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We study the mutual percolation of two interdependent lattice networks ranging from two to
seven dimensions, denoted as D. We impose that the length (measured as chemical distance) of
interdependency links connecting nodes in the two lattices be less than or equal to a certain value,
r. For each value of D and r, we find the mutual percolation threshold, pc[D, r], below which
the system completely collapses through a cascade of failures following an initial destruction of
a fraction (1 − p) of the nodes in one of the lattices. We find that for each dimension, D < 6,
there is a value of r = rI > 1 such that for r ≥ rI the cascading failures occur as a discontinuous
first order transition, while for r < rI the system undergoes a continuous second order transition,
as in the classical percolation theory. Remarkably, for D = 6, rI = 1 which is the same as in
random regular (RR) graphs with the same degree (coordination number) of nodes. We also find
that in all dimensions, the interdependent lattices reach maximal vulnerability (maximal pc[D, r])
at a distance r = rmax > rI , and for r > rmax the vulnerability starts to decrease as r → ∞.
However the decrease becomes less significant as D increases, and pc[D, rmax]− pc[D,∞] decreases
exponentially with D. We also investigate the dependence of pc[D, r] on the system size as well as
how the nature of the transition changes as the number of lattice sites, N → ∞.

I. INTRODUCTION

The behavior of many complex systems in the real
world can be better understood and explained through
network theory[1–7]. Highway traffic, power outages, the
relationship between businesses and many other phenom-
ena can be modeled as networks. Additionally, many of
the real networks, such as the communications network
and the power grid are interdependent on each other[8–
19]. Their behavior can be discussed in terms of mutual
percolation: in order to function properly, a node in each
network must be connected to the giant component of
its own network and must be supported by an interde-
pendent node in the other network. An initial failure of
a fraction (1 − p) of nodes in one network will lead to
failures in the other network. This will either cause both
networks to eventually stabilize, preserving their giant
components, or to completely collapse. The communica-
tion network and the power grid network are examples
of such interdependent networks, embedded in space. A
blackout in a city may cause a server operating the power
grid to go down, and this may cause further disruption of
power stations. Another example is the network of sea-
ports and the network of national highways, which are
interdependent on each other. Hurricane Sandy demon-
strated that if a seaport gets damaged, the city to which
it supplies fuel will become isolated from the highway
network. Similarly, a city without fuel for trucks cannot
supply a seaport properly, and the seaport will not be
able to function well [19]. So, most real world interde-
pendent networks contain nodes which are embedded in a
two dimensional surface or in a three-dimensional space.
Moreover, it is reasonable to assume that the interdepen-
dent nodes in the two networks are not located far away
from each other. [17, 18].

Li et. al [17] introduced the concept of a dependence
on distance, according to which a node in network A

can be interdependent with a node in network B, only if
the distance between these two nodes does not exceed a
value, r. The definition of distance used by those authors
differs slightly from the chemical distance[20] (sometimes
referred as Manhattan metric or Taxicab geometry) used
in the present work, and the effect of this difference will
be discussed below, in Section V. From here on, the word
distance or length in this work will always refer to this
chemical distance.

In [17] it was shown that the constraint on the length
of the interdependency links significantly affects the mu-
tual percolation of the two networks and alters the prop-
erties of the system’s collapse. It was found that for
r = 0, the collapse transition in two interdependent two-
dimensional lattice networks is identical to the classical
percolation problem in a two dimensional lattice[21, 22].
As r increases, the critical percolation threshold, pc, in-
creases, but the transition remains a second order transi-
tion, in which the size of the surviving mutual giant com-
ponent of the system gradually approaches zero as the
fraction p approaches pc. Interestingly, when r reaches a
critical value, rI ≈ 8, the transition suddenly becomes a
first order transition, in which either the majority of the
nodes survive, or the networks are completely destroyed.
As r increases further, pc starts to decrease until, for
r → ∞, it reaches the value characteristic of the mutual
percolation on the lattices with random interdependency
links. In the interval rI ≤ r < ∞, the cascading fail-
ures lead to a small hole which starts to grow circularly
until all the nodes of both lattices are wiped out. The
explanation of this phenomenon [17] was based on the
idea that cascading failures in this regime propagate by
the destruction of nodes close to the perimeter of the
hole that is larger than r. This will happen because such
nodes have lost their supporting nodes in the other net-
work, previously located in the hole. For small r, pc is
close enough to the critical threshold of classical perco-
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lation, ppc , at which the size of the holes diverge, so that
holes larger than r appear at the first stage of the cas-
cade. However as r grows, pc also grows and eventually
the typical size of the holes, dictated by the correlation
length of the classical percolation becomes equal to r.
When this happens, the system becomes metastable: a
random formation of a hole of a sufficient size by a local
density fluctuation causes the circular growth of such a
hole, destroying the entire system. As r increases in the
vicinity of rI , a smaller value of p is needed to produce a
hole of size r. Therefore, pc starts to decrease for r > rI .

