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Abstract: We studied memory states of a circuit consisting of a small inductively coupled Josephson 
junction array and introduced basic (Write, Read, Reset) memory operations logics of the circuit. The 
presented memory operation paradigm is fundamentally different from conventional single quantum flux 
operation logics. We calculated stability diagrams of the zero-voltage states and outlined memory states 
of the circuit. We have also calculated memory access times and power dissipation for basic memory 
operations.  
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Introduction 
As conventional computing systems grow to very large systems (such as exascale computers) it is 
becoming increasingly important to reduce power consumption, reduce size, and increase the speed of a 
single computing operation. Such desire to study how to improve computing schemes led to some very 
interesting ideas of processor design based on quantum computing [1], biological computing [2], and 
nonlinear dynamics based chaotic computing [3].  

One of the main challenges in modern computing systems is developing fast, small size, and energy 
efficient memory. As the requirements for memory grow immensely in modern times, so does the total 
cost to operate memory in exascale and other types of computing. One possible way to speed up memory 
access while reducing power consumption is cryogenic computing [4]. Cryogenic electronics based on 
superconducting devices (such as Josephson junctions, SQUIDS, etc.) that are generically very fast and 
energy efficient [5]. A single Josephson junction can operate at a speed close to THz, and switching 
between the states may require as little as 10-18 – 10-19 J (0.1 – 1 aJ).    

Cryogenic memory plays an important role in development of superconducting-based computing. A 
variety of designs has been proposed including memories based on single flux quantum digital logic [6], 
hybrid superconducting-CMOS designs [7, 8], magnetic random access memory (RAMs) [9], and others 
[10]. Some of the main challenges in developing superconducting memory are reducing power 
dissipation, increasing access speed and reducing the size of the chip [10].  

Superconducting single flux quantum digital logic circuits show promise to significantly advance 
performance in a variety of applications including computer CPUs, memories, digital radio frequency 
receivers and others [4]. The energy-efficiency of SFQ circuitry has significantly increased in recent years 
[10, 11]. However, designing RAMs still poses significant challenges and the slow development of 
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cryogenic memory is one of the major bottlenecks for advancement in cryogenic supercomputing. While 
SFQ technology provides seemingly satisfactory solutions for cryogenic processing, only 4096 bits of 
memory have been demonstrated so far [6]. Moreover, when projected to a 1 PB memory, the power 
dissipation nears 85 MW, which is unacceptable [10]. 

In this paper we introduce a very simple memory paradigm based on the existence of multiple stable 
states present in a large variety of nonlinear systems. This paradigm is fundamentally different from a 
conventional paradigm that employs single flux quanta (SFQ) for memory operation. While we 
specifically address cryogenic memory based on small coupled arrays of Josephson junctions, the 
proposed paradigm may be more generic and applicable to systems other than cryogenic memory. Since 
we use junctions coupled through inductors, the stored energy in the circuit array can no longer be 
perfectly quantized. The equations of motion describing the dynamics of Josephson junctions in the 
framework of the resistively shunted junction (RSJ) model resemble the equations for physical pendulums 
with sinusoidal nonlinearity terms. Consequently, there are many systems that possess a similar type of 
nonlinearity [12]. In the proposed paradigm Read, Write, and Reset operations can be executed on the 
same circuit. Such systems may be highly tolerant to noise and disorder. In the absence of memory 
operations, the average voltage of each junction is zero, thus energy will dissipate only at the time of 
memory access operations. Both memory access times and energies can be minimal if the parameter set is 
chosen properly. The number of junctions and coupling design may vary, however it is desirable to 
operate a small array (2-3 junctions) to reduce the size of the system. 

As an example, we present the principles of operation of a circuit consisting of three inductively coupled 
Josephson junctions by implementing a mathematical model. In our design, an inductively coupled array 
of three Josephson junctions operates at cryogenic temperatures (near 4 K) and is compact, fast, and 
energy-efficient. Write, Read, and Reset operations are applied to the same circuit to conserve area and 
decrease latency. Pulse energies required for implementation of the memory operations may be very low 
(in the range of 10-19 J (0.1aJ)) and delay times, measured from the application of the pulse to the circuit 
response, may be lower than 100 ps. 

Memory Circuit Design 
Our proposed memory circuit incorporates an inductively coupled array of three Josephson junctions with 
free-end boundary conditions. Figure 1 shows a schematic design of the proposed circuit.  
 

 
 

Figure 1: Schematic circuit diagram of three coupled RSJ Josephson junctions.  

The following relations in Equation (1) define the current Ic,k and the voltage Vk. The equation modeling 
an uncoupled resistively shunted junction (RSJ) circuit is provided by the Equation (2), below. This 
assumes operation in a cryogenic environment.  

