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Big Data has become the primary source of understanding the structure and dynamics of the
society at large scale. The network of social interactions can be considered as a multiplex, where
each layer corresponds to one communication channel and the aggregate of all of them constitutes
the entire social network. However, usually one has information only about one of the channels or
even a part of it, which should be considered as a subset or sample of the whole. Here we introduce
a model based on a natural bilateral communication channel selection mechanism, which for one
channel leads to consistent changes in the network properties. For example, while it is expected
that the degree distribution of the whole social network has a maximum at a value larger than one,
we get a monotonously decreasing distribution as observed in empirical studies of single channel
data. We also find that assortativity may occur or get strengthened due to the sampling method.
We analyze the far-reaching consequences of our findings.

I. INTRODUCTION

Over the past decades the information-communication
technology (ICT) has changed in various ways how we
communicate and interact with each other. Yet at
the same time it has revolutionized social sciences [1]
by making available an unprecedented amount of high-
quality data of social interactions of huge number of peo-
ple. Through the computational analysis and subsequent
modeling one could get insight into earlier inaccessible
properties like the structure of the interaction network
at the societal level [2], the inhomogeneous dynamics of
communication [3–5], and the laws of collective atten-
tion [6] to name a few examples. In these cases the data
is usually in the form of communication records, e.g., mo-
bile phone calls, text messages, and emails [7–9], as well
as social networking services (SNS), e.g., Facebook and
Twitter [10, 11]. While in each case one has information
about a particular kind of interaction, the general interest
stems also from the assumption that this type of research
can provide insight into the structure and function of the
society as a whole.
It is now understood that a network of human social

interactions should be considered as a multiplex network
where the each edge is categorized by its type [12–14]
at least from two different points of view. Usually one
assumes that the links can be classified according to the
nature of relationships like kinship, friendship, workmate
links, etc. Each of these defines a network, which then
serves as a layer of the whole multiplex network. On the
other hand the interaction can also be assorted accord-
ing to the channels used for communication like face-to-
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face, mobile phone, social network services, etc. Then the
layers of the multiplex correspond to different communi-
cation channels. Data is usually available only for one
channel, meaning that from the whole multiplex there is
only one layer we can investigate at a time. Linking data
from diverse channels is in most cases impossible due to
their different origins and for privacy reasons [15].

Having information only about one layer of the multi-
plex raises the following questions. To what extent can
we from the analysis of one particular layer draw conclu-
sions of the properties of the whole network? How much
the properties of the whole network are reflected by the
partial datasets? The answer to these questions is of
fundamental importance, if we want to apply the results
from the available data to the whole society. A schematic
view of this picture is shown in Fig. 1. The most apparent
problem here is the general observation that in ICT pro-
vided data about large populations, wherever they come
from, the degree distribution shows a monotonously de-
creasing behavior [2, 10, 16]. This has the consequence
that the most probable degree is one. Then a simple-
minded generalization of this observation would imply
that this statement is true for a number of social con-
tacts of an individual, which is clearly nonsense.

Dealing with data from only one communication chan-
nel can be interpreted as sampling such that each layer
constitutes a sample of the whole multiplex network,
comprised of the people using a particular channel of
communication. The sampling method changes the prop-
erties of the network and it is an inverse problem [17] to
draw conclusions about the whole system from the par-
tial observations.

We would like to stress the difference from previous
studies on sampling networks [18–20]. These studies fo-
cused on the bias caused by selecting a fraction of the
data (or network) for analysis such that its statistical
properties remain unaltered. While this sampling is a
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FIG. 1. (Color online) (a) Schematic representation of the dif-
ferent communication channels or layers (different colors) on
a sample egocentric network (gray). (b) One of the commu-
nication layers on the top of the original egocentric network.
For the selection of the users, we used the sampling method
defined in Section III with f0 = 0.25.

statistical issue and has previously been studied well,
the selection of social links by a single communication
channel is inherently social activity and has so far not
attracted much research attention.

Generally speaking, available datasets usually undergo
two-step sampling [21]. The first sampling takes place
when the calling person chooses a communication chan-
nel from various options depending on context or a per-
son with whom the contact is made. The other sam-
pling occurs when an observer or a researcher analyzes
the dataset. Since it is often hard to analyze all the logs
in an ICT service mainly due to technical reasons, a frac-
tion of data are randomly sampled for the analysis and
the properties are statistically inferred. In this paper,
we will focus on the former sampling, which is of fun-
damental importance since a bias originating from social
activity is not reduced by the amount of data.

In this paper we analyze the relationship between the
whole network and the sampled network using different
techniques. We will show how the sampling may sub-

stantially change the properties of the network, e.g., it
can make a monotonic degree distribution from one with
a peak at degree larger than one. We will demonstrate
under which condition the sampled network reflects the
properties of the surrogate network.