This behavior should be contrasted with that of a
random-regular (RR) graph of degree k. An RR graph
can be regarded as an infinitely dimensional lattice,
where the surface is not a well defined concept, because
its dimensionality is equal to the dimensionality of the
entire graph. Thus, for two interdependent identical RR
networks, using the shortest path between a pair of nodes
as the distance for the interdependency links, pc should
monotonically increase with r, and the transition should
switch from second order to first order as r increases. In-
deed, this has been shown numerically (and analytically
in some of the cases) by Kornbluth et al.[19], who found
for k > 8, rI becomes 1. For the case (k = 8, r = 1), a
first order phase transition is closely followed by a second
order phase transition at a smaller p, and for k ≤ 7, rI
becomes greater or equal than 2. We expect that in our
case, when the dimensionality of the lattice increases, the
behavior observed for the D-dimensional interdependent
lattices studied here should converge to the behavior of
the interdependent RR graphs. Additionally, there is the
possible existence of an upper critical dimension, [21, 22]
above which the fractal dimension of the percolation clus-
ter and the fractal dimension of its surface (accessible
perimeter) both become equal to 4 and, hence, the prop-
agation of an interface becomes ill-defined. For classical
percolation the upper critical dimension is known to be
six[24]. Thus one can hypothesize that for the mutual
percolation of two 6D lattice networks, the behavior will
be similar to that of infinite dimensional networks, for
which the interface of a percolation cluster coincides with
the cluster itself. The goal of this paper is to test all of
the hypotheses discussed above.

II. THE MODEL

We study the mutual percolation[8] of two interdepen-
dent hypercubic lattice networks in several dimensions.
We create two identical networks A and B, whose nodes
are labeled 1, 2, ...N = LD where D is the dimension of
the lattice and L is the number of nodes along each of
its dimensions. Each node is connected with edges to
exactly k = 2D nearest-neighbor nodes. We then in-
troduce one-to-one bidirectional interdependency links,
such that the shortest path between any two interdepen-

dent nodes is not greater than r. In order to decrease
computation time and define how the network is built,
we introduce two isomorphisms between networks A and
B. These isomorphisms, the topological isomorphism, T ,
and the dependency isomorphism, D, are those which
were defined in Kornbluth, et. al [19]. The topological
isomorphism is defined for each node Ai as T (Ai) = Bi

and verifies that if Ai and Aj are first neighbors in net-
work A, then T (Ai) and T (Aj) are first neighbors in
network B and vice versa. For the case of lattices, the
topological isomorphism is automatically established due
to the identical lattice structure. The dependency iso-
morphism, establishes the interdependency links, and we
create it following the restriction that Bk = D(Ai) only
if the shortest path connecting Ai and Ak = T (Bk) is
of a length rik ≤ r. Since our goal is to compare the
behavior of D-dimensional hypercubic lattices to the RR
graphs with k = 2D, for which the concept of coordinates
is not applicable, we choose our definition of distance as
one that is identical to that used for RR graphs (i.e. the
chemical distance which is the smallest number of edges
connecting the two sites). In the context of hypercubes
this metric is the Manhattan metric, which slightly dif-
fers from both the Euclidian metric and the cubic metric
used in Li et al.[17], r = maxDi=1

|∆xi|, where ∆xi are the
coordinate differences of the two interdependent nodes.