     
 (1)
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C dV

dt
+ 1

R
V + IJ = Iext  (2) 

Here Ij is the Josephson (superconducting) current on the junction, V is the voltage on the junction, C is 
junction capacitance, R is junction resistivity, Ic is junction critical current, Iext is the external driving 
current, e is electric charge, and  is Planck’s constant. Phase difference between the two parts of 
superconductors forming the junction is denoted by �. By combining Equations (1) and (2) we obtain the 
equation for the phaseφ: 
 

         
 (3) 

The dimensionless equation for a single junction, (5), is realized with the parameters defined in the 
Equation (4). 
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We used the values of γ = 0.7 for the first and third junctions and γ = 1.1 for the middle second junction. 
Since 1 / cγ β= , the value of  γ = 0.7 corresponds to the values of βc ≈ 1.2 (a different way of writing 

the Equation (5) would be 
2

2 sinc
d d i
d d

φ φβ φ
τ τ

+ + = ) that corresponds to  approximately 670 - 770 nm 

feature size junction with the critical current density of Jc ≈ 50 kA/cm2 [13].  This critical current density 

implies that the critical current c J cI A J= ( 2

4JA dπ= ) can range approximately from 175 µA to 400 µA 

for feature size ranged from 670 to O(1000) nm. For lower critical current processes (10 kA/cm2 and      
20 kA/cm2) values of the critical current will be lower.   

The dimensionless equations for an inductively coupled circuit consisting of three inductively coupled 
Josephson junctions are provided by: 
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 (6) 

Here 0

2 cLI
κ

π
Φ= , 0 2

h
e

Φ = is the magnetic flux quantum, and L is the inductance of the inductor that 

couples Josephson junctions. The applied current to the junctions includes a DC component and a pulse 
applied at a certain time for certain duration. 
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The value of the inductance is related to the value of the coupling constant κ according to 0JL
L

κ
= where

0

0

2 2J
c c

L
eI Iπ

Φ= =h
and will be in the range of 

0
0.83 1.9JL pH< < for175 400cI Aμ< < . For 0.1κ = , 

the characteristic value of the inductance L will be approximately8.3 19L pH< < . 

As we discussed the feature size for a Josephson junction, we would like to briefly discuss the size of the 
inductor. To estimate the area of the inductor we can employ an approach offered in the reference [14]. 
Following the reference [14], for state-of-the-art inductor fabrication we can calculate the area of the 

inductor as ( )L
LA s
l

ω= +  where   L is the inductance, l is typical stripline inductance (approximately 

equal to 0.6 pH/μm), ω is inductor linewidth (approximately 0.35 μm), and s is spacing between the 
inductors (approximately 0.5 μm). Consequently, the area for the inductor will be 212.2 27LA mμ< <  for
8.3 19L pH< < . For practical applications it is very important that area of the memory cell will be 
small therefore reduction of the inductor size is important. Consequently reduction of the inductor area 
can be achieved by increasing the value of the coupling constant κ. We have confirmed that a similar 
memory cell logics can be implemented also for larger values of the coupling constant, for example, κ = 
0.5. For κ = 0.5, the values of the inductances will be 1.6 3.8L pH< < for175 400cI Aμ< < , and 

consequently, the area of the inductor will be in the range of 22.4 5.4LA mμ< < . Additional reduction of 
the inductor area may be achieved by even more increasing the value of the coupling constant κ.  

In this section we derive the Josephson junction array memory states. We will start with derivation of the 
potential energy of the entire system. The equation for potential energy of the system, V, can be obtained 
by integrating the right hand sides of Equation (6) with respect to the phases and including the potential 
energy due to linear inductive coupling between junctions. The function is defined to be zero when all of 
the phases and their derivatives are zero.  

   
( ) ( ) ( ) ( )2 2

1 2 3 1 2 1 2 3 2
1 1, , 3 cos
2 2 k k k

k
V i= − + − + + − ⋅ −∑φ φ φ κ φ φ κ φ φ φ φ  (8) 

Equation (9) shows the derivative of the potential energy function with respect to the three junction 
phases. A junction phase increase will coincide with the storage or release of energy in the attached 
inductors. An inductor stores no energy when the phases of the two adjacent junctions are equal. In 
addition, to increase the phases against the direction of the external currents, work has to be performed. 
The applied current pulses are omitted for now to investigate the steady states of the system. In 
equilibrium, each phase resides in a local potential minimum and each of the derivatives is equal to zero.  



   

5 
 

   

( )

( )

( )

1 2 3 1 1 1 2 ,1 1
1

1 2 3 1 2 1 1 2 2 2 3 ,2 2
2

1 2 3 2 3 2 2 ,3 3
3

, , sin

, , sin

, , sin

DC

DC

DC

V i

V i

V i

φ φ φ κ φ κ φ φ
φ

φ φ φ κ φ κ φ κ φ κ φ φ
φ

φ φ φ κ φ κ φ φ
φ

∂ = − − +
∂
∂ = − + − − +
∂
∂ = − − +
∂

 (9) 

The coupling terms in Equation (8) are the lowest when the phases are relatively close to each other, since 
the parameters κk are usually an order of magnitude smaller than iDC,k.  