II. EMPIRICAL OBSERVATIONS

We first summarize some general empirical findings
or stylized facts in social networks from different ICT
datasets [7, 10, 11, 22]. Here we have chosen to ana-
lyze two datasets: One is the mobile phone call (MPC)
dataset [2] and the other is the Hungarian social net-
working service iWiW [22]. For the MPC network, we
consider a link between two users existing provided that
it is mutual [2], and for the iWiW network when the
friendship was recognized by both users.
Figure 2 summarizes degree distributions P (k) and the

average degree of neighbors knn(k) of the users with de-
gree k, which are measured for the MPC and iWiW net-
works, respectively. For both networks, the degree distri-
bution is found to decrease monotonically. This decrease
is slow for a range of small k, then followed by a fast
decay that is either exponential or follows a power-law
with very large decay exponent [2]. Both networks show
assortativity, characterized by an increasing knn(k) as a
function of k. In this paper we focus on these two prop-
erties.
The decreasing P (k) and the increasing knn(k) are gen-

erally observed for ICT datasets, despite their diverse
origins. For example, the average degree for the MPC
network is small, i.e., of the order of 10, while for the
Facebook network it is large, i.e., of the order of 100 [10].
Furthermore, the growth mechanisms of the networks dif-
fer from each other. Some require invitation, e.g., in
case of iWiW, while others require paid subscription as
in case of MPC. However, the stylized facts across various
datasets imply that there could exist a common under-
lying mechanism.
It is reasonable to assume that very few people have

only one social contact, thus the maximum of the distri-
bution should not be at unity [23]. This implies that
the degree distribution should first increase and then de-
crease, which we call a peaked degree distribution. We
argue that the discrepancy between this plausible picture
and most empirical findings from the ICT datasets can be
attributed to the selection method of a single communica-
tion channel from the whole network of social interaction
between people.
In order to support our motivation, we briefly argue the

following. As it takes time and effort for people to build
up a network on a communication channel, people with
larger activity may develop their egocentric networks in
a particular channel more similarly to their real egocen-
tric networks. For example, for the MPC network, an
activity of a user can be defined as the total number of
calls. Then the degree distribution only for users with ac-
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FIG. 2. (Color online) Empirical results of the mobile phone call (MPC) dataset (left) and the Hungarian social networking
service iWiW dataset (right). Degree distributions for users with activity larger than some threshold values (top) and the
average degree of neighbors of users with degree k (bottom). For the degree distributions, frequencies are divided by the total
number of nodes in each dataset, i.e., the curves for “all” are normalized while the others are not.

tivity larger than some threshold value is expected to be
more similar to the real degree distribution. Figure 2(a)
shows that the degree distributions for users with activity
above sufficiently large thresholds show peaked behavior,
whereas the degree distribution for all users is monotoni-
cally decreasing. This may indicate that the discrepancy
of overweighting the low degree nodes comes from the
low activity users. Since we do not have activity records
for the iWiW network, as a proxy for it we use the active
period defined by the number of days between the first
and last logins. We find the same transformation from
monotonically decreasing to peaked degree distribution,
as shown in Fig. 2(b). As the egocentric networks of
users with large activity are expected to be more simi-
lar to the real egocentric networks of users, the observed
peaked distribution for such users can be considered as
evidence for the peaked degree distributions in the entire
social network.

Another important property of social networks is as-
sortative mixing, which is usually attributed to the link
formation mechanism related to homophily [24]. As we
do not know the underlying social network exactly, we
cannot confirm this at the societal scale. However, we

will consider this property here.

III. SAMPLING METHOD

It is important to stress that ICT datasets report dy-
namics of a single communication channel while people in
general use many different means of communication. The
natural relationship network of humans is thus a multi-
layer system, in each layer of which there are only links
that represent a single communication channel. There-
fore, the data related to a single layer can be considered
as a special sampling of the entire network. In order to
understand this sampling we model how people choose a
communication channel or an ICT service to make con-
tacts with other people.
People have diverse interests and preferences for com-

munication and they show different usage patterns of ser-
vices such as the frequency of visits or the variation of
the time spent using the service. For example, users that
have invested a considerable amount of time to build up
their friendship network would show a higher preference
to use the service. The degree of preference of a user to
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choose a service can be described by an affinity quantity,
denoted by fi for user i.
Let us now assume that agents i and j know each other,

and they try to communicate and for that purpose they
have to choose a communication channel. In general the
agents have different personal affinities towards differ-
ent communication channels. When they are choosing a
channel they tend to avoid those that are inconvenient
for the other, because it could risk the success of com-
munication. For example, writing an urgent email to
someone who is checking it weekly is not a good idea.
Alternatively waiting for someone to appear on an in-
stant messaging channel, if login is irregular, could be
meaningless. So naturally everyone tends to choose those
channels to communicate with an acquaintance for which
both of them have relatively high affinity. Hence, we as-
sume the probability that a link between i and j is made
over a given communication channel is a symmetric func-
tion of fi and fj, pij(fi, fj), as introduced in [25, 26].
Our strategy to investigate the effect of sampling is