In order to establish the dependency isomorphism,
while still satisfying the shortest path restriction, Li et
al.[17] created a random permutation of the indices of all
the nodes that fulfilled the distance restriction. However,
in our case we followed the procedure developed by Ko-
rnbluth et al.[19], namely we set D(Ai) = Bi only if there
are no other possibilities for D(Ai). Additionally, we re-
quire that if D(Ai) = Bk, then D(Bi) = Ak. This further
restriction decreases the time required for computation,
without affecting the results in any essential way.

Initially, a fraction (1− p) of randomly selected nodes
in the first network are destroyed. Any node in the sec-
ond network whose interdependent node in the first net-
work has been destroyed, or who lost its connectivity
to the largest percolation cluster (the largest group of
nodes, connected to each other) will also be destroyed.
We return to the first network and further destroy all
the nodes who lost their support in the previous pro-
cess, or who got disconnected from the largest percola-
tion cluster, as a consequence of the previous stage. This
process of destruction continues to alternate between the
networks and is referred to as a cascade of failures. The
process ends when both networks no longer contain nodes
that will fail. The largest mutual cluster of nodes which
spans the entire network is called the mutual giant com-
ponent. In addition to the largest mutual cluster, we also
find mutual clusters of smaller sizes as defined in Ref.[8].
In all cases, if the fraction of nodes p surviving the initial
attack falls below a certain critical threshold, p-critical
or pc, the network completely collapses and the largest
mutual cluster becomes a negligible fraction of the initial
size of the system. We study how pc changes as a func-
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FIG. 1: Plot of pc[D, r] vs. r for lattices of dimensions
ranging from 2 to 7. The smaller symbols correspond to
second order transitions, the larger symbols correspond
to first order transitions and the bold symbols denote
the maximum value of pc[D, r] for a given dimension.
The last value in each plot is the value of pc[D,∞]

tion of the maximum length r of interdependent links, as
well as the dimensionality of the networks D. We denote
the p-critical value for a network of dimension, D, and
distance, r, as pc[D, r]. In all cases we run our simula-
tions for lattices of at least N = 106 nodes. To estimate
the finite size effect, we perform additional simulations
for several system sizes up to N = 6.4 × 107. In Sec-
tion IVB, we discuss the finite size effects. In particular
we explore the cases in which changing the system size
leads to the change in the order of the transition. For
each combination of [D, r] and several values of p in the
vicinity of pc[D, r] we conduct M = 1000 independent
simulations and compute the size of the largest cluster
and that of the second largest cluster. We then con-
struct a histogram of the sizes of the largest cluster and
compute the average size of the second largest cluster.

III. SIMULATION RESULTS

A. Main results

We run simulations to determine the value of pc for
lattices of two through seven dimensions. For these
lattices, we find that the value of pc increases with
r, reaches a maximum at r = rmax, and then slowly
converges to pc[D,∞], which is the value of pc for
random interdependency links (Figure 1). For low
values of r < rI , the transition is second order, while
for higher values of r ≥ rI the transition is first order.
Additionally, we find that rmax > rI for all D. For
example, in a two-dimensional lattice for 0 ≤ r ≤ 10,
the transition is second order and, for r ≥ rI = 11, the
transition is first order, while the maximum value of pc
occurs when r = rmax = 12.

The trend of the maximum value of pc occurring
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FIG. 2: Plot of the decrease of the difference between
pc[D, rmax] and pc[D,∞] as the dimension of the lattice

increases.

after the change from second to first order transi-
tions is present through all dimensions, including the
seven-dimensional lattice. However, the difference,
pc[D, rmax] − pc[D,∞], decreases exponentially with
D (Fig. 2). It is also interesting that the difference
between rmax and rI increases with D. Thus, the case
of RR graphs in which the maximum of pc is reached
only for r = ∞ [19], is the limiting case of the behavior
of finite lattices when D → ∞.

