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Equivalence between modularity optimization

and maximum likelihood methods for community detection

M. E. J. Newman
Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109

We demonstrate an equivalence between two widely used methods of community detection in
networks, the method of modularity maximization and the method of maximum likelihood applied
to the degree-corrected stochastic block model. Specifically, we show an exact equivalence between
maximization of the generalized modularity that includes a resolution parameter and the special
case of the block model known as the planted partition model, in which all communities in a
network are assumed to have statistically similar properties. Among other things, this equivalence
provides a mathematically principled derivation of the modularity function, clarifies the conditions
and assumptions of its use, and gives an explicit formula for the optimal value of the resolution
parameter.

I. INTRODUCTION

Community detection, sometimes called network clus-
tering, is the division of the nodes of an observed network
into groups such that connections are dense within groups
but sparser between them [1–4]. Not all networks support
such divisions, but many do, and the existence of good
divisions is often taken as a hint of underlying semantic
structure or possible mechanisms of network formation,
making community detection a useful tool for interpret-
ing network data.
The development of methods or algorithms to perform

community detection on empirical networks has been a
popular pursuit among researchers in physics, mathemat-
ics, statistics, and computer science—a tremendous num-
ber of such algorithms have been published in the last
decade or so [1–5]. In this paper we study two of the most
popular and widely used methods for community detec-
tion, the method of modularity maximization and the
method of maximum likelihood as applied to the stochas-
tic block model. Building on previous work by ourselves
and others [6–8], we show that, different though they at
first appear, these two methods are in fact exactly equiv-
alent, for appropriate choices of models and parameters,
which we specify. This sheds light in particular on the
modularity maximization method, which is generally mo-
tivated with heuristic arguments [9, 10], although there
have been efforts to place it on a firmer footing, par-
ticularly the generalized modularities of Reichardt and
Bornholdt [11] and the random-walk based derivation of
Lambiotte et al. [12]. Our results provide a new rigor-
ous derivation for the modularity and demonstrate that
modularity maximization is optimal under appropriate
conditions, but also highlight the method’s limitations.
In particular, we show that modularity maximization ef-
fectively assumes that communities in a network are sta-
tistically similar, and it is not guaranteed to give good
results for networks where this is not the case.

II. COMMUNITY DETECTION

We begin by describing the two methods of commu-
nity detection that we study, in their most widely ac-
cepted forms, beginning with the method of modularity
maximization.

A. Modularity maximization

Modularity maximization operates by defining a ben-
efit function, called the modularity, that measures the
quality of divisions of a network into communities. One
optimizes this benefit function over possible divisions of
the network of interest to find the one that gives the
highest score, taking this to be the definitive division of
the network. Since the number of possible divisions of a
network is exponentially large, we normally cannot per-
form the optimization exhaustively, so we turn instead
to approximate optimization methods, of which many
have been tried, including greedy algorithms [10, 13], ex-
tremal optimization [14], spectral relaxation [15], genetic
algorithms [16], simulated annealing [17, 18], and be-
lief propagation [8]. The popular Louvain algorithm for
community detection [19], which is built into a number
of network analysis software packages, uses a multiscale
modularity optimization scheme and is one of the fastest
community detection methods in practice. Overall, mod-
ularity maximization is perhaps the most widely used of
all methods for community detection for networks, al-
though it is also known to have some drawbacks [20, 21],
as discussed below.
The definition of the modularity function is straight-

forward [9]. We desire a benefit function which, given
a network and a candidate division of that network into
groups, returns a score that is larger if the division is a
“good” one and smaller if it is “bad.” The heuristic no-
tion used to define the modularity is that a good division
is one that places most of the edges of a network within
groups and only a few of them between groups.
Let us represent our network by its adjacency matrix.