as follows. Since the real, underlying social network is
unknown, we generate surrogate networks with the given
properties, such as peaked degree distributions. To these
networks we apply a sampling method that mimics the
usage of a single communication channel. We note here
that ICT dataset may cover only part of the population
due to competing services. Random selection of nodes or
links does not change the basic characteristics of the de-
gree distribution whether it is monotonously decreasing
or peaked.
We assume that the affinity distribution P (f) is a de-

creasing function (e.g. [2, 27]). This implies that a large
fraction of people rarely spend time using the service,
while there are a relatively small number of enthusias-
tic users. As for the affinity distribution, we choose an
exponential function

P (f) =
1

f0
e−f/f0 , (1)

where f0 is the average affinity and it serves as a control
parameter. Each user is assigned an affinity value that is
randomly drawn from P (f), which implies that the cor-
relation between affinities of neighboring users is ignored
for simplicity. The effect of such correlations existing in
reality can be studied for future work.
We then sample links in the surrogate network with a

probability as a function of affinities of users connected
by the link. For neighboring users i and j, the probability
of sampling a link ij is defined as follows

pij = min{fi, fj, 1}. (2)

The set of sampled users consists of users that have at
least one sampled link. An example of a sampled network
from an egocentric network is presented in Fig. 1. We
would like to note that our model takes into account only
two point correlations. As expected, then all higher order
correlations such as clustering are systematically lost by
this sampling.

Here we assume the minimum rule for pij since a link
is often established in a communication channel when
both nodes i and j accept to use it. As we will see in
Section V, this rule is not only a natural consequence
of mutual acceptance, but it is the most representative
rule for a broader class of rules that reproduce the ob-
served stylized facts. In addition, the minimum rule is
analytically solvable as shown in the next Section.
We now consider three kinds of surrogate networks:

Random regular graphs (RR) with degree k0, Erdős-
Rényi random graphs (ER) with average degree 〈k〉, and
weighted social networks using link deletion (WSN) with
average degree 〈k〉. We will use the WSN studied in our
previous work [28]. All three networks show peaked de-
gree distributions. The RR and ER do not show assorta-
tive mixing, while the WSN was devised to produce high
clustering, community structure, and assortative mixing,
as observed in real networks based on ICT data.

IV. RESULTS

A. Degree distribution

Monotonically decreasing degree distributions are
found for sampled networks in all the surrogate networks,
as depicted in Fig. 3. For the RR case, degree distribu-
tions of the sampled networks are flat up to the crossover
degree≈ f0k0, followed by exponentially decaying behav-
ior. Similar patterns are observed for the ER and WSN
cases with crossover degrees ≈ f0〈k〉.
We can analytically calculate the degree distribution

of the network sampled from the regular random graph
with degree k0. Since the affinities between neighboring
nodes are uncorrelated, the probability of sampling a link
involving the node i with affinity fi is obtained as

ps(fi) =

∫ ∞

0

pijP (fj)dfj = f0

(

1− e−min{fi,1}/f0
)

.

(3)
Then we obtain the probability that the node i has ex-
actly ki links in the sampled network as

q(ki|k0, fi) =

(

k0
ki

)

ps(fi)
ki [1− ps(fi)]

k0−ki . (4)

The degree distribution of the sampled network is calcu-
lated as

Qk0
(k) =

∫ ∞

0

q(k|k0, fi)P (fi)dfi

≈
1

f0(k0 + 1)
I( f0

1−f0

)(k + 1, k0 − k + 1), (5)

where Ix(a, b) denotes the regularized beta function.
Here we used the approximation that min{fi, 1} = fi for
all i, which is the case for the sufficiently small value of
f0. This analytical solution perfectly fits the simulation
results, as shown in Fig. 3(a).
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(a)

(b)

FIG. 3. (Color online) Degree distributions of the sampled
networks with analytic curves obtained using Eq. (7). (a)
The surrogate networks are regular random graphs (RR, ×)
or Erdős-Rényi random graphs (ER, �) with a network size
of N = 104 and the degree of k0 = 150 (RR) or the average
degree of 〈k〉 = 150 (ER). Analytic solutions for several values
of f0 (curves) perfectly fit the simulation results (symbols).
The simulation results are averaged over 50 independent runs.
(b) The surrogate network is a weighted social network using
the link deletion model of Ref. [29] with parameters N = 104

and 〈k〉 ≈ 47.8. Using f0 = 0.3, we find that the size of
the sampled network is 9287 and that its average degree is
〈k〉 ≈ 7.7. Since the surrogate network has a high average
degree, most of the nodes remain in the sampled network
even after majority of links are removed.

