaxation times, A
is the Debye-Waller factor, and β < 1 is the Kohlrausch-
Williams-Watts (KWW) stretching parameter. We find
that τFα increases by several orders of magnitude as T−Ts

decreases from 0.2 to 0.02, and its temperature depen-
dence is well fit by the Vogel-Fulcher form

τFα (T ) = τ0 exp

(

DT0

T − T0

)

(8)
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FIG. 3: (Color online) Self-intermediate scattering function
S(qmax, t) from NPT runs at various T for (a) kbend = 0,
(b) kbend = 4ǫ, (c) kbend = 12.5ǫ. The black dashed
line in (b) shows a fit to Eq. 7. Panel (d) shows results
for T log

10
(τα/τhigh); horizontal data at zero would indicate

ideal Arrhenius behavior. Values of τhigh/τLJ are respec-
tively 0.72, 0.38, and 0.35 for kb/ǫ = 0, 4, and 12.5 at
kBT/ǫ = .8, 1.1, and 1.5. Vertical dashed lines in panel
(d) show values of Ts.

with D ≃ 16.2 and T0 ≃ 0.43. Panel (d) shows that non-
Arrhenius relaxation sets in at T ≃ 0.8; below this T ,
T log10(τα/τhigh) increases sharply as Ts is approaches,
with τα increasing by ∼ 3.5 orders of magnitude more
than would be expected for Arrhenius temperature de-
pendence. Such strongly non-Arrhenius behavior is typi-
cal of systems possessing dynamics strongly influenced by
their energy landscapes [36]. In short, our intermediate-
stiffness melts exhibit the dynamics of fragile glassform-
ers [36], in remarkable contrast to the simple-liquid dy-
namics exhibited by both flexible and stiff chains.
The stretched-exponential behavior of S(qpeak, t) illus-

trated in Fig. 3(b) suggests that the dynamics of the
kb = 4ǫ system are heterogeneous. We further investi-
gate the potentially differing heterogeneity of dynamics
for the different chain stiffnesses by examining the non-
Gaussian parameter

G(t) =
3
〈

r4(t)
〉

5 〈r2(t)〉2
− 1 (9)

obtained from measurements of diffusion in the melts.
Results for all systems are shown in Figure 4. For all
systems, both the height and the time of the peak in G(t)
increase with decreasing T . As expected [37], the time τG
at which G obtains its maximum value Gmax ≡ G(τG)
is comparable to the τα obtained from S(qpeak, t); this
corresponds to a crossover from subdiffusive to diffusive
behavior at t ≃ τG [17]. For flexible and stiff chains,
τG and Gmax remain small even for T near Ts, as ex-
pected for systems with relatively homogenous dynamics
and Arrhenius relaxation. Intermediate-stiffness chains
show much larger peak values Gmax, much larger τG, and
a much stronger dependence of τG on T , as expected for
systems with heterogeneous dynamics, cooperative mo-
tion, and non-Arrhenius relaxation [17, 20, 38].
It is very interesting that the degree of dynamical het-

erogeneity depends so strongly and nonmonotonically on
chain stiffness. The motion of monomers in intermediate-
stiffness chains may be more heterogeneous than that of
flexible chains because the angular term in the potential
energy favors more cooperative motion. On the other
hand, the more homogeneous motion for stiff chains oc-
curs because they are quasi-rigid-rod-like. Heterogenous
dynamics will be further explored in Section III E.
We wish to find a quantitative, microscopic explana-

tion of why intermediate-stiffness systems (but not their
flexible- or stiff-chain counterparts) display dynamical
slowdown, dynamical heterogeneity, and glass-formation.
Regarding the latter, Ref. [6] advanced the simple hy-
pothesis that intermediate-stiffness chains are too flexi-
ble to form rodlike configurations but too stiff to form
the other bond angles (θ = 60◦, 120◦) found in polymeric
paths through close-packed crystals with high probabil-
ity at T near Ts, and this “frustration” against formation
of compatible angles for either RWCP or NCP packing
impedes crystallization. However, this does not explain
the kb-dependent differences in melt dynamics.
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FIG. 4: (Color online) Non-Gaussian parameter G(t). Panel
(a): flexible chains. Panel (b): intermediate-stiffness chains.
Panel (c): stiff chains. The second peaks at high t for stiff
chains are associated with slow rearrangements of the nematic
domains.