Additionally, as D increases, the difference between
the individual values of pc for the lattice and RR net-
works with k = 2D decreases (Fig. 3). Figure 4 shows a
comparison between the pc[D,∞] for our simulation re-
sults and the analytical results for pc for a RR network
with k = 2D and random interdependent links. The pc
of the lattice network slowly approaches that of the RR
network as the number of neighboring nodes (degree), k,
increases.

B. Types of collapses

As discussed in connection with Figure 1, the size of
the surviving fraction of the networks at the end of the
cascade of failures experiences a transition as a function
of the size of the initial attack. When this attack is small
the network survives almost intact, but if this attack is
large enough the final largest mutual cluster will become
a negligible fraction of the initial size of the system. For
each dimension, the nature of this transition can be first
order or second order, depending on the value of the dis-
tance r of the interdependency links. We can clearly
distinguish the nature of the transition by examining the
cumulative distribution of the fraction of nodes, µ, in
the largest mutual cluster of the networks for different
realizations of the initial attack at criticality, p = pc. As
seen in Fig. 5, for the case of a first order phase transition
the values of µ fall into two very well separated ranges.
In the case illustrated there, for D = 3 and r = 5, the
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FIG. 3: Comparison of pc[D, r] vs. r for lattices of varying dimensions and the corresponding RR network. The
smaller symbols denote second order transitions and the larger symbols denote first order transitions.
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FIG. 4: Comparison between our simulation results for
pc of lattice networks with random interdependent links
and the analytical results for pc for RR networks with

k = 2D and random interdependent links

values of µ are above the value α ≈ 0.35, or below the
value β ≈ 0.02. There are no simulations which result
in α > µ > β. Accordingly, we define a transition as
first order, if there is this clear gap in the plot of the cu-
mulative distribution of the largest cluster. For a second
order transition, as seen in the same figure for the case of
[D = 3, r = 4], the graph of the cumulative distribution
of the mutual largest cluster of the networks looks sig-
nificantly different from that of a first order transition.

The cumulative distribution of µ decreases continuously,
and the size of the largest mutual cluster can take many
values with no discontinuous jump in the middle of the
distribution as in the previous case.

C. Determination of pc

In finite networks, there is always an uncertainty in
the size of the largest mutual cluster, which makes the
precise determination of pc a formidable problem. Ac-
cordingly, we use two different methods for determining
the approximate values of pc for the cases of the first and
the second order transitions, which have been developed
in Refs. [10, 19, 22]

In case of the first order transition, for each value of
p we study, we first define q(p) as a fraction of realiza-
tions that result in µ ≥ α. Accordingly, the fraction of
realizations that result with µ ≤ β is 1 − q(p). Follow-
ing Ref. [19] we define pc as the value of p such that
q(p) = 1/2. However, for finite size networks, the size of
the largest mutual largest cluster is subject to statistical
fluctuations. Therefore, the value of q(p) is defined with
a certain statistical error. Using the Law of Large Num-
bers, we find the upper bound for its standard deviation,
σq ≤ 1

2
√

M
, where M is the number of independent real-

ization of the system. In first order transitions, a small
change in p will result in a dramatic change in the largest
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FIG. 5: Plot of the cumulative distribution of the
largest cluster for the last second order transition of a
3D network with N = 106, at pc[3, 4] = .4464 and the

first order transition at pc[3, 5] = .4604. There is a clear
large gap in the plot of the size of the largest cluster for
the first order transition, which is absent in the case of

the second order phase transition

mutual cluster distribution (Fig. 6). A slight increase in
p will lead to q(p) = 1 and a slight decrease will lead
to q(p) = 0. Obviously pc must belong to this interval.
Therefore, in order to determine pc, we produce several
simulations for values of p which belong to the interval in
which 0 < q < 1, such that we get at least one point p1
with q1 = q(p1) belongs to the interval [0.1, 0.5] and at
least one point p2 with q2 = q(p2) belongs to the interval
[0.5, 0.9]. We next find pc by linear interpolation

pc = p1 + (
1

2
− q1)

p2 − p1
q2 − q1

. (1)