The first part of the degree distribution is flat, which
can be calculated. The function q(ki|k0, fi) may have a
very strong peak and can be approximated by a Dirac
delta function:

q(ki|k0, fi) ≃ δ(k0ps(fi)− ki) (6)

which gives rise to constant P (k) up to k0f0, and after
which it is zero. In Appendix A, other P (f) functions
are analyzed to show that the exponential function is a
borderline between the case when Qk0

(k) is always de-
creasing and the case when it has a peak at k > 1.

10-4
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10-2

10-1

 0  10  20  30  40  50  60  70
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)
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f > 0.05
> 0.2  
> 0.6  

FIG. 4. (Color online) The degree distributions in the sam-
pled networks from ER for nodes with affinity larger than the
indicated values.

We now consider the case of ER graphs. The degree
distribution of the surrogate network is binomially dis-
tributed, denoted by P0(k). The probability that a node
originally having k0 links will keep k links is Qk0

(k) in-
dependently of the rest of the network so we can get
the degree distribution for any uncorrelated network by
a weighted sum of Eq. (5):

P (k) =

∞
∑

k′=0

P0(k
′)Qk′(k). (7)

We calculate P (k) numerically to compare it with the
simulation results, as shown in Fig. 3(a). Similarly, one
can obtain P (k) of the sampled network in the case of
WSN [see Fig. 3(b)].
So far we have considered surrogate networks with

degree distributions decaying faster than exponential,
whereas heavy-tailed degree distributions are observed
in many ICT datasets. In order to consider more re-
alistic situations, we generate surrogate networks with
log-normal and Lévy distributions of degree, where we
used µ = ln 200 and σ = ln 2 for log-normal distribu-
tion, and µ = 0 and c = 150 for Lévy distribution. Both
distributions have peaks at values larger than 1. Then,
using Eq. (7), we find that degree distributions in the
sampled networks using f0 = 0.1 are heavy-tailed but
yet monotonically decreasing.
Based on the above analysis and simulations we con-

clude that the monotonically decreasing degree distribu-
tion in most ICT datasets could be the consequence of
the sampling method applied to the real social network
showing the peaked degree distribution. Our conclusion
is robust with respect to the variation of details of the
method as will be shown in Sec. V.
We have found a mechanism transforming the ground-

truth peaked degree distribution to the observed mono-
tonically decreasing one. This raises the question
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(a)

(b)

FIG. 5. (Color online) Average degrees of neighboring nodes
knn(k) as a function of the degree of the node in the sampled
networks. (a) The surrogate networks are Erdős-Rényi ran-
dom graphs used in Fig. 3(a). Blue squares show the result for
all nodes, while others show the results only for nodes whose
affinity is in the annotated ranges, respectively. Analytic
solutions in Eqs. (11–12) are also depicted for comparison.
(b) The assortativity knn(k) for the network sampled from a
weighted social network with link deletion used in Fig. 3(b).
In the inset, knn(k) for the surrogate network is plotted for
comparison. In all cases, the simulation results are averaged
over 50 independent runs.

whether the activity thresholding that resulted in an op-
posite direction, i.e., from monotonically decreasing de-
gree distribution to the peaked one would work also for
the model. For this, we need to find an appropriate proxy
for activity, and affinity seems to be a good candidate
since low (high) activity, i.e., low (high) preference for a
channel would imply low (high) activity on that channel.
We indeed find peaked degree distributions in the sam-
pled networks when considering only nodes with affinity
larger than some threshold value in Fig. 4. This peaked
behavior compares favourably with the empirical obser-
vations as shown in Fig. 2, both in a linear or logarithmic
scale.

B. Assortativity

Here we investigate the effect of the proposed sam-
pling method on the assortative mixing of the sampled
networks. Figure 5(a) shows that the assortative mixing
turns out to be present in the sampled networks even
when the nodes in the surrogate network are completely
uncorrelated. When the surrogate network shows assor-
tative mixing, e.g., in the case of WSN, the assortativity
is observed as expected, see Fig. 5(b).
We first calculate the correlation of affinities between

neighboring nodes in the sampled networks. Similarly to
the definition of knn(k), we define the average affinity of
neighboring nodes of a node i with affinity fi, denoted
by fnn(fi). Let us denote by aij = 1 the event that a
link ij in the surrogate network is sampled. The affin-
ity distribution of fj for the neighbor j of the node i
in the sampled network can be written as a conditional
probability P (fj |fi, aij = 1). Then we get

fnn(fi) =

∫ ∞

0

fjP (fj |fi, aij = 1)dfj

=
1

ps(fi)

∫ ∞

0

fjP (fj)pijdfj

= 2f0 −
min{fi, 1}

emin{fi,1}/f0 − 1
, (8)

which turns out to be an increasing function of fi. Note
that ps(fi) in Eq. (3) is the probability of the event that
aij = 1 for a given affinity fi. This result holds irrespec-
tive of a structure of the surrogate network. The pos-
itive correlation between affinities of neighboring nodes
appears even when there is no such correlation in the
surrogate networks.
This correlation is expected to persist also in knn(k)

since k and f are positively correlated. For the RR case
with degree k0, knn for a node i with affinity fi can be
obtained as follows:

knn(f=fi) =
k0

ps(fi)