For an undirected unweighted network of n nodes, num-
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bered 1 to n, the adjacency matrix A is the real sym-
metric n × n matrix with elements Aij = 1 if there is
an edge between nodes i and j and 0 otherwise. Let us
consider a division of the network into q nonoverlapping
groups, numbered 1 to q, and let us denote by gi the
number of the group to which node i is assigned. Thus
the complete vector g of group assignments specifies the
division of the network. Then the number of edges that
fall within groups, for this particular division, is equal to
1

2

∑

ij Aijδgigj , where δij is the Kronecker delta and the
leading factor of a half prevents double counting of edges.
The number of in-group edges alone, however, is not a

good measure of the quality of a division, since it can be
trivially maximized by putting all the nodes in one of the
q groups and none in any of the others. This would put
100% of edges inside groups but clearly doesn’t consti-
tute a useful division of the network. Instead, therefore,
modularity measures not just the number of edges within
groups but the difference between that number and the
expected number of such edges, were edges placed at ran-
dom within the network.
Suppose we take our observed network and randomize

the positions of its edges. We keep the total number of
edges the same but we reposition them between the nodes
at random, in a manner to be determined shortly. And
suppose that, following this randomization, the probabil-
ity that nodes i and j are connected by an edge is Pij .
Then the expected number of edges within groups af-
ter randomization is 1

2

∑

ij Pijδgigj and the modularity
is proportional to the actual number of edges minus the
expected number thus:

Q =
1

m

(

1

2

∑

ij

Aijδgigj − 1

2

∑

ij

Pijδgigj

)

=
1

2m

∑

ij

(

Aij − Pij

)

δgigj (1)

where m is the total number of edges in the network and
is included here by convention only—it makes Q equal
to a fraction of edges rather than an absolute number,
which makes modularity values more easily comparable
between networks of different size. For the purposes of
maximizing the modularity, which is our main concern
here, the factor ofm makes no difference at all. The posi-
tion of the maximum does not depend on overall constant
factors.
Note that if we now put all nodes in the same group,

then δgigj = 1 for all i, j and

Q =
1

2m

∑

ij

(

Aij − Pij

)

= 0, (2)

since, as we have said, the number of edges in the net-
work is held constant during randomization, and hence
∑

ij Pij =
∑

ij Aij = 2m. Thus we no longer get a high
modularity score for putting all nodes in a single group
together. The maximum of modularity occurs for some
other (nontrivial) division of the nodes, which we take to

be the best division of the network. This is the method
of modularity maximization.
It remains to determine what Pij is. The value depends

on the particular scheme we use to randomize the posi-
tions of the edges. The simplest scheme would be just to
reposition the edges uniformly at random, every position
having the same probability as every other. In effect, the
network is replaced by a random graph with the same
number m of edges. For a network of n nodes there are
(

n
2

)

places to put an edge, and hence the probability of
filling any of them with one of the m edges is

Pij =
m
(

n
2

) , (3)

independent of i and j. (Technically this is the expected
number of edges not the probability, but normally m ≪
(

n
2

)

so that probability and expected number are closely
equal.)
In practice, however, this choice does not work very

well because it fails to respect the degrees of the nodes
in the network. The probabilities of connections between
nodes depend strongly on the total number of connec-
tions nodes have—their degrees—with nodes of high de-
gree being much more likely to be connected than nodes
of low degree [9]. For reasons that will become clear in
this paper, it is important to include this effect in the
definition of modularity if things are to work correctly.
Instead, therefore, we consider a constrained random-

ization of the edges in the network in which we preserve
the node degrees, but otherwise position the edges at
random. This kind of randomization is well known in
the study of networks: it gives rise to the random graph
ensemble known as the configuration model [22, 23]. Af-
ter randomization, the probability of connection between
two nodes is equal to

Pij =
kikj
2m

, (4)

where ki =
∑

j Aij is the degree of node i and m is

once again the number of edges in the network. (Again,
this is technically the expected number of edges, but the
probability and expected number are closely equal.)
This is the choice that is most commonly used in the

definition of the modularity. With this choice the modu-
larity is given by

Q =
1

2m

∑

ij

(

Aij −
kikj
2m

)

δgigj , (5)

which is the form in which it is most often written.
There is a further twist, however, because even this

definition does not always work well. As shown by Fortu-
nato and Barthélémy [20], community detection by mod-
ularity maximization using the definition of (5), while it
works in many situations, has one specific shortcoming:
it is unable to find community structure in networks with
many small communities. In particular, if the number of
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communities in a network is greater than about
√
2m,

then the maximum modularity will not correspond to
the correct division. The maximum will instead tend to
combine communities into larger groups and fail to re-
solve the smallest divisions in the network.
To address this problem, Arenas et al. [24] proposed a

generalized modularity function which can be written in
the form

Q(γ) =
1

2m

∑

ij

(

Aij − γ
kikj
2m

)