Equilibrium junction phases (junction voltages are equal to zero) can be defined by their offsets θk from 
the negative cosine function’s minima, as shown in Equation (10). When adjacent phase differences and 
external currents are relatively small, the coupling terms will not contribute as much to the potential 
energy and the phases will have small offsets. The small angle approximation in (11) can then hold. 

   
2k k kn= +φ π θ  (10) 

   
1 3            sin

6k k k k kn n πθ φ θ+− < ⇒ ≤ ⇒ ≈  (11) 

Applying this relation to Equation (9) and setting the derivatives to zero yields the linearized set of 
equations, whose solutions θk

* estimate the true equilibrium offsets θk. Therefore, as long as the phases φk 
are near the values of 2πnk while system is in equilibrium, their set of offsets θk is approximated by the 
matrix equation in (13).  
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For the sake of simplicity, in this paper we consider the case of equal coupling values, κ1 = κ2 = κ, and 
opposite currents applied to the junctions on the ends, iDC,1 = − iDC,3. Equation (14) shows the results of 
Equation (13) given the constraints on the parameters and the following definitions: d12 = n1 – n2, d23 = n2 
– n3. 
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Sets of steady state phase offsets, normalized by 2π, are presented in the Table 1. The driving currents are 
iDC,1 = 1.0, iDC,2 = 0.8, iDC,3 = −1.0 and the coupling parameters are κ1 = κ2 = 0.1. The Table includes all of 
the possible sets of steady state offsets where n1 ≥ n2 ≥ n3 and n1 – n3 ≤ 2. Without loss of generality, n3 is 
defined to be 0 since the locations of local minima are symmetric to shifting all phases by 2π. For 
simplicity, we only present in Table 1 the states for nj < 3. The estimated offsets θk

* found from (14) are 
rather close (within ~17°) of the numerical solutions θk found from minimization via the Nelder-Mead 
simplex (direct search) method on the potential function. The final column shows the values of the 
potential function at the local minima. 

n1 n2 n3 θ1
*/2π θ2

*/2π θ3
*/2π θ1/2π θ2/2π θ3/2π V 

0 0 0 0.1545 0.1077 −0.1349 0.1992 0.1187 −0.1552 −1.272 
1 0 0 0.0706 0.1847 −0.1279 no stable minimum -- 
1 1 0 0.1475 0.0308 −0.0510 0.1810 0.0338 −0.0515 −9.918 
2 0 0 −0.0134 0.2616 −0.1209 no stable minimum -- 
2 1 0 0.0636 0.1077 −0.0440 0.0661 0.1164 −0.0437 −14.05 
2 2 0 0.1405 −0.0461 0.0329 0.1670 −0.0443 0.0333 −15.29 

Table 1: The offset phases of local minima of the potential function V in Equation (8), when iDC,1 =1.0, iDC,2 = 
0.8, iDC,3 = −1.0, κ1 = κ2 = 0.1. Each row shows the approximated offset phases from Equation (13), θk

*, and the 
true offset phases of the local minima, θk, for a given set of the multiples of 2π phase differences, nk. All of the 
offset phases (in radians) are scaled by 2π. The last column provides the potential value V at the local minima.  

For the set of DC currents and coupling parameters, no steady state set exists when the first junction 
phase is about 2π greater than both of the other two junction phases (see rows where {n1,n2,n3}={1,0,0} 
and {2,0,0}). As will be discussed further in the next section, the lack of these stable states is crucial to 
the memory cell design since for memory cell demonstration we are only interested in manipulating the 
system within a particular sets of states, namely states {0,0,0} and {1,1,0} in the highlighted rows of the 
Table 1. 

The set of states {n1,n2,n3} listed in Table 1 shows equilibrium phases for the specific set of driving 
currents iDC,1 =1.0, iDC,2 = 0.8, iDC,3 = −1.0. If any of these currents were to change slightly, the equilibrium 
phases would adjust accordingly, but still reside in the same potential wells described by nk. When the 
values of the currents change significantly, some of these steady states become unstable and no longer 
exist.  

Figure 2 shows state {n1,n2,n3} existence intervals as a function of the values of the first junction DC 
current values iDC,1 while keeping the values of the other junction currents fixed. Figures 3 and 4 show 
state existence intervals as functions of the DC current applied to the second and the third junction, 
respectively. The right plots show enlarged views of intervals of state existence curves near the parameter 
values that we will be using for memory operations. These are identified by the vertical dashed lines. 
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Figure 2: The ranges of stability for the available states as a function of iDC,1. iDC,2 = 0.8, iDC,3 = −1.0. The 
vertical dashed line shows the default value of iDC,1 = 1.0. The right plot shows a partial set of states.  
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Figure 3: The ranges of stability for available states as a function of iDC,2. iDC,1 = 1.0, iDC,3 = −1.0. The vertical 
dashed line shows the default value of iDC,2 = 0.8. The right plot shows a partial set of states.  
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Figure 4: The ranges of stability for available states as a function of iDC,3. iDC,1 = 1.0, iDC,2 = 0.8. The vertical 
dashed line shows the default value of iDC,3 = −1.0. The right plot shows a partial set of states.  