∫ ∞

0

ps(fj)pijP (fj)dfj . (9)

The integral part is exactly solved using Eqs. (1–3) as

f2
0

(

3

4
− e−ai/f0 +

1

4
e−2ai/f0 −

ai
2f0

e−2/f0

)

, (10)

where ai ≡ min{fi, 1}. Since the expected degree of a
node with affinity f is k0r(f), we replace f in Eq. (9)
using the assumption of ps(f) =

k
k0

to get for k < k0f0:

knn(k) =
k0f0
2

+
k

4
+

k20f
2
0 e

−2/f0

2k
ln

(

1−
k

k0f0

)

, (11)

or otherwise

knn(k) = k0f0

3
4 − e−1/f0 +

(

1
4 − 1

2f0

)

e−2/f0

1− e−1/f0
. (12)
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From this solution, one can obtain the extreme values of
knn(k), i.e., when the degree or the affinity is extremely
small or large. If the affinity of a node i is very small,
we get knn ≈ k0f0

2 . On the other hand, if the affinity is

very large, one gets knn ≈ 3k0f0
4 . We confirm numerically

that these solutions apply also to the ER case, as shown
in Fig. 5(a).

In Fig. 5(a), we have plotted knn(k) for nodes whose
f is in a given range. The assortative behavior mostly
disappears as in the surrogate network, implying that the
assortativity in the sampled network is attributed to the
dependence of knn on f but not on the assortativity of
the surrogate network.

Assortative mixing is also observed for the networks
sampled from the WSN, as shown in Fig. 5(b). This
is not surprising because the surrogate network shows
already assortativity. We note that knn(k) for the sur-
rogate network is concave, while the sampled network
shows a slightly convex curve in the log-linear plot. We
think that sampling enhances assortativity as compared
to that of the surrogate network. This implies that the
sampling plays a crucial role in the observed assortativity.
An important lesson from this study is that the assorta-
tivity observed from sampling does not assure that the
original (multiplex) network is assortative.

C. Node strength

The effect of sampling on the strength distribution
of nodes and the strength-degree correlation was tested
using the WSN as a surrogate network. The origi-
nal strength distribution is peaked as seen in Fig. 6(a),
and the strength-degree correlation in Fig. 6(b) shows
a rather flat and then increasing behavior which is the
result of the WSN model [29].

After the sampling the low degree nodes in the sampled
network are not necessarily the ones that had low degree
in the original network. The value of affinity has much
larger influence on the sampled degree of a node than
its original degree. Thus the link weight will be largely
independent of the sampled degree of the nodes the link
is connected to. This implies linear relationship between
the degree and strength, which is exactly what was found
in Fig. 6(b). Similar relation was found in the mobile
phone dataset presented in [7], where a correlation s ∝
kγ with γ ≃ 0.8−0.9 was obtained. The empirical data
shows almost linear strength-degree correlation, but our
model indicates that this result has no implications for
the original social network.

As there is only marginal correlation between the de-
gree and the link weight, the degree distribution mostly
determines the strength distribution, which is the convo-
lution of the link weight and degree distributions. As a
result the strength distribution is a decreasing function
instead of being peaked as shown in Fig. 6(a).

(a)

(b)

FIG. 6. (Color online) The effects of sampling on (a) the node
strength distribution and (b) the average node strength as a
function of the degree when the WSN is used for the surrogate
network. Parameter values for the WSN are the same as in
Fig. 3(b).

V. GENERALIZATION OF THE MODEL

In this section, we generalize our model and discuss
the robustness of the results we have seen in the previ-
ous section. We will focus on the effects of the affinity
distribution and sampling probability.

A. Generalized-Mean Model

First, we generalize the distribution of affinity, P (f),
to be a truncated Weibull distribution:

P (f) =

{

c(f/f0)
α−1e−(f/f0)

α

if 0 ≤ f ≤ 1

0 otherwise
(13)

where c is the normalization constant. Here we imple-
ment the truncation at f = 1 in the affinity distribution
instead of the sampling probability. Obviously α = 1
gives back the exponential distribution. When α < 1, a
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divergence at f = 0 is seen thus the nodes tend to have
a smaller f .
The sampling probability pij is defined as a generalized

mean of fi and fj with exponent β:

pij =











(

fβ
i +fβ

j

2

)1/β

if β 6= 0
√

fifj if β = 0.