δgigj . (6)

(A similar generalization was proposed previously on dif-
ferent grounds by Reichardt and Bornholdt [11].)
When the parameter γ = 1, Eq. (6) is the same as

the traditional modularity of Eq. (5), but other choices
allow us to vary the relative weight given to the observed
and randomized edge terms. If one places more weight
on the observed edge term (by making γ smaller), the
maximum modularity division favors, and the method
therefore tends to find, larger communities. If one places
more weight on the randomized edge term (larger γ),
the method finds smaller communities. (Note that when
γ 6= 1 Eq. (2) no longer applies.)
There has not previously been any fundamental theory

dictating what value of γ one should use, but this is one
of the questions on which we will shed light in this pa-
per. (We note, however, that a network can, in principle,
simultaneously contain communities with a range of dif-
ferent sizes, in which case there may be no one “correct”
value of γ [24, 25].)

B. Statistical inference

The other method of community detection we con-
sider is the method of statistical inference, as applied
to the stochastic block model and its variants. With this
method, one fits a generative model of a network to ob-
served network data and the parameters of the fit tell us
about the structure of the network in much the same way
that fitting a straight line through a set of data points
can tell us about their slope.
The model most commonly used in this context is the

stochastic block model, which is a random graph model of
a network with community structure [26–28]. One takes
some number n of nodes, initially without any edges, and
divides them into q groups in some way, with gi being the
group to which node i is assigned, as previously. Then
one places undirected unweighted edges between nodes
independently at random, with the probability ωrs of an
edge between a particular pair of nodes depending only
on the groups r and s to which the nodes belong. Thus
there is a symmetric q×q matrix of parameters ωrs which
determine the probabilities of edges within and between
every pair of groups. If the diagonal elements ωrr of this
matrix are larger than the off-diagonal elements, then
networks generated by the model have a higher probabil-

ity of edges within groups than between them and hence
have traditional community structure.
In fact, the stochastic block model is often studied in

a slightly different formulation in which one places not
just a single edge between any pair of nodes but a Pois-
son distributed number of edges with mean ωrs. Thus ωrs

is the expected number, rather than the probability, of
edges between nodes in groups r and s, and the networks
generated by the model can in principle have multiedges,
meaning there can be more than one edge between the
same pair of nodes. Moreover, one typically also allows
the network to contain self-edges, edges that connect a
node to itself, which are also Poisson distributed in num-
ber, with mean 1

2
ωrr for a node in group r. (The factor

of half is included solely because it makes the algebra
simpler.) The inclusion of multiedges and self-edges in
the model can in some cases add a useful level of real-
ism, as in web or citation networks, for instance: a web
page can link to the same other page repeatedly; a pa-
per can cite another paper repeatedly. In other cases,
multiedges or self-edges are less realistic. However, most
real-world networks are also very sparse, meaning that
the values of the edge probabilities ωrs are very small.
In this situation, the density of multiedges and self-edges
in the network will itself be small and can usually be ne-
glected [29]. At the same time, the Poisson version of the
model is technically easier to handle than the Bernoulli
version. In this paper we use the Poisson version.
The definition of the model above is in terms of its

use to generate networks. When applied to community
detection, however, the model is used in the “reverse”
direction to infer structure by fitting it to data. In this
context, one hypothesizes that an observed network, with
adjacency matrix A, was generated from the stochastic
block model, and attempts to work out what values of the
model parameters must have been used in the generation.
The parameters in this case are the edge probabilities ωrs

and the group memberships gi.
Given particular values of the parameters we can write

down the probability, or likelihood, that the observed
network was generated from the block model thus:

P (A|Ω,g) =
∏

i

(1
2
ωgigi)

Aii/2

(1
2
Aii)!

e−ωgigi
/2

∏

i<j

ω
Aij

gigj

Aij !
e−ωgigj ,

(7)
where Ω denotes the complete matrix of values ωrs and
we have adopted the common convention that a self-
edge is represented by a diagonal adjacency matrix ele-
ment Aii = 2 (and not 1 as one might at first imagine).
The position of the maximum of this quantity with

respect to Ω and g tells us the values of the parameters
most likely to have generated the observed network. Here
we are interested primarily in the group assignments g,
which tell us how the network divides into groups. Alter-
natively (and usually more conveniently), we can maxi-
mize the logarithm of the likelihood. Taking (natural)
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logs of (7), we have

logP (A|Ω,g)