These stability diagrams are used in defining the values of DC currents for memory operations. 
Adequately choosing parameter values and states to consider for memory operations is very important 
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since many options are available. In this paper we do not perform rigorous optimization studies to 
optimize parameters for memory operation (optimization studies are presented in the following paper). 
We note that junction currents where states partially (not fully) overlap may be chosen as a possible 
candidate for memory operation. Operating the circuit with the current values that are at the edges of the 
state overlap may show the highest robustness to the applied Write and Read pulses. Such memory 
operations are demonstrated later in the paper. 

Memory Access Times and Energies 
In this section we will describe the dynamics of the circuit and will calculate the access times of circuit 
response to current pulses, which constitute memory Write, Read, and Reset operations. The dynamics of 
the array is described by Equations (6). Our numerical results and mathematical analysis show that, in the 
limit of weak coupling strength (possibly weak-to-moderate coupling), pulse operation to a single 
junction induces separable dynamics where only one junction moves significantly at a given time while 
the rest of the junctions are close to their steady state positions (examples of such separable behavior are 
presented in the next Section where we present examples of memory operations). This conclusion is also 
consistent with the previously published work [14, 15]. To study the dynamics of the array, we first 
rewrite Equations (6) in the following form (Equation (15)). 

   

1
1 1 1 2 1 1

2
2 2 1 1 2 2 3 2 2

3
3 3 2 2 3 3
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 (15) 

We neglect the contribution of the second derivative since for the regimes of our consideration it is rather 
small relative to the first derivative. Since all the coupling terms are equal, we can rewrite these equations 
in the following way. 
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Due to separable motion of each junction (only one junction moves at a given time), Equations (16) can 
be decoupled and rewritten in the following form. 
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Here φ1eq, φ2eq, φ3eq are the equilibrium phases of the junctions. The mathematical basis for the solution of 
these equations was presented in [15, 16]. However, we would like to clarify that while in the Braiman et 
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al. papers all the junctions were driven and the steady solution constituted to the nonzero voltage 
(velocity), in this paper we only drive one junction for a short period of time. We are only interested in 
one period of integration that is required for the array to respond to external pulse applied to that single 
junction. Subsequently, in the time between the pulse excitations required for memory operations, 
junctions’ voltages are zeros. We also approximate pulse shape for excitation as rectangular. Taking into 
consideration all the approximations presented above, for the reason of completeness and clarity, we are 
following derivations from the reference [15]. We first write these equations in a rather generic form:

 

   
( )d F

dt
φγ φ=  (18) 

and  

   ( )
ddt

F
= φγ

φ
 (19) 

Subsequently, 
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We can now expand 
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Using saddle-point integration method, we obtain 
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For each junction we will use a subscript to describe the particular F. 
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In our setup, i3dc = −i1dc, thus 

   
3 3 1 3 2 3 3( ) ( 2 ) sindc pulse eqF i i= − + + + − −φ κ φ π φ φ  (26) 
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Also for very small values of the coupling κ, therefore we rewrite the expressions for functions 
F as 
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Since second derivative of F is equal to sin( ) 1cφ ≈ , this term can now be omitted. Thus we get 
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κ φ π π

≈
+ + − −

 

We can estimate the values of the time (period T) required to complete the transition from one state to 
another (which is, in principle, the time delay between the application of the pulse to the circuit response).

 

  

   

2
2 1 3 2

2 1 3

2
( 2 / 2) ( / 2 ) 1

2 6.5 27
( 2 / 2) ( / 2 ) 1

eq eq

eq eq

T
i
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i

πγ
κ φ π π κ π φ

πγ
κ φ π π κ π φ

≈
+ + − − − −

≈ ≈ ≈
+ + − − − −

 (29) 

   
3

3 2 3 2

2 2 3 12
( 2 / 2) 1 ( 2 / 2) 1eq eq

T ps
i i

π πγ γ
κ φ π π κ φ π π

≈ ≈ ≈ ≈
+ + − − + + − −

  

The time periods in Equations (29) provide a fair estimation of the access times for memory operations 
(memory operations can be applied to any junction and in the following section we will provide examples 
of memory operation). Our numerical results show similar access times thus our estimation is that access 
times for the entire operation (including reset times) will stay in the range of 50-100 ps. 

We would like to briefly discuss junction switching and dissipation energies required for basic memory 
cell operations. Resistively shunted junction (RSJ) potential energy can be written as: 

( ) (1 cos )b
J

c

IE E
I

ϕ ϕ ϕ= − − where bI is bias current, cI is critical current and 0 / (2 )j cE I π= Φ . The 

/ 2cφ π≈

1
1 2 1

2 2 2 6.25 26
( / 2) 1 (2 0.15 / 2) 1 0.2eq pulse

T ps
i i i

π π πγ γ γ
κ φ π κ π π κπ

≈ ≈ ≈ ≈ ≈
+ − − + × − − −
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energy difference between the two minima is given by 2 b
J

c

IE E
I

πΔ = . The switching energy is equal to 

the height of the potential barrier between the adjacent minima which is
0

02 2
2

b b c
J b

c c

I I IE E I
I I

π π
π
ΦΔ = = = Φ  . Consequently, the switching energy for a “conventional” SFQ 

process theoretically can be very low provided that the bias current is low. This is not the case in typical 
experiments and typical value of the bias current due to circuit speed and error bit optimization process is 

0.7b cI I= [14] that make switching energy equal to about 191.4 10 J−× .   