(14)

The generalized mean includes Pythagoranean means as
special cases such that for example when β is 1, 0, or
−1, it is equivalent to arithmetic, geometric, or harmonic
mean, respectively. For any real β, pij is an increasing
function of fi and fj. For larger β, pij is closer to the
larger of fi and fj. In the limits of β → ∞ and β → −∞,
pij is equivalent to max{fi, fj} and min{fi, fj}, respec-
tively. Therefore, the model in the previous section is a
special case with α = 1 and β → −∞.

B. Results for Generalized-Mean Model

We conducted numerical simulations for various β and
α using Erdős-Rényi random graphs with 〈k〉 = 150 as
a surrogate network. In the simulations, we controlled
f0 for each α and β so that the sampled network has an
average degree of 15 ± 0.5, i.e., about 10 % of the links
are sampled.
First we investigated whether the degree distribution

is monotonically decreasing or not. For this, we define a
quantity P1 as P (k = 1)/max{P (k)}. If P (k) is mono-
tonically decreasing, P1 must be one while it is less than
one when P (k) is a peaked distribution. As shown in
Fig. 7(a), the monotonically decreasing degree distribu-
tion is realized only when β ≤ 0 and for sufficiently small
values of α. The parameter range of α for which P1=1
gets wider as β decreases, indicating that for smaller val-
ues of β, nodes have low degrees more easily.
On the other hand, when β > 0, there is no param-

eter region where monotonically decreasing degree dis-
tribution is realized as P1 quickly drops to zero. This
implies that in this parameter range higher degree nodes
are favoured by the sampling probability function. The
resulting network will consist of a number of high degree
nodes. Numerical results show that β = 0 is a threshold
value above which monotonically decreasing P (k) is pre-
cluded. Typical degree distributions for these two regions
are shown in Fig. 7(b).
Let us now investigate assortativity. The assortativity

coefficient r, which is the Pearson’s correlation coefficient
of neighboring degrees, is plotted in Fig. 8. The coeffi-
cient is positive when β<0 while it is negative when β>0.
Even though affinity and original degree is independently
assigned to each node, degrees in the neighboring nodes
get correlated by the sampling. Hereafter we call this the
sampling-induced assortativity.
As we have seen in the previous section, the sampling-

induced assortativity originates from the correlation of f

10
-3

10
-2

10
-1

 0  10  20  30  40  50

P
(k

)

k

α=0.8, β=-1
α=0.8, β= 1

(a)

(b)

FIG. 7. (Color online) (a) The fraction of nodes with de-
gree 1 normalized by the peak value of P (k) in the sampled
networks. The horizontal axis indicates the exponent of the
mean β. (b) Typical degree distributions for positive and neg-
ative β. Erdős-Rényi random graphs are used as the surrogate
networks. The results are averaged over 5 independent runs.

of the neighboring nodes. To understand the dependency
of assortativity on β, we hereafter consider the correla-
tion of f . When β = 0, we can analytically prove that
there is no correlation of f in the sampled network for
any P (f). The average affinity of the neighbors of a node
with fi, fnn(fi), is calculated in a similar way as Eq. (8):

fnn(fi) =

∫ 1

0

fjP (fj|fi, aij = 1)dfj (15)

=

∫ 1

0
f
3/2
j P (fj)dfj

∫ 1

0 f
1/2
j P (fj)dfj

, (16)

which is independent of fi, stating that there is no cor-
relation of f in the neighboring nodes as in the surrogate
networks.

In contrast, the assortativity is modified by the sam-
pling when β 6= 0. The differentiation of fnn with respect
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(a)

(b)

FIG. 8. (Color online) (a) The assortativity coefficient of the
sampled networks as a function of β. (b) Typical degree cor-
relation knn for positive and negative β. Erdős-Rényi random
graphs are used as the surrogate networks. The results are
averaged over 5 independent runs.

to fi is

ps(fi)
2 d

dfi
fnn(fi) =

∫ 1

0

pijP (fj)dfj

∫ 1

0

dpij
dfi

fjP (fj)dfj

−

∫ 1

0

dpij
dfi

P (fj)dfj

∫ 1

0

pijfjP (fj)dfj ,

(17)

where ps(fi) =
∫ 1

0 pijP (fj)dfj . The sign of this equation
can be evaluated analytically: When β < 0, dfnn/dfi ≥ 0
while dfnn/dfi ≤ 0 when β > 0. See Appendix B for
details. Therefore, the sign of β determines the bias of
the assortativity in the sampled networks.
To conclude, we find decreasing P (k) only for β ≤ 0.

In the parameter region where decreasing P (k) is real-
ized, the positive correlation of f is inevitable. These
results indicate that we can not conclude that the whole
social network has assortative mixing even when we find
assortativity in empirical network taken from one com-
munication channel.