Based on σq, we can estimate the 95% confidence error
bar in pc as

∆p =
p2 − p1

(q2 − q1 − 2σq)
√
N

. (2)

Usually we obtain more than one pair of points p1, p2,
which satisfy the above conditions. In this case we
can construct a linear least square fit of q(p) and solve
q(p) = 1/2. The values of pc obtained by this method
are always within ∆p from pc found by linear interpola-
tion. This observation suggests that the actual error bar
is smaller than the estimate given by Eq.(2), which in
all cases studied does not exceed 0.0004. This error bar
is sufficient to precisely determine rmax for each studied
dimension D and system size N .

For the case of the second order transition the method
described above cannot be used because α and β can-
not be clearly defined. Instead, we use the average sec-
ond largest mutual cluster to determine the value of pc
[10, 22]. As discussed in Kornbluth et al. [19], when
p > pc the largest mutual cluster spans the network, pre-
venting other large clusters from forming. When p < pc
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FIG. 6: Plot of largest cluster size at and near
pc[3, 5] = .4604. It can be seen that a very small change
in p leads to drastically different largest cluster size
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FIG. 7: Plot of the average second largest cluster size as
a function of p for 2, 3 and 4 dimensional lattices

the network is very fragmented and large clusters are,
therefore, not able to form. However, when p ≈ pc, the
average size of the second largest cluster develops a sharp
peak (Fig. 7). We verified this in cases of second order
transitions of all lattices, regardless of dimension. Thus,
for the case of second order transitions, we determine
pc by finding the value of p for which the average size
of the second largest cluster reaches its maximum. The
error bar in pc in this case is defined as the difference be-
tween the two values of p one above and another below
the value providing the maximum. We make sure, that
the step in p is large enough, so that a single maximum
is observed. In this case the error bar in pc also never
exceeds 0.0004. Thus in all cases studied, the error bar
of pc is much smaller than the symbol size in Fig. 1.
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IV. DISCUSSION OF THE RESULTS

A. Propagation of the interface of the hole

It was noted in Ref. [17] that these interesting phe-
nomena (the existence of rI and rmax) are related to the
presence of the surface of a hole in the mutual cluster
which is valid only in a system of a finite dimension.
Indeed, one can specifically study the problem of a prop-
agating D − 1 dimensional interface on a D-dimensional
lattice based on the mutual percolation rules discussed
above, with the maximal interdependence distance r and
the initial density of surviving sites p. The process of
this propagation is similar to the various models of fluid
propagation in disordered media [23] which are charac-
terized by the depinning transition: i.e. there is a critical
threshold p = pfc above which the interface is completely
blocked by the obstacles, but below which the velocity
of the interface propagation is finite, and gradually de-
creases to zero when approaching the critical threshold:
v ∼ (pfc − p)θ. The depinning transition is a second or-
der transition characterized by several critical exponents,
one of which is θ > 0. The fluid propagation near p = pfc
is characterized by avalanches: one remaining active site
in a completely blocked interface can create an avalanche
of propagation. The size distribution of the avalanches
obeys a power law similar to the distribution of the clus-
ter sizes in percolation theory. In the mutual percolation
model, pfc (r) of the interface propagation increases with r
from the value ppc of classical percolation theory at r = 0,
to the value 1 at a certain r = rf . If r > rf the interface
propagates freely through the system even if the lattice
is completely intact.
When pfc is close to the percolation threshold ppc , the

correlation length of percolation, ξ(pfc ), is greater than
r. This means that there are always holes of size greater
than r, and the interface is always spontaneously cre-
ated. The interface will start to propagate from many
different places. However, if p is close to pfc from above,
the propagation will stop leaving a sponge-like mutual
giant component with holes of all possible sizes. The de-
struction of a single node may disconnect a huge portion
of the mutual giant component and may dramatically
reduce its size. Hence there is a broad distribution of
the sizes of the mutual giant component, which is one of
the characteristics of a second order phase transition. In
contrast, when pfc is far above pc, for large values of r,
the size of the holes are smaller than r and the interface
cannot be created spontaneously. Therefore, one must
reduce p in order for a hole of size r to be created. As
we consider larger values of r, the value of p required to
create such a hole decreases. Once the hole is created, its
interface starts to propagate freely because p < pfc , and
it will wipe out the entire lattice. In this scenario, for
small r the critical threshold of the mutual percolation
is pc = pfc (r), which increases with r, until ξ(pfc ) = r.
In that interval, the transition is second order. But for
r > ξ(pfc ), pc starts to decrease, following the equation