For a design based on coupled arrays of Josephson junction’s logics, the switching energy can also be 
arbitrarily small and is equal to 0pulseE IΔ = Φ where pulseI is pulse current. For very small pulses 

however one could may run into the same issues as for a “conventional” switching process.  If pulseI is 
very small robustness and stability of memory operation may be compromised due to disorder, noise, and 
other reasons. For that same reason in our simulations the switching energy was also in the range of          
5× 10-18 - 10-19 J. 

Perhaps a much more important parameter in memory cell operation would be energy loss/dissipation per 
bit of operation. Energy dissipation for one flip is given by the same expression as the expression for 
flipping energy 0bI Φ . Energy dissipation is one of major issues for superconducting computing [10]. For 
RSFQ cells the average number of Josephson junction switches per bit operation is in the range of 10 
[14]. Since in the proposed design all major memory cell operation (Read, Write, Reset) are implemented 
on the same circuit, the number of switching per bit could be reduced. For the proposed logics, only one 
or two junctions have to be switched in order to implement any of the basic memory operations. This 
could potentially indicate on a benefit using array-based memory cell logics.  

Memory Cell Operation 
In this Section we will present basic memory cell operations (Write, Read, and Reset). A circuit can 
operate as a memory cell if a set of operators can transition the system to well-defined states and can 
output a signal that discriminates memory states. The value nk, as presented in Equation (10), will 
describe the location of the kth junction phase. When all three junction phases are in the same sinusoidal 
potential well, the system will be considered in the ‘0’ state, {n1,n2,n3} = {0,0,0}. When the phases of the 
first and second junctions are shifted to the next potential well (about 2π greater), the cell will be in the 
‘1’ state, {n1,n2,n3} = {1,1,0}. These two states correspond to the first and third rows of Table 1, 
highlighted in gray.  

The proposed circuit (see Figure 1) or family of similar circuits can be employed in variety of ways to 
implement a functional memory device. Here we are demonstrating just one example of basic memory 
operation and we only use two states as ‘0’ and ‘1’. We would like to note that memory operations 
presented below may not be the optimal for this circuit and additional studies are required to optimize 
memory cell operation designs. We will be employing Gaussian pulses to demonstrate memory cell logics 
however other types of pulses (such as squire pulse, single flux quanta (SFQ), or other shapes) can be 
used as well.  

The presented memory cell logics are fundamentally different from the conventional single flux quanta 
(SFQ) logics. An SFQ pulse is a voltage pulse generated at the Josephson junction when the phase 

difference for a junction flip is exactly 2π. Josephson relation 2d eV
dt
ϕ =

h
guarantees then that SFQ 
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pulses have a quantized area equal to a single flux quantum 
2

0
02 2

d hVdt dt
e dt e

π ϕ= = ≡ Φ∫ ∫
h

that is a single 

flux quantum. Since in our presented memory cell design, memory states are generated and recorded 
based on the array dynamics, junction phase rotations are not equal exactly to 2π or its multiples.  

Write ‘1’ Operation 

If a pulse applied to the system always yields a transition to the ‘1’ state, then the operation can be 
considered as a memory Write ‘1’ operation. The equilibrium configuration of the phases in the ‘1’ state 
is a stable state where the phases of the first and second junction are shifted into the next potential well 
(approximately 2π greater than the phase of the third junction). In order for the transition from the ‘0’ 
state to the ‘1’ state to be successful, the energy injected into the system by a pulse must only affect the 
phases of the first and second junctions. In our example design, we apply a pulse to the first junction. Due 
to the coupling between the first and second junctions, this pulse will cause to the phase shift of the 
second junction as well. The potential energy of state ‘1’ is less than the potential energy of state ‘0’. The 
phase of the third junction will not change for the choice of system and pulse parameters. 

The curves in Figure 5 show the response to the Gaussian pulse of size ipulse,1 = 1.0 being applied to the 
first junction after the system has settled into its ‘0’ state. All of the pulses described in this section will 
have a pulse width of 0.1 and a pulse center at zero time. The phase dynamics shown in Figure 5 show the 
phase of the first junction rising quickly to the next local minimum, followed by the phase of the second 
junction. The phase of the third junction slightly shifts its equilibrium position but stays in the same 
potential well. The period of the full transition from states ‘0’ to ‘1’ is of the order of 25 units of time, 
which is the equivalent of 100 ps. The slower time scale is due to the fact that the system undergoes two 
transitions. The energy per pulse is of the order of 5×10-19 J. This energy is very typical for any other 
memory command pulses. After the excitation, junction phases begin to slow down near the state 
{n1,n2,n3} = {1,0,0}, but since no local minimum exists there phases then start a second transition to state 
‘1’ at {n1,n2,n3} = {1,1,0}.  
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Figure 5: The time dependences of phases scaled by 2π (left) and phase derivatives (right) of the system in 
response to a Gaussian pulse applied to the first junction when the system is in state ‘0’. ipulse,1 = 1.0. 