=
∑

i

[

1

2
Aii log

(

1

2
ωgigi

)

− 1

2
ωgigi − log

[(

1

2
Aii

)

!
]

]

+
∑

i<j

(

Aij logωgigj − ωgigj − logAij !
)

. (8)

The terms 1

2
Aii log

1

2
, log(1

2
Aij)!, and logAij ! are all in-

dependent of the parameters and do not affect the posi-
tion of the maximum, so they can be ignored, and the
log-likelihood simplifies to

logP (A|Ω,g) = 1

2

∑

ij

(

Aij logωgigj − ωgigj

)

, (9)

where we have neglected constants. The optimal divi-
sion of the network into communities is then given by
maximizing this quantity with respect to both g and Ω.

C. Degree-corrected block model

As with the modularity, however, this is not the whole
story. This approach fares poorly when applied to most
real-world networks because it doesn’t respect the node
degrees in the network. The stochastic block model as
described here (in either Bernoulli or Poisson versions)
generates networks that have a Poisson degree distribu-
tion, which is very different from the broad distributions
seen in empirical networks. This means that, typically,
the model does not fit observed networks well for any
choice of parameter values. It’s as if one were trying to
fit a straight line through an inherently curved set of data
points. Even the best fit of such a line will not be a good
fit. There are no good fits when the model you are fitting
is simply wrong.
The conventional solution to this problem is to use

a slightly different model, the degree-corrected block
model [29], which can fit networks with any degree dis-
tribution. In this model the nodes are again assigned
to groups gi and edges placed independently at random
between them, but now the expected number of edges be-
tween nodes i and j is (kikj/2m)ωrs (where r, s are the
groups to which the nodes belong as before and ki, kj are
the degrees) or a half that number for self-edges. The fac-
tor of 2m in the denominator is optional but convenient
since, as mentioned earlier, kikj/2m is the probability of
an edge in the configuration model and hence, with this
definition, ωrs quantifies the probability of edges relative
to the configuration model.
Following the same line of reasoning as before, and

again neglecting constants that have no effect on the po-
sition of the likelihood maximum, the log-likelihood for
this model is

logP (A|Ω,g) = 1

2

∑

ij

(

Aij logωgigj −
kikj
2m

ωgigj

)

. (10)

Community detection now involves the maximization
of this quantity with respect to the parameters Ω,g to
find the best fit of the model to the observed network.
This maximization can be achieved in a number of ways.
As with the modularity, there are too many possible
group assignments g to maximize exhaustively on any
but the smallest of networks, but researchers have suc-
cessfully applied a variety of approximate methods, in-
cluding label switching algorithms [28], Kernighan–Lin
style greedy algorithms [29, 30], spectral methods [7],
Monte Carlo [27, 31], and belief propagation [32, 33].

III. THE PLANTED PARTITION MODEL AND

MODULARITY MAXIMIZATION

We now come to the central result of this paper, the
equivalence of modularity maximization to a particular
case of the maximum likelihood method described above.
We previously discussed a version of this equivalence in
the context of work on spectral algorithms [6, 7] and it
has also been discussed by Zhang and Moore [8] in the
context of finite-temperature ensembles of graph parti-
tions. Building on these works, our purpose in this pa-
per is to make explicit the exact equivalence of the two
approaches and investigate some of its consequences.
The planted partition model [34, 35] is a special case of

the stochastic block model in which the parameters ωrs

describing the community structure take only two differ-
ent values:

ωrs =

{

ωin if r = s,
ωout if r 6= s.