ξ(pc) = r, and the transition becomes first order. In fact,
the values of r = rI at which the transition becomes first
order for the first time and r = rmax at which pc starts
to decrease may not exactly coincide. There is always a
probability that a hole of size r > ξ(p) may appear in a
large enough system. Thus for r > rI , one can expect the
average pc to be in between the increasing function pfc (r)
and the decreasing function p(r) defined by the equation
ξ[p(r)] = r, and hence may still increase until it reaches
its maximum at r = rmax.

B. Dependence of the transition order and rmax on

the system size

One would expect that the values of rI and rmax

should depend on the system size. Moreover, as shown
in the previous section, for r ≥ rI the system becomes
metastable with respect to formation of a hole, in a simi-
lar way a superheated liquid is metastable to spontaneous
nucleation of a gas bubble. The larger the system, the
greater the probability that the critical hole will spon-
taneously form. We notice that if the interdependence
distance r is chosen in the vicinity of rI , the system ex-
hibits the strongest finite size effects in terms of pc[D, r].
However, based on our studies of networks of different
sizes, we find that, in all dimensions except D = 2 and
D = 6, the values of rmax and rI do not depend on the
system size if N ≥ 106. The case D = 2, r = 10 is pre-
sented in Figs. 8 and 9 and the case D = 6 and r = 1 is
presented in Fig. 11. These two examples are very dif-
ferent from each other and the increasing importance of
the finite size effects which mask the nature of the tran-
sition are caused by different mechanisms. In the low
dimensional system, the dependence is caused by the in-
creasing probability of formation of holes. However, in
the high dimensional system it is caused by the statistical
uncertainty in the value of the largest mutual percolation
cluster, which becomes a small fraction of the entire net-
work.

The formation of the large holes as the mechanism for
network collapse is especially important in low dimen-
sional systems in which the dimensionality of the interior
of the hole and its perimeter are significantly different.
As mentioned in the previous section, the critical thresh-
old of the moving free interface, pfc (r), linearly increases
with r. However, the probability of the spontaneous for-
mation of a hole of size r at pfc (r), decreases with pfc .
This is because the probability, per one lattice site, of
the formation of a hole of size r decreases exponentially
with r, ph(r) ∼ exp(−r/ξ) where ξ ∼ (pfc − ppc)

−ν is
the percolation correlation length, ppc is the percolation
critical threshold and ν is a critical exponent. The total
probability of the formation of a hole in a lattice of size
N is Nph(r). We can expect the formation of the hole in
a given instance of the lattice if Nph(r) = 1. Thus the
fraction, ph, of survived nodes for which the hole of size r
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will be formed can be found from the following equations:

LD exp[−ar(ph − ppc)
ν ] = 1

ar(ph − ppc)
ν = D ln(L)

ph(r) = (D ln(L)/ar)1/ν + ppc

(3)

where a is a proportionality coefficient. If ph < pfc (r),
then the system is metastable and the hole of size r cer-
tainly eliminates the entire system. If ph > pfc (r) then
the interface of the hole will grow unpredictably, as in the
second order phase transition. Thus if L is large enough
we can expect the transition to be second order (Figs. 8
and 9) and follow the increasing function, pc = pfc (r) for
larger and larger r (Fig. 10). For a fixed L, as soon as
ph(r) < pfc (r), the type of the transition will change to
first order. Moreover, pc will switch to follow the graph of
ph(r). Thus, at a fixed r, pc will increase logarithmically
with the system size until it reaches pfc (r), after which
the dependence on L stops (Fig. 10). We also observe the
logarithmic dependence of pc in the vicinity of rmax on
the system size for all other dimensions, but the strength
of the dependence becomes weaker as D increases and for
D ≥ 3 it is not sufficient to change the value of rmax and
rI .