Figure 6 shows the responses of first junction phase as a function of time for a variety of pulse 
amplitudes. The pulse widths σ are all fixed at 0.1, but the amplitudes range from 0.5 to 1.5 (see Equation 
(7) for the definition of the Gaussian pulse).  
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Figure 6: The time series of the first junction phase scaled by 2π (left) and first junction phase’s derivative 
(right) of the system in response to a Gaussian pulse applied to the first junction when the system is in state 
‘0’. The pulse amplitudes ipulse,1 go from 0.5 (dark red) to 1.5 (dark violet).  

The pulses add energy into the system. If this energy is sufficient to overcome the barrier energy, then the 
system transitions into the steady state corresponding to state ‘1’. The maximum value of the derivative of 
the phase is as high as 1.6, which is the equivalent of 0.8 mV. The large derivative magnitude is caused 
by the 2π phase slip. Its peak stays around 1.6 independent of the size of the pulse that triggered it. 

The barrier energy is illustrated in Figure 7. It shows the potential energy of the system over time for the 
responses plotted in Figure 6. Most of the curves show potential energy increase and then rapidly 
decrease after passing the energy barrier. The three curves where pulse values ipulse,1 are less than 0.8 fail 
to pass beyond the potential threshold and consequently do not transition to the next state. The barrier 
energy found from this figures is about 0.045, which is the equivalent of 10-19 J or 0.1 aJ. 
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Figure 7: The time series of the system’s potential energy of the responses shown in Figure 6. The Gaussian 
pulse amplitudes ipulse,1 vary from 0.5 (dark red) to 1.5 (dark violet). The barrier energy is around 0.045. The 
gray line shows the sum of the initial potential energy and the barrier energy. 

If the same pulse (as the one in Figure 5) is applied to the first junction when the system is already in state 
‘1’, as shown in Figure 8, no change to the relative phase differences occurs (after the transient dynamics 
dissipate). The system remains in state ‘1’. Therefore, this pulse can be interpreted as a Write ‘1’ operator 
since the final state will always be ‘1’ after it is applied to either initial steady state.  
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Figure 8: The time series of phases scaled by 2π (left) and phase derivatives (right) of the system in response 
to a Gaussian pulse applied to the first junction when the system is in state ‘1’. ipulse,1 = 1.0. 

Another criterion for the first pulse’s amplitude must be noted: it cannot be strong enough to drive the 
system out of state ‘1’. In Figure 9 we demonstrate the time dependent responses of the first junction 
phase to a set of pulses with variable strengths. If the pulse is strong enough, it will transition the circuit 
from state ‘0’ to ‘1’. Strong enough pulses that exceed the energy barrier will drive the circuit from the 
state {n1,n2,n3} = {1,1,0} to the state {n1,n2,n3} = {2,1,0}. These pulses are unacceptably strong.  
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Figure 9: The time series of first junction phase scaled by 2π (left) and first junction phase’s derivative (right) 
of the system in response to a Gaussian pulse applied to the first junction when the system is in state ‘1’. The 
pulse amplitudes ipulse,1 vary from 0.8 (yellow) to 1.5 (dark violet).  

Write ‘0’ Operation 

The memory’s Write ‘0’ or Reset operation is implemented by sending a pulse to the third junction. The 
transition from state ‘1’ back to ‘0’ is demonstrated in Figure 10 where the pulse applied to the third 
junction has an amplitude of ipulse,3 = 5.0. After the third junction phase moves one potential well, all the 
phases are within the same potential well (i.e. have the same multiple of 2π). The new steady state phases 
are exactly 2π larger than the phases in the {0,0,0} state. The new state is {n1,n2,n3} = {1,1,1}, which by 
definition is equivalent to state {0,0,0}. The transformation occurs over a similar time period that was 
calculated according to the approximation calculated in Equation (29). 
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Figure 10: The time series of phases scaled by 2π (left) and phase derivatives (right) of the system in response 
to a Gaussian pulse applied to the third junction when the system is in state ‘1’. ipulse,3 = 5.0.  

For this pulse to successfully reset the state from ‘1’ to ‘0’, the pulse needs to be strong enough to counter 
the driving current in the opposing direction. This is why this pulse’s amplitude is greater than that of the 
Write “1” pulse. Figure 11 shows the responses of the system in state ‘1’ to a collection of pulses applied 
to the third junction whose amplitudes ipulse,3 range from 4.5 to 5.2. Only the pulse amplitudes equal to 4.9 
and larger are sufficient to let the system exceed the potential threshold. The derivative of the third phase 
increases up to a value of 4.5, which is the equivalent of 2.25mV. 
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Figure 11: Time series of the third junction phase scaled by 2π (left) and third junction phase’s derivative 
(right) of the system in response to a Gaussian pulse applied to the third junction when the system is in state 
‘1’. The pulse amplitudes ipulse,3 vary from 4.5 (dark red) to 5.2 (blue). 