(11)

This is a less flexible model than the full stochastic block
model. It effectively assumes that all communities in the
network are similar in the sense of having the same in-
group and between-group connection rates. Nonetheless,
for networks that do have this property, fits to the model
should recover the community structure accurately, and
indeed it has been proved that such fits are optimal in
that case [32, 36, 37].
In practice, if one wanted to apply the planted parti-

tion model, one should in almost all cases use a degree-
corrected version of the kind described in Section II C.
Let us explore the form of the log-likelihood, Eq. (10),
for such a model. Following [6, 7] we note that Eq. (11)
implies that

ωrs = (ωin − ωout)δrs + ωout, (12)

logωrs = (log ωin − logωout)δrs + logωout, (13)

where δrs is the Kronecker delta, as previously. Sub-
stituting these forms into Eq. (10), we find the log-
likelihood for the degree-corrected planted partition
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model to be

logP (A|Ω,g) = 1

2

∑

ij

Aij

[

δgigj log
ωin

ωout

+ logωout

]

− 1

2

∑

ij

kikj
2m

[

(ωin − ωout)δgigj + ωout

]

= 1

2
log

ωin

ωout

∑

ij

(

Aij −
(ωin − ωout)

(log ωin − logωout)

kikj
2m

)

δgigj

+m
(

logωout − ωout

)

= B
1

2m

∑

ij

(

Aij − γ
kikj
2m

)

δgigj + C, (14)

where B and C are constants that depend on ωin and
ωout but not on g, and

γ =
ωin − ωout

logωin − logωout

. (15)

We have also made use of
∑

ij Aij =
∑

i ki = 2m in the

second equality of (14).
To perform community detection, one would now max-

imize this expression with respect to both the group as-
signments gi and the parameters ωin and ωout. But sup-
pose for a moment that we already know the correct val-
ues of ωin and ωout, leaving us only to maximize with re-
spect to the group assignments. Comparing Eq. (14) with
Eq. (6), we see that, apart from overall constants, (14) is
precisely the generalized modularity Q(γ), and hence the
likelihood and the modularity have their maxima with
respect to the gi in the same place. Thus community de-
tection by maximization of the likelihood for the planted
partition model with known values of ωin and ωout is
equivalent to maximizing the generalized modularity for
the corresponding value of γ, given by Eq. (15). (We
leave it as a exercise for the reader to show that a similar
equivalence applies between maximizing the likelihood
for the non-degree-corrected stochastic block model and
the modularity when one makes the choice (3) for Pij .)
Among other things, this result tells us what the cor-

rect value of the resolution parameter γ is for the gener-
alized modularity, an issue that has hitherto been unde-
cided. The correct value, in the sense of the making mod-
ularity maximization equivalent to the maximum likeli-
hood fit, is given by Eq. (15). An immediate corollary
is that in most cases the conventional choice γ = 1, cor-
responding to the original, non-generalized modularity
function of Eq. (5), is not correct.
In most real-life situations, however, we do not in fact

know the values of the parameters ωin and ωout, and
hence we cannot normally employ Eq. (15) directly to cal-
culate γ. The correct values of ωin and ωout can of course
always be estimated by maximizing the log-likelihood of
Eq. (10), though this would defeat the point of using
the modularity in the first place. In Section IIIA we
present an alternative method for estimating γ that oper-
ates within the modularity maximization formalism. For

the moment, however, let us proceed under the assump-
tion that, by one means or another, we have made a good
estimate of the value of γ.
The equivalence between modularity maximization

and maximum likelihood methods has a number of imme-
diate implications. First of all, it provides a derivation of
the modularity that is more rigorous and principled than
the usual heuristic arguments: modularity maximization
(with the correct choice of γ) is equivalent to fitting a
network to a degree-corrected version of the planted par-
tition model using the method of maximum likelihood. It
also explains why the standard degree-dependent choice,
Eq. (4), for the definition of the modularity is better than
the uniform choice of Eq. (3). It is for the same rea-
son that the degree-corrected block model is the correct
choice for the analysis of most real-world networks: the
uniform choice effectively assumes a network with a Pois-
son degree distribution, which is a poor approximation to
most empirical networks. The degree-dependent choice,
by contrast, fits networks of any degree distribution.
The equivalence of modularity and maximum likeli-

hood methods also implies that modularity maximiza-
tion is a consistent method of community detection,
in the technical sense used for example by Bickel and
Chen [28], meaning that under suitable conditions it
will correctly and without bias find community structure
where present. Specifically, if one applies the method to
networks that are themselves generated from the planted
partition model (degree-corrected or not), it will accu-
rately find the communities in the limit of large node
degrees and large system size. This follows because max-
imum likelihood fits to stochastic block models are also
known to be consistent in the same sense [28]. The con-
sistency of modularity maximization has been demon-
strated previously by other means [8, 38], but the equiv-
alence with likelihood maximization makes the intuition
behind it particularly clear.
A further point of interest is that while the value of γ in