We thus turn to a search for other structural signatures
that explain these differences. Refs. [39, 40] predicted
that packing frustration increases with chain stiffness,
thus increasing structural and dynamical heterogeneity
for stiffer systems, which in turn increases fragility (i.e.
leads to more strongly non-Arrhenius dynamical slow-
down.) One possibility is that this effect is in force for
our systems for intermediate kb, but reverses for kb that
are sufficiently large to form nematic melts. We tested
this idea by comparing the dispersion of monomeric

Voronoi volumes, ∆Vvoro(T )/ 〈Vvoro(T )〉, where 〈Vvoro〉
and ∆Vvoro are respectively the mean and standard de-
viation of the Voronoi volume distributions, for differ-
ent kb. Results for flexible and kb = 4ǫ systems were
nearly identical for T > Ts, indicating that intermediate-
chain-stiffness liquids do not have more frustrated pack-
ing compared than their flexible-chain counterparts. This
differs from the result of Ref. [40], presumably because
that study employed a different angular potential that
is minimized at θ = 60◦ (i.e. employed polymer chains
with a “zigzag” structure that is more likely to produce
packing frustration.)
Another potential source of packing frustration is het-

erogeneous cluster-level structure [7, 13, 14]. In the next
subsection we examine this possibility using TCC analy-
sis.

C. TCC analyses

Next we report TCC results from the |Ṫ | = 10−6 cool-
ing runs. Figure 5 shows the population fractions of
monomers belonging to at least one 6A, 6Z, 8A, or 8B
cluster, as a function of T , for the three chain stiffnesses
considered here. In addition, panel (a) shows data for
monomers. Note that the monomeric Lennard-Jones sys-
tem is an excellent crystal-former [41, 42] which rapidly
crystallizes into an FCC structure (with only a few de-
fects) at its Ts. Comparing panel (a) and panel (b), which
shows data for flexible chains, shows that the main effect
of chains’ topological connectivity (in the absence of an-
gular interactions) is raising Ts; monomer and flexible-
polymer liquids show nearly identical values of fX at the
same T −Ts. (The larger differences between monomeric
and flexible-polymer solids arise from effects such as the
greater prevalence of defects and grain boundaries in the
latter [6].)
For all systems, all population fractions fX increase as

T is decreased towards Ts; this is because systems’ densi-
ties (i.e. φ) are increasing, whereas the cutoff radius rTCC

used to identify neighboring monomers in the TCC anal-
yses [26] is T -independent. Note that all systems show a
significant degree of locally octahedral ordering f6A even
well above Ts; the presence of these subcritical nuclei is
typical for crystallizable systems that develop medium
range crystalline order (MRCO) well above solidification
[7, 10]. Upon solidification, fX for the amorphous clus-
ters (6Z, 8A, and 8B) drops sharply for systems that
crystallize. For these systems, locally crystalline order
as measured by f6A increases sharply at the same time.
The drop in amorphous-cluster population fractions is
less pronounced for flexible polymers than for monomers
because chain connectivity restricts polymers’ ability to
locally rearrange, e.g. rearrangements of 6-atom clusters
from 6Z into 6A order are hindered by chain backbone
uncrossability.
In general, values of fX in flexible and stiff-chain

systems exhibit first-order-like transitions upon crystal-
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FIG. 5: (Color online) Population fractions of particles fX(T )

belonging to the four primary clusters during |Ṫ | = 10−6/τ
quenches. Panel (a) monomers, (b): flexible chains, (c)
intermediate-stiffness chains, (d) stiff chains. Blue, green,
red, and cyan curves respectively indicate data for clusters
x = 6A, x = 6Z, x = 8A, and x = 8B. Note that the values
fX(T ) sum to values greater than unity because any particle
can be a part of multiple clusters (made up by different sets of
other particles). Note also that while panels (a-b) are visually
similar, monomers have a considerably lower Ts ≃ 0.46 than
flexible polymers.