C. The effect of statistical fluctuations

The other interesting case is the 6-D lattice with r = 1.
For L = 10 (N = 106), the transition looks second or-
der (Fig. 11). As we increase L, the transition begins
to slowly shift from second order to first order, and only
when L = 20 (N = 4× 106), the transition becomes dis-
tinctly first order. The explanation of this fact is based
on the statistical errors in finite systems. If we remove ex-
actly N(1−p) random sites from the system in an initial
attack, it does not mean that the size of the giant com-
ponent in the lattice after the first stage of the cascade
will be exactly Ng(p), where g(p) is the expected value
of the giant component in a percolation problem. Ac-
cording to the law of large numbers the size of the giant
component will be distributed around g(p) with a stan-

dard deviation σg ∼ 1/
√
N . Moreover, the long cascade

of failures at p = pc can be viewed as sequence or itera-
tions approaching the tangential point between the curve
y = pg(x) and y = x [8]. If g(x) is changed by an error σg,
the root of the equation x = pg(x) will change as

√
σg,

because at the tangential point this equation becomes
a quadratic equation with zero discriminant and hence
changes in discriminant of the order of σg will result in

the change of the root of the order of
√
σg ∼ N−1/4.

Thus, we can expect that the statistical error of the mu-
tual giant component as well as its mean value near the
first order transition will decrease with the system size
as N−1/4. We observe this behavior for all r and D, but
only for D = 6 are these effects are strong enough to
affect the apparent order of the collapse transition. For
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FIG. 8: Plot of the largest cluster distribution for 2D
lattice networks of increasing size (with r = 10). It can
be seen that as the size of the network increases, the
type of transition becomes more second order. When
L ≥ 750, the transition becomes second order and
approaches the true transition of the 2D lattice.

all other dimensions, the order of the transitions remains
the same even when the system size is increased.
Indeed, the probability density function (PDF) of the

mutual giant component near the first order phase tran-
sition is the derivative of the cumulative distribution and
hence the inflection point of the plateau of the cumulative
distribution corresponds to the minimum of the PDF.
Thus, the PDF of µ near the first order phase transition
is a bimodal distribution with a left peak corresponding
to the collapsed states of the system, and a right peak
corresponding to the survived states of the system. Fig-
ure 12 shows the PDF of µ (for D = 6, r = 1) for various
values of L. One can see that the right peak becomes
sharper as L increases. As the right peak becomes nar-
rower, for L = 20 it practically stops overlapping with the
left peak, making the distribution clearly first order-like.
Figure 13 shows the standard deviation and mean of

the right peak as function of 1/N−1/4 (equal to 1/L−3/2

in six dimensions). One can easily see an approximately
linear behavior confirming our theory. The different
curves correspond to different methods of estimating σ
and µ. The first method is the direct computation of the
average µ and the variance from realizations of µ > µmin,
where µmin is the value of the minimum of the PDF. The
second method consists of doing a Gaussian fit near the
maximum of the right peak of the PDF. In this last case
σ can be computed from the maximum of the PDF and
from the coefficient of the second power of the quadratic
polynomial fitting the logarithm of the PDF.

D. The upper critical dimension

The upper critical dimension of the classical percola-
tion might play an important role in the mutual perco-
lation problem with distance restriction as well. This
means that, qualitatively, the behavior of our model for
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FIG. 9: (Color online) Plot of the largest cluster
distribution for a 2D lattice network of size L = 1000
and L = 2000, with r = 10, for different values of p.
When L = 2000, denoted by the thicker lines, the

transition is completely second order.
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FIG. 10: Behavior of pc for D = 2, as function of r for
different system sizes: L = 500, 1000 and 2000. The
inset shows pc as function of ln(L), to test Eq. (3).
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FIG. 11: (Color online) Plot of the largest cluster
distribution for a 6D lattice network with r = 1 of
increasing size. It can be seen that as the size of the