Eq. (15) is always positive, regardless of the values of ωin

and ωout, the value of the constant B = m log(ωin/ωout)
in Eq. (14) changes sign depending on which of ωin and
ωout is larger. This means that maximization of the like-
lihood becomes equivalent to minimization of the mod-
ularity when ωout > ωin, i.e., when the network has so-
called disassortative structure, in which connections are
more common between groups than within them. The
minimization of modularity to find such structure has
been proposed previously on heuristic grounds [39], but
the derivation here gives a rigorous foundation for the
procedure.
On the other hand, the equivalence of maximum like-

lihood and maximum modularity methods also reveals
some hidden assumptions and limitations of the modu-
larity. The planted partition model, with its assumption,
Eq. (11), that the edge parameters ωrs take the same
values for every community, is less powerful than the full
stochastic block model and modularity maximization is
similarly less powerful as a result. In effect, modularity
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maximization assumes all communities in a network to
be statistically similar. This may be a good assumption
in some networks, but there are certainly examples where
it is not, and we would expect the modularity maximiza-
tion method to perform less well in such cases than more
general methods.
Some variants of the maximum likelihood method

also include additional parameters that control the prior
probabilities that nodes are assigned to one group or an-
other [32, 37], and by varying these parameters one can
bias the model toward particular choices of the sizes of
the groups, including heterogeneous choices where the
sizes can vary greatly from group to group. The version
used here, to which modularity maximization is equiva-
lent, includes no such parameters however, which in ef-
fect means that a priori the sizes of all groups are the
same and hence that modularity maximization implicitly
prefers groups of uniform size, which could also hurt per-
formance if this assumption doesn’t match the properties
of the observed network.

A. Value of the resolution parameter

A drawback of the equivalence we have demonstrated
is that it applies only when we use the correct value of the
resolution parameter γ, which normally we do not know.
As mentioned above, one could estimate γ by performing
a maximum likelihood fit to the block model and then
feeding the best-fit values of ωin and ωout into Eq. (15).
This, however, would defeat the point of using the modu-
larity at all, since in performing the maximum likelihood
fit we also determine the community assignments gi and
hence there is no longer any need to maximize the modu-
larity. As an alternative, therefore, one can instead make
an empirical estimate of the value of γ within the modu-
larity formalism using an iterative scheme as follows.
First, one makes an initial guess about the value of γ.

This guess need not be particularly accurate: γ = 1 usu-
ally works fine. Then, given this value, the network, and
the number of communities q, one finds the communities
by modularity maximization (holding the number of com-
munities fixed at the value q). This gives us some set of
assignments gi of nodes to groups—likely not optimal—
from which we can then make an estimate of the pa-
rameters ωin and ωout by noting that the expected total
number of in-group edges min in the (degree-corrected)
planted partition model is

min = 1

2

∑

r

∑

ij

kikj
2m

ωrrδgi,rδgj ,r =
ωin

4m

∑

r

κ2

r, (16)

where κr =
∑

i kiδgi,r is the sum of the degrees of the
nodes in group r. Hence we can estimate ωin from

ωin =
2min

∑

r κ
2
r/2m

, (17)

using the observed value of min as an estimate of the
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FIG. 1: Resolution parameter γ, estimated using the method
described here, for a set of synthetic networks with varying
numbers of communities. The networks were generated using
the standard (non-degree-corrected) planted partition model
with q equally sized groups of 250 nodes each and parame-
ters ωin and ωout chosen so that each node has an average
of 16 connections within its own group and 8 to every other
group. Modularity was maximized using simulated annealing
with an exponential cooling schedule. The circles represent
the estimated values of γ and the solid line represents the true
values calculated from Eq. (15).