lization. This is expected; what is surprising is that
intermediate-stiffness chains behave so differently. For
kb = 4ǫ systems, all fX continue increasing steadily as T
is decreased past Ts, with no significant change in their
slopes. This is so despite the fact that kb = 4ǫ systems,
like their counterparts for all kb > 0, possess a crys-
talline (NCP) ground state. Perhaps more surprisingly,
it is so despite the fact that flexible and intermediate-
stiffness systems are similarly structured at the level of
single clusters, i.e. their values of fX and ratios fX/fY
are similar at T slightly above Ts.

Panel (d) of Figure 5 shows that stiff-chain melts pos-
sess rather different cluster-level structure than their
flexible-chain counterparts. The nematic ordering of
the melts suppresses fivefold-symmetric order; instead,
hexagonal-like order exists in the planes perpendicular to
the nematic director field. This may be part of the reason
why these systems are good crystal-formers. Nonetheless,
the main conclusion from this panel is that differences
in cluster-level structure between stiff and more-flexible
melts are greater than the corresponding differences be-
tween intermediate-stiffness and flexible melts (panels (b-
c)). Thus it is difficult to attribute the dynamical arrest
in kb = 4ǫ systems to kb-dependent differences in the
cluster population fractions fX or their ratios.

For all kb, for T > Ts, there are large populations
of mutually incommensurable clusters (e.g. 6A and 6Z).
This suggests a large kinetic bottleneck for crystalliza-
tion; the incommensurability must be alleviated for the
melts to crystallize. For flexible and stiff chains it is
alleviated during solidification (i.e. f6Z drops sharply
at Ts), while for intermediate-stiffness chains this does
not happen. In other words, significant packing frustra-
tion exists in the melt state for all kb, and is alleviated
upon solidification for flexible and stiff chains but not for
intermediate-stiffness chains. The question again raised
is: why is this so?

Refs. [13, 14] showed that the dynamical slowdown in
model colloidal glass-formers is associated with percola-
tion of the amorphous clusters; mean lifetimes of these
clusters increase sharply with decreasing T as their popu-
lations increase. One might expect this to also be true in
our systems, but it does not seem to be; examination of
snapshots of various amorphous-ordered clusters shows
no obvious difference in amorphous-cluster percolation
levels between flexible and intermediate-stiffness systems
at similar values of T − Ts [43].

Another potential answer is that the abovementioned
dynamical heterogeneity is closely associated with this
heterogeneous cluster structure. Dynamical heterogene-
ity has recently been extensively linked to transient struc-
tural ordering [8, 9, 15]. Recent simulation studies have
found that regions of locally icosohedral [13, 14] (and in
other systems, crystalline [7, 11]) order are dynamically
slower than their more ordered (more amorphous) coun-
terparts. Figure 6 indicates the lifetimes τX for the four
clusters of primary interest here, calculated by identify-
ing AX(2τX) = 1/e2 in Eq. 6 [28]. The 8-particle clus-
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ters naturally have shorter lifetimes than their 6-particle
counterparts because for our definition of AX(t) (Eq. 6)
there are more ways for larger-N clusters to decay, i.e.
by any of the N particles in the cluster hopping away.
Data for stiff chains are not shown because the values of
τX are very small (<∼ 10τLJ) and their trend with T is
not clear at the high temperatures considered.
For flexible and intermediate-stiffness chains, compar-

ing data for τ6A to data for τ6Z and data for τ8A to
data for τ8B provides a partial explanation of the het-
erogeneous dynamics. Clusters with fivefold or partial-
icosohedral order are more stable in the liquid state and
have larger lifetimes, as expected. The associated slower
structural relaxation of regions with more liquidlike or-
dering helps explain the stretched-exponential relaxation
observed for S(qpeak, t). Values of τ6Z are comparable to
values of τα and exhibit Vogel-Fulcher-like temperature
dependence for kb = 4ǫ chains, whereas for flexible chains
they show a more Arrhenius T -dependence.