VI. SUMMARY AND DISCUSSION

The question of general interest is to what extent ICT
data can tell us about the structure of the entire social
network of people, as all such data are incomplete and
capture only a part of the whole plethora of social rela-
tionships. While each type of service has different fea-
tures, we observe universal properties of the networks
generated from any service data. There is always a dif-
ferent story behind each service but there is also com-
monly observed feature, namely that they all display a
decreasing degree distribution, which cannot be true for
the entire social network and hence must be attributed
to the sampling.
To investigate the effect of sampling method we have

modeled how people are using ICT communication ser-
vices. The method is general enough to be applied to
various communication channels. The networks sampled
by this method robustly reproduce the stylized facts of
the ICT data: Decreasing degree distributions and as-
sortative mixing, even when they were absent from the
original networks. Thus, the characteristics of the sam-
pled networks can be strongly dependent on the sampling
method, hence some properties of the original network
are hardly observed.
This result has an important implication such that

properties observed on a sampled network may not be
true for the original network as turned out to be the case
with decreasing degree distribution. Hence it can be the
sampling rather than the original network that plays a
pivotal role in explaining some of the empirical network
properties. There is though a subset of users with high
activity, i.e., users who put much effort in the given ICT
service. Their network properties show features reminis-
cent of the true social network so that these users can
be used to some extent to reflect the properties from one
layer to the whole social network. This can also be shown
in our sampling result, where high affinity nodes show
properties characteristic for the surrogate networks, i.e.,
peaked degree distribution and flat knn in case of ER [see
Figs. 4 and 5(a)].
We have checked the robustness of our model by study-

ing more general channel selection functions and affin-
ity distributions. Here we have shown that there is a
class of rules that result in the universally observed sin-
gle channel properties of monotonic degree distribution
and assortative mixing. This implies that the choice of
the communication channel should follow rules similar to
the minimum rule, i.e. a person may be reluctant to use
a communication channel with a friend who does not like
that channel even if that is the person’s favorite. We
note here that we have tested our sampling model on
other networks e.g. scale-free with similar result.
The sampling model presented in this paper is only one

possible mechanism for link selection. Even though ob-
vious factors such as three-point correlations are missing
from it the qualitative agreement between the sampling
model and the empirical data is indicative. We did not
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intend to prove that the model presented here is the very
mechanism for communication channel selection but we
showed that it is enough to reproduce ICT-related obser-
vations from uncorrelated random networks. Thus prop-
erties measured on those partial networks may not reflect
anything from the original ones, which emphasizes the
importance of the simultaneous investigation of multiple
communication channels. One of the promising ways to
get a more complete picture of human sociality is “Real-
ity Mining” [30–32], where several communication chan-
nels including face-to-face encounters are simultaneously
recorded. Empirical research towards such direction is
expected to reveal the relationship between the networks
of different communication channels and the way people
choose among them. This will help us to understand how
much of the results from previous empirical studies con-
centrating mostly on a certain communication channel
can be applied to the whole social network.
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Appendix A: Trial with other affinity distributions

We have noted in the main text that the exponential
affinity distribution is a special case for which the degree
distribution of the sampled network starts with a con-
stant value. This will be proven using the approximation
already mentioned namely that:

q(ki|k0, fi) =

(

k0
ki

)

ps(fi)
ki [1− ps(fi)]

k0−ki

≃ δ(k0ps(fi)− ki) (A1)

The degree distribution is thus

Qk0
(k) =

∫ ∞

0

q(k|k0, fi)P (fi)dfi

≃

∫ ∞

0

δ(k0ps(fi)− k)P (fi)dfi

=
P (f∗)

|k0p′s(f
∗)|

, (A2)

where f∗ is the solution of the equation k0ps(f
∗) = k.

For P (f) = 1
f0
e−f/f0 the above equation gives

Qk0
(k) =

{

1
f0k0

if k < k0f0

0 if k ≥ k0f0.
(A3)

The second case happens because ps(f) > f0.
Let us repeat the calculation for arbitrary P (f) and

we are interested in the behavior of P (k) for k ≪ k0.
This latter assumption implies f∗ ≪ 1 since only nodes
with low affinity have low degree. The probability ps(f)
is calculated as

ps(f) =

∫ ∞

0

min {f, f ′}P (f ′)df ′

=

∫ f

0

f ′P (f ′)df ′ + f

∫ ∞

f

P (f ′)df ′ (A4)

The derivative is given as

p′s(f) =

∫ ∞

f

P (f ′)df ′. (A5)

Using this relation, the degree distribution is obtained as
a function of f∗:

Qk0
(f∗) =

P (f∗)

k0
∫∞

f∗
P (f ′)df ′

. (A6)

Since k is an increasing function of f∗, when Eq. (A6)
is an increasing (decreasing) function of f∗, P (k) is an
increasing (decreasing) function of k. Therefore, in order
Qk0

(f∗) to be constant, P (f) must be an exponential
function.
Equation (A6) allows us to determine if a degree dis-

tribution function starts as decreasing or increasing. In
the latter case it will definitely have a peak. As shown
in Fig. 9, simulation results of degree distributions for
different functional forms P (f) are consistent with the
above argument. The tested distributions are summa-
rized in Table I.