To analytically estimate the barrier energy of this transition, a simplified description of the dynamics is 
used. The response is assumed to be the transition of the third junction phase while the phases of other 
junctions remain in their positions. The potential function would then become Equation (30). 

   
( ) ( ) ( )22

3 1 2 3 ,3 3 3 ,1 ,22 2 cos 2  1
2 DC DC DCV i i i= = = − − ⋅ − − + +κφ φ φ π φ π φ φ π  (30) 
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Figure 12 The left figure compares the functions on the left (green) and right (black) sides of Equation (31), 
where iDC,3 = 1 and κ2 = 0. The right figure shows the potential energy V as a function of the third junction 
phase when the other junction phases are fixed at 2π. Intersections in the left plot correspond to local extrema 
in the right plot. The barrier energy between the minima near φ3 = 0 and φ3 = 2π is 4.00. 

The local minimum and maximum would occur when φ3 satisfies Equation (31), which equates a linear 
function with a sine function. These two functions are plotted in Figure 12(left) for the set of parameters 
as defined above. The corresponding potential as a function of the third junction phase, Equation (30), is 
plotted in Figure 12(right). The intersections of the left plot correspond to local extrema on the right plot. 
The difference in potential between the minimum near 0 and the maximum before 2π is 4.00, the 
estimated barrier energy using the simplified description of the dynamics.

  
 

3 1 2 2 3 2 ,3 3 of local extrema of ,  when 2 :    2 sinDCV i= = − + + =φ φ φ π κ φ πκ φ                      (31) 

For the system to switch its steady state, the gain in potential energy of the circuit due to the pulse must 
increase by the amount equal to the barrier energy (3.81 in dimensionless units), as shown in Figure 13 
that pictures the potential energies of the system as functions of time for the responses to the pulses 
shown in Figure 13. The barrier energy found by solving the simplified equations in Equations (30) and 
(31) would indicate that none of the responses plotted are viable. 
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Figure 13: The time series of the system’s potential energy of the responses shown in Figure 11. The Gaussian 
pulse amplitudes ipulse,3 vary from 4.5 (dark red) to 5.2 (blue). The barrier energy is around 3.81. The gray line 
shows the initial potential energy plus the barrier energy. 

Figure 14 shows the response of the same pulse as the one in Figure 11 when the junction array state is 
‘0’. No change in the state is observed after the transient behavior dissipates. This pulse will send the 
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system into state ‘0’ from either initial state. This suggests that the pulse applied to the third junction can 
be used as a Write ‘0’ operation. 
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Figure 14: The time series of phases scaled by 2π (left) and phase derivatives (right) of the system in response 
to a Gaussian pulse applied to the third junction when the system is in state ‘0’. ipulse,3 = 5.0. 

Since the third junction’s forcing term is in the opposite direction to the first junction’s forcing term, the 
potential energy profile as a function of only the third junction has a different sign of its slope. Figure 15 
shows that if a pulse is too strong, it would provide too much kinetic energy to the third junction and the 
system would transition over the potential barrier in the opposite direction. This third junction phase 
would settle into a steady state that is different from the other junction phases by approximately a 
multiple of 2π. This would be the state {n1,n2,n3} = {0,0, −1}= {1,1,0}. The figures show the responses of 
the system in state ‘0’ to a set of pulses applied to the third junction whose amplitudes ipulse,3 range from 
4.5 to 5.5.  
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Figure 15: The time series of the third junction phase scaled by 2π (left) and third junction phase’s derivative 
(right) of the system in response to a Gaussian pulse applied to the third junction when the system is in state 
‘0’. The pulse amplitudes ipulse,3 go from 4.5 (dark red) to 5.5 (dark violet). 

Read Operation 

In order to read the memory state, we use a pulse that can be applied to one of the junctions. A condition 
of a successful Read operation is that application of a Read pulse results in different outputs from the 
circuit dependent on whether the circuit was at the ‘0’ or ‘1’ memory state. The same pulse that we use 
for the Write ‘1’ operation, applied to the first junction, can serve as our Read command. The Read data 
will be taken from the voltage response of the second junction. When the initial state of the circuit is ‘1’, 
there will be almost no response of the second junction phase to the applied pulse. On the contrary, when 
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the initial state of the memory circuit is ‘0’, the pulse causes a 2π shift of the second junction phase. 
Consequently, the second junction shows a corresponding voltage spike. Thus, the second junction 
response depends on the initial state of the circuit. However, as it is for destructive read operations, after 
the Read command is performed the circuit state will always be settling in state ‘1’. Figure 16 shows the 
responses of the second junction to the pulse sent to the first junction (the same as a Write “1” operation, 
Figures 5 and 8).  
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Figure 16: The time series of the second junction phase scaled by 2π (left) and second junction phase 
derivative, or voltage, (right) in response to a Gaussian pulse applied to the first junction when the system is 
in state ‘1’ (red curves) and ‘0’ (blue curves). ipulse,1 = 1.0. 