network increases, the type of transition becomes more
and more first-order-like. When L = 20, denoted by the
blue circles, the transition becomes completely first
order and the finite size effects are no longer present.
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FIG. 12: PDF of µ for D = 6, r = 1 for increasing
values of L from 10 to 20. One can see that the right
peak, corresponding to survived giant component,

becomes sharper as L increases.
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FIG. 13: The average mutual giant component, µ, and
its standard deviation σ, computed for D = 6, r = 1 as

functions of the lattice size L plotted against
N−1/4 = L−3/2. One can see an approximately linear

behavior for both quantities. Different curves
correspond to different methods of estimating σ and µ

as discussed in the text.

D ≥ 6 should coincide with the behavior of a RR network
with k = 2D = 12. In this RR network, the first value of
r in which there is a first order transition, is rI = 1 [19].
As shown above, when analyzing very large 6D lattice
networks for which the finite-size effects become negligi-
ble (for L ≥ 20), the transition at r = 1 is first order as
well. For D = 7 and L = 10, the transition for r = 1 is a
clear first order transition. This supports our hypothesis
that the upper critical dimension for percolation plays a
role in the problem of mutual percolation with restricted
interdependency distance. However, the quantitative dif-
ference of the behavior of pc for lattices and RR graphs
gradually decreases with D.



9

V. CONCLUSION

In our study we confirm that the behavior of the inter-
dependent D-dimensional lattices with distance limita-
tion r between the interdependent nodes approaches the
behavior of the interdependent RR graphs asD increases.
We find that for D < 6 there is a value of r = rI > 1
such that for r ≥ rI the cascading failures happen as a
discontinuous first order transition, while for r < rI the
transition is a continuous second order transition, as in
the classical percolation theory.

We also find that in all dimensions, the interdepen-
dent lattices reach maximal vulnerability (largest pc) at
a distance r = rmax > rI , such that for r > rmax the vul-
nerability starts to decrease as r → ∞. These findings
are in qualitative agreement with Li et al.[17] who have
found that for a lattice of D = 2, rI = rmax = 8. In this
work we find for D = 2 rI = 11, rmax = 12. The quan-
titative difference between our results can be explained
by the fact that we use the chemical distance, or shortest
path, as a metric while Li et al. use a maximal coordinate
difference as a metric. The number of proximal nodes in
Li et al. for r = 8 is hence (2r+1)2 = 289. In our model
the number of proximal nodes is 1 + 2r(r + 1) which for
r = 11 becomes 265 and for r = 12 is 313. Thus in terms
of number of proximal nodes the value found Li et al for
rI = rmax = 8 falls exactly in between our values rI = 11
and rmax = 12.

Note that as D increases, both rI and rmax decrease,
but their difference increases. Moreover, the difference
between pc[D, rmax] and pc[D,∞] decreases exponen-
tially with D.

More significantly we find that for D = 6 and r = 1,

the transition is first order. This coincides with RR
graphs with r = 1 and large k > 8. This finding suggests
that the upper critical dimension of the classical perco-
lation, D = 6, plays an important role in the problem of
mutual percolation with distance restrictions.
We also investigate how the nature of the transition

change as number of lattice sites N → ∞. We find that
when N increases, the value of pc near the maximum
increases logarithmically with N , approaching the value
of pfc , the depinning transition of the propagation of the
hole perimeter. The problem of the upper critical di-
mension for this depinning transition and its universality
class is an interesting problem, which requires further
investigation. rI and rmax have a tendency to increase
with N ; however, this dependence is small and could be
observed only for D = 2 in our study.
We also showed that when r is close to rI , the value

for which the nature of the transition changes, the true
order of the transition in the thermodynamic limit can
be identified only for very large N , which has been de-
termined above. The bimodality of the distribution of
the giant component indicated by the inflection point in
the cumulative distribution, may either disappear, sug-
gesting that the true nature of the transition for N → ∞
is second order, or can become stronger, indicating that
the transition is first order in the thermodynamic limit.
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