Appendix B: Sign of Equation (17)

In this appendix, we evaluate the sign of dfnn/fi, which
determines the correlation of f between the neighbors in
the sampled network.
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TABLE I. Different functional forms of P (f): Exponential,
linear, and the Weibull distributions. Definition of the distri-
butions are summarized as follows. Parameter f0 is controlled
for each distribution so that they have 〈f〉 = 0.3. The equa-
tion Qk0

(f∗) is also calculated for f < f0. We can calculate

Qk0
(f∗) for theWeibull distributions as afa−1

k0f
a
0

, which includes

an exponential distribution as a special case. Qk0
(f∗) is in-

creasing (decreasing) for a > 1 (a < 1).

P (f) f0 Qk0
(f∗)

exponential 1
f0
e−(f/f0) 0.3 1

k0f0

linear 2
f2

0

(f0 − f) for f < f0 0.9 2
k0(f0−f∗)

Weibull (a = 3/2) a
f0

(

f
f0

)a−1

e−(f/f0)
a

0.903 3
√

f∗

2k0f
3/2
0

Weibull (a = 1/2) a
f0

(

f
f0

)a−1

e−(f/f0)
a

0.15 1
2k0

√
f0

√
f∗

10-4

10-3

10-2

10-1

 0  10  20  30  40  50  60  70

P
(k

)

k

exponential
linear

Weibull (a=3/2)
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FIG. 9. Degree distributions P (k) in the sampled networks
from the regular random graph of N = 104 and k0 = 150,
using different functional forms of P (f). The definitions of
P (f) are given in Table I. The results are averaged over 50
independent runs.

Since the partial derivative of pij with respect to fi is

∂pij
∂fi

=
fβ−1
i

fβ
i + fβ

j

pij , (B1)

Eq. (17) is calculated as

∫ 1

0

pijP (fj)dfj

∫ 1

0

g(fj)fjpijP (fj)dfj (B2)

−

∫ 1

0

g(fj)pijP (fj)dfj

∫ 1

0

fjpijP (fj)dfj ,

where

g(fj) ≡
fβ−1
i

fβ
i + fβ

j

. (B3)

Here we introduce µ(fj) as

µ =

∫ fj

0

pijP (f)df. (B4)

This is a positive increasing function of fj. When fj

changes from 0 to 1, µ changes from 0 to
∫ 1

0 pijP (f)df ≡
µ1. Using this notation, Eq. (B2) is

∫ µ1

0

dµ(fj)

∫ µ1

0

g(fj)fjdµ(fj) (B5)

−

∫ µ1

0

g(fj)dµ(fj)

∫ µ1

0

fjdµ(fj).

Chebyshev integral inequality [34] states that the in-
equality

∫ b

a

dµ

∫ b

a

fgdµ ≥

∫ b

a

fdµ

∫ b

a

gdµ (B6)

holds under the hypothesis that

[f(x)− f(y)] [g(x)− g(y)] ≥ 0 (B7)

for all (x, y) ∈ [a, b]× [a, b] and µ is a non-negative mea-
sure. In other words, the equation holds when f and g
have the same monotonicity. The inverse inequality holds
when f and g have the opposite monotonicity. The proof
is obtained by calculating the following inequality:

1/2

∫ b

a

∫ b

a

[f(x)− f(y)][g(x)− g(y)]dµ(x)dµ(y) ≥ 0.

(B8)
Because g(fj) is an increasing function of fj when β <

0, Eq. (B5) is non-negative for an arbitrary P (f). When
β > 0, on the other hand, Eq. (B5) is non-positive.
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D. Lazer, K. Kaski, J. Kertész, and A. L. Barabási,

Proceedings of the National Academy of Sciences 104,
7332 (2007), ISSN 1091-6490, physics/0610104v1, URL
http://dx.doi.org/10.1073/pnas.0610245104.

[3] M. Karsai, M. Kivelä, R. K. Pan, K. Kaski,
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Physical Review E 83, 025102+ (2011), URL
http://dx.doi.org/10.1103/physreve.83.025102.

http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1073/pnas.0610245104
http://dx.doi.org/10.1103/physreve.83.025102


12

[4] J. L. Iribarren and E. Moro, Physical Review Letters
103, 038702+ (2009), ISSN 0031-9007, 0706.0641, URL
http://dx.doi.org/10.1103/physrevlett.103.038702 .

[5] H.-H. Jo, M. Karsai, J. Kertész, and K. Kaski, New Jour-
nal of Physics 14, 013055+ (2012), ISSN 1367-2630, URL
http://dx.doi.org/10.1088/1367-2630/14/1/013055 .

[6] F. Wu and B. A. Huberman, Proceedings of the Na-
tional Academy of Sciences 104, 17599 (2007), URL
http://dx.doi.org/10.1073/pnas.0704916104.

[7] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó,
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