FIG. 6: (Color online) Values of τ6A, τ6Z , τ8A and τ8B versus
temperature, in systems of flexible (panel a) and intermediate-
stiffness (panel b) chains.

The larger lifetimes of clusters that are subsets of icoso-
hedra (i.e. τ6Z > τ6A and τ8B > τ8A) are consistent with
previous results [13, 14] indicating such clusters play a
key role in glass-formation for some systems. However,
τ6Z > τ6A also holds for flexible-chain systems that pos-
sess “fast, simple” dynamics. Furthermore, while one
might expect the ratio τ6Z(T )/τ6A(T ) to increase sharply

as Ts is approached in a glassforming system, in fact it
depends only weakly on temperature. The similar behav-
ior in Fig. 6 for glass-forming and crystallizing systems
may cast some doubt on the generality of the conclusions
reached by studies (such as Refs. [13, 14]) that analyzed
glass-formation in terms of the differences in cluster life-
times in systems interacting via a single potential. Future
studies of the CF-GF competition may be enhanced by
comparing results for different interaction potentials, as
was done in Refs. [7, 15].

D. Other measures of structure

Examination of other structural metrics reinforces the
conclusion that the dynamical arrest reported above for
intermediate-stiffness chains is quite difficult to relate to
any static-structural signature. The two-body excess en-
tropy (i.e. the difference between the entropy of a system
and that of an ideal gas at the same temperature and
density),

s2 = −
kBρ

2

∫

4πr2 [g(r) ln g(r)− (g(r) − 1)] dr, (10)

where g(r) is the pair correlation function, was shown
in Ref. [44] to correlate with the temperature and den-
sity dependence of diffusivity in model glass-forming liq-
uids. Lower values of s2 were associated with both
more-ordered liquid structure and lower diffusivity (i.e.
larger relaxation times.) One might therefore expect
intermediate-stiffness liquids to possess lower values of s2
at similar T −Ts. However, examination of s2(T ) for our
systems shows that results for flexible and intermediate-
stiffness chains are essentially identical for T > Ts + .05.
-s2 is very slightly lower for kb = 4ǫ for T very near
Ts, consistent with kb = 0 liquids being slightly more
ordered. However, this difference is small compared to
the difference with stiff-chain systems (which possess a
significantly larger −s2 arising from their additional, ne-
matic order), and is therefore difficult to associate with
the dynamical arrest.
Alternatively, one might imagine that nematic order

in the intermediate-stiffness system is more heteroge-
neous, and that the presence of regions of higher and
lower O produces frustration leading to the dynamical
slowdown. However, this is not the case; the disper-
sion ∆O(T )/ 〈O(T )〉 is nearly identical for flexible and
intermediate-stiffness systems above Ts (similarly to the
abovementioned dispersion of Voronoi volumes.)
Finally, multiple studies have related crystallizability

to the propensity for development of orientational order
[7–11]. The same studies have linked regions of high ori-
entational order (MRCO) to locally slow dynamics. Fol-
lowing these works, we compared results for the Stein-
hardt order parameter [45] Q6(T ) for our systems. Re-
sults were similar to those for the Voronoi-volume and
O distributions: 〈Q6(T )〉 is nearly identical for flexible
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and intermediate-stiffness-chains for T > Ts, eliminat-
ing different bond-orientational order as the cause of the
dynamical arrest.