expected value. Similarly for ωout we have

ωout =
2mout

∑

r 6=s κrκs/2m
=

2m− 2min

2m−∑

r κ
2
r/2m

, (18)

where mout is the number of edges running between dis-
tinct groups.
Using these estimates of ωin and ωout we can now cal-

culate a new value of γ from Eq. (15). Then we repeat
the process, maximizing the modularity and recalculat-
ing ωin, ωout, and γ until we achieve convergence. The
consistency of modularity maximization, mentioned ear-
lier, implies that this procedure should converge to the
correct value of γ (and the correct community structure)
for networks that actually are generated from the planted
partition model, in the limit of large node degrees. For all
other networks (meaning, in practice, for all real-world
applications of the method) we have no formal guaran-
tees of correctness or convergence, though the same is
also true of all other methods of community detection,
including, but not limited to, community detection by
statistical inference.
One might imagine that this would not be a very effi-

cient method for calculating γ: it requires repeated max-
imization of different modularity functions until the cor-
rect value of γ is reached. In practice, however, we have
found that it converges quickly. In most cases we have
examined, γ is calculated to within a few percent after
just one iteration, and in no case have we found a need for
more than ten iterations, so the method may in fact be
quite serviceable. Figure 1 shows an example application
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Network n m q γ

Karate club 34 78 2 0.78

Dolphin social network 62 159 2 0.59

Political blogs 1225 16780 2 0.67

Books about politics 105 441 2 0.59

Characters from Les Miserables 77 254 6 1.36

American college football 115 614 11 2.27

Jazz collaborations 198 2742 16 1.19

Email messages 1133 5451 26 3.63

TABLE I: Number of nodes n, number of edges m, number of
communities q, and estimated value of the resolution parame-
ter γ for a range of networks studied in the previous literature.
The networks are the karate club network of Zachary [40],
the dolphin social network of Lusseau et al. [41], the network
of political weblogs studied by Adamic and Glance [42], the
network of books about politics studied by Krebs (unpub-
lished, but see for instance [15]), the network of interactions
between fictional characters in the novel Les Miserables by
Victor Hugo [9], the network of regular season games between
Division I-A college football teams in the year 2000 [9], the
network of collaborations between jazz musicians studied by
Gleiser and Danon [43], and the network of email messages
between university students of Ebel et al. [44]. The value of q
used for each network is the generally accepted one, except
for the last two networks, for which there does not appear
to be a consensus. For these two networks we estimate the
number of communities using the inference method of [45].

to a set of artificially generated (“synthetic”) networks
for which the true value of γ is known and, as the figure
shows, the algorithm is able to determine that value ac-
curately in every case. Table I gives values of γ calculated
using the algorithm for a number of real-world networks
that have been used as test cases in previous community
detection studies. (Note that, as described above, the
value of q is fixed during the modularity maximization
process in each case. Maximization of modularity with q
allowed to vary does not, in general, give good estimates
of the number of communities in a network, and it is cer-
tainly possible that we would get different and incorrect
numbers of communities were q allowed to vary.)
The values of γ vary in size, but there is an overall

trend towards larger values in networks with larger num-
bers of communities, both among the synthetic networks
and the real ones. This is perhaps not unexpected given
that the resolution parameter γ was originally introduced
precisely in order to deal with networks with larger num-
bers of communities. Recall that larger values of γ, and

specifically values larger than the traditional value of 1,
are needed in networks where the number of communi-
ties exceeds the resolution limit at

√
2m. None of the

networks studied here approach this limit, but nonethe-
less we should not find it surprising that the larger values
of q in both Fig. 1 and Table I are best treated using val-
ues γ > 1.
Whether the algorithm given here is in fact a useful

one in practice is a debatable point. As we have shown, it
does no more than the likelihood maximization method,
and the latter in principle gives better results, since it
does not assume that all groups are statistically simi-
lar. Modularity maximization does have the advantage
of being less nonlinear than maximum likelihood meth-
ods, which allows for some faster algorithms such as spec-
tral [7, 15] and multiscale [19] algorithms. Still, the re-
sults derived here are primarily of interest not because
of the algorithms they suggest, but because of the light
they shed on the strengths and weaknesses of modularity
maximization.

IV. CONCLUSIONS

We have shown that modularity maximization, for an
appropriate choice of the resolution parameter control-
ling community size, is a special case of the maximum
likelihood method of community detection, as applied
to the degree-corrected planted partition model. The
equivalence between the two approaches highlights some
weaknesses of the modularity maximization method: the
method assumes all communities to have statistically
similar properties, which may not be the case, and also
requires us to compute the correct value of the resolution
parameter. In most previous work, the resolution param-
eter has been assumed to take the value 1, but we have
shown that this assumption is normally not correct and
given an explicit formula for the correct value along with
an algorithm for computing it on observed networks.
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