E. Stringlike cooperative motion

Another way to interrogate dynamical slowdown is to
examine spatial correlations of particle mobility. Many
studies [16, 17, 37, 47] have shown that the sets of parti-
cles which are most mobile over timescales corresponding
to maximally heterogeneous dynamics form noncompact,
“stringlike” structures. Roughly speaking, the strings
are formed when one particle undergoes a hop-like dis-
placement, another particle hops into the space it leaves
behind, and so on. These studies have shown that the
length of the strings increases as Tg is approached from
above, and it is now generally agreed [47] that the strings
and stringlike motion are examples of the “cooperatively
rearranging regions” of Adam and Gibbs [48], and thus
play a key role in controlling the glass transition.
We now examine how chain stiffness affects potentially

stringlike motion in our systems. We follow the proce-
dure used in Ref. [17] to identify “highly mobile” par-
ticles as the 5% of particles undergoing the largest dis-
placements over a time interval τG(T ). In other words,
highly mobile particles are those which move the furthest
over the time interval over which dynamics are maximally
heterogeneous. Figure 7 shows snapshots of these parti-
cles for temperatures just above solidification: T = 0.58
for kb = 0 (panel a), T = 0.62 for kb = 4ǫ (panel b),
and T = 1.42 for kb = 12.5ǫ (panel c). The positional
correlations of mobile particles are obviously stringlike
for the glassforming, intermediate-stiffness system, indi-
cating highly cooperative motion. This cooperativity is
much weaker for flexible- and stiff-chain systems, consis-
tent with their dynamics being relatively homogeneous
(Fig. 4) and their relaxation nearly Arrhenius even for T
close to Ts.
Different colors in Figure 7(a-c) indicate monomers

belonging to different chains. One can clearly see that
the mobile-particle sets for intermediate-stiffness sys-
tems correspond much better to chain backbones than
those for flexible- or stiff-chain systems; nearby mo-
bile particles for the latter are far more likely to be
spread amongst multiple chains. In other words, for
intermediate-stiffness chains (but much less so for flexible
and stiff chains) mobile-particle strings often correspond
to large sections of chains executing coordinated motion
along their backbones. Panel (d) illustrates this quanti-
tatively by plotting P (n, T ), the T -dependent probability
that monomers a chemical distance n away from a mo-
bile monomer on the same chain are also mobile. Ran-
dom mobility of monomers along chains would produce
P (n, T ) = 0.05. Actual mobility correlations are short-
ranged for flexible and stiff [49] chains, but long-ranged
for intermediate-stiffness chains. The correlations of par-
ticle mobility along chains increase with decreasing T for

all systems, but do so most strongly for the glassforming
kb = 4ǫ system.
We believe that this correlated stringlike motion is a

main signature of dynamical arrest in the intermediate-
stiffness systems. Monomer hops can more easily occur in
directions perpendicular to the chain backbone for flexi-
ble chains than for intermediate-stiffness chains, because
the angular energy term Ubend(θ) (Eq. 3) imposes an en-
ergy cost for such hops. On the other hand, few ex-
cursions away from θ = 0 occur for stiff-chain systems,
and mobility distributions are narrower since these chains
undergo quasi-rigid-rod-like motion [49]. The net effect
is that monomer hops for intermediate-stiffness chains
(but not flexible or stiff chains) are apparently an acti-
vated process that induces cooperative motion; when one
monomer hops, it pulls its chemically nearby intrachain
neighbors along with it. This motion resembles “crawl-
ing.” The Vogel-Fulcher relaxation observed for these
systems could potentially arise from an increase in the
activation energy for such hops as ρ increases, together
with the increase in hop correlation along chain back-
bones.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed the coupled chain-
stiffness and temperature dependence of both dynamics
and microstructure in model crystallizable bead-spring
polymer melts [50]. We found nonmonotonic depen-
dence of dynamics upon chain stiffness; both flexible
and stiff chains possess fast, simple Arrhenius dynam-
ics, whereas intermediate-stiffness chains exhibit the dy-
namics of fragile glass-formers. This result complements
previous simulation [3, 4, 40, 52] and theory [39, 53, 54]
studies that examined the dependence of melt dynamics
on chain stiffness. For example, Refs. [39, 40, 54] found
that fragility (i.e. dynamical slowdown) increases with
chain stiffness, while here we showed that this effect is
nonmonotonic and reverses when melts become nemati-
cally ordered (at least for our particular coarse-grained
model).
Our attempts to isolate a microscopic static-structural

cause of the different dynamics yielded no clear “smok-
ing gun.” Indeed, predicting whether a system will be a
glassformer in terms of its interactions and microstruc-
ture is well-known as an extremely difficult problem [13,
15, 36]. However, the different gross dynamics are clearly
linked to qualitatively different heterogenous monomer-
scale dynamics. For intermediate-stiffness chains, string-
like motion [16] corresponds to activated “crawling” that
becomes increasingly correlated along chain backbones
with decreasing T . Such crawling is far less promi-
nent for both flexible and stiff chains. Previous stud-
ies (e.g. Ref. [37]) that found mobile-particle strings to
be largely uncorrelated with chain backbones employed
fully flexible chains; our observation suggests an ad-
ditional mechanism of activated/cooperative rearrange-
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(a)
(b)

(c)

(d)

FIG. 7: (Color online) Stringlike particle motion. Panels (a-c) show strings for the time intervals t′ ∈ (0, τG) at T slightly
above Ts, respectively T = 0.58 for kb = 0 (panel a), and T = 0.62 for kb = 4ǫ (panel b), and T = 1.42 for kb = 12.5ǫ (panel
c). Images were generated using VMD [46]. Panel (d) shows P (n) for kb = 0 (blue curves) and kb = 4ǫ (green curves) for the
abovementioned T slightly above Ts (solid curves) and for T = 0.80 (dashed curves). Data for kb = 12.5ǫ are shown in red, for
T = 1.42 (solid curve) and 1.50 (dashed curve).

ment for intermediate-stiffness chains. Overall, our re-
sults strongly suggest that the energy landscapes of melts
of intermediate stiffness are far more rugged than those
of their flexible or stiff counterparts. If this is true, the
correlated stringlike motions could correspond to systems
traversing the transition pathways between neighboring
inherent structures [55].
Experimentally observing local microstructural motifs

comparable to the clusters discussed herein may not be
possible for typical polymers, due to the small length
scales and short time scales involved. However, such mo-
tifs have been observed in colloidal systems [56] using
confocal microscopy, and recent studies have also exam-
ined their relaxation dynamics [11, 12]. Variable-stiffness
colloidal and granular polymers [57, 58] have recently
been synthesized, and it would be interesting to study
their dynamics in the dense fluid state as a function of
packing fraction, as an analogue to the T -dependence
studied here.
Many interesting simulation studies of polymer crys-

tallization have appeared recently [34, 59–64]. Nearly all
of these have employed atomistic or united-atom models

to study specific polymer chemistries. Such studies cer-
tainly can identify phenomena which are general to many
different polymers, but their use of single interaction po-
tentials (as opposed to comparing behavior for a range of
potentials) often obscures this generality. Furthermore,
few of these studies have connected solidification behav-
ior directly to temperature-dependent steady-state melt
dynamics, and none have connected it to the chain stiff-
ness dependence of these dynamics. Here we have done so
for unentangled chains. While the chains studied herein
are shorter than those employed in typical experiments,
studies of unentangled chains are often useful as interme-
diate steps towards understanding the more complicated
entangled case. Extension of this work to entangled sys-
tems will be challenging since the stiffness dependence of
the melt disentanglement dynamics [4, 60, 61] will couple
to the CF-vs.-GF-related dynamics described above, but
is a worthy goal.
This material is based upon work supported by the

National Science Foundation under grant no. DMR-
1555242. We gratefully acknowledge Monojoy Goswami
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