Read operation can also be implemented by sending a pulse to the third junction and subsequently reading 
the response from that same junction. Sending a pulse to the third junction will also always set the circuit 
to the ‘0’ state, similar to our previous example.  

In the Table 2 below we summarize the above example of the basic memory cell operations presented in 
this Section.  

  Write ‘0’ Write ‘1’ Read

Original state ‘0’ Applied junction: J3 
End state: ‘0’ 

Applied junction: J1 
End state: ‘1’ 

Applied junction: J1 
End state: ‘1’ 
Read junction: J2 

Original state ‘1’ Applied junction: J3 
End State: ‘0’ 

Applied junction: J1 
End state: ‘1’ 

Applied junction: J3 
End state: ‘1’ 
Read junction: J2 

Table 2: Logics of basic memory cell operations. 
 
Memory Performance Evaluation 
In order to evaluate and improve the Josephson junction based memory circuit performance we performed 
an iterative optimization algorithm. The iterative algorithm employed is called Simulated Annealing (SA), 
a globally convergent optimization technique. SA attempts to minimize a function in a manner similar to 
annealing to find a global minimum of the pre-selected cost function. Corana et al. [17] implementation of 
SA for continuous variables is used in the present methodology in conjunction with our coupled junction 
simulation module. SA explores the target function’s entire surface by performing random walks in m 
parameter space, where m represents the number of optimization variables. A rough view of the parameter 
space is first obtained by moving with large step lengths. As the algorithm progresses and falls, it focuses 
on the most promising area within the parameter space. SA attempts to optimize the function while 
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moving both uphill and downhill in order to escape local minima. SA has other advantages which suggest 
its use for the optimization of Josephson junction parameters. Firstly, unlike many iterative optimization 
schemes (e.g., Newton or steepest-descent schemes), SA can produce accurate results even for poor 
choices of initial conditions. Moreover, SA makes no assumption that a cost function is continuous, 
important here because we will define our cost functions to be discontinuous, as explained below. Finally, 
SA can be used on cost functions of arbitrary numbers of variables. For a more details about SA and its 
applications, see, for example, [17-19]. 

We employed SA procedure for external pulse and external current parameters to numerically calculate 
access times and access energies. Comprehensive results for optimization procedure will be reported in a 
different the manuscript [20] and in this manuscript we only provide a very brief summary of the results. 
We kept pulse and external current parameter variation in such a way that variations in theses parameters 
would not affect the existence of two pre-designed memory states ([0, 0, 0] – [1, 1, 0]) and would allow 
transitions between these states to implement valid Read, Write, and Reset operations. Such a 
requirement, for obvious reason, has limited the values of the parameters that can be employed.  As we 
iterated pulse parameters in acceptable limits to stay within the prescribed/preselected states we observed 
that the fluctuations in access times and access energies can vary (perhaps by the factor of 1.5 - 2, or 
more). An example of the minimal pulse amplitudes to implement transitions from ‘0’ state to ‘1’ and 
from “1” state to “0” (and consequently, valid Write, Read, and Reset operations) as functions of the dc 
current amplitudes of the junctions #1 and #3 is demonstrated in the Figure 17. Note that in the Figure 17 
we are showing results for larger value of the coupling constant, namely, κ = 0.5, while for other Figures 
in the paper we have used the value of κ = 0.1. The reason for that is that our calculation of the access 
time (and consequently access energies) utilizes an approximation of separable dynamics (Equations 17-
29) that is accurate in the limit of the weak coupling. However, we would also like to show that the 
proposed logics can be applicable for much larger value of the coupling constant (thus substantially 
reducing the size of the memory cell).  

 

 
Figure 17 (Left): The minimal Gaussian pulse amplitude for transition from ‘0’ to ‘1’ and (Right): The 
minimal pulse amplitude for transition from ‘1’ to ‘0’ operation. 

There exist some parameter range for which access times and access energies vary very modestly and for 
some other parameter range memory operations may be very sensitive to pulse and external current 
parameter values (since parameter fluctuations will alter JJ array memory states and consequently will 
affect memory operation).  Our main conclusion is that it is indeed possible to set pulse and external 
current parameter values amenable for non-faulty and robust memory operation. For those parameter 
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values the access times are in the range of 30-100 ps (for Read, Write, and Reset operations) and access 
energies are in the range of 5× 10-18 - 10-19 J (0.1 – 5 aJ).     

We would also like to briefly discuss the scalability of the proposed memory logics to large memory cell 
arrays. First, we would like to note that the stability diagram of the three-junction array (see Figure 4) 
shows multistability consequently one can in principle design four or even possibly eight bit operation for 
each memory cell. It would be fascinating to explore memory states of larger arrays of coupled junctions 
however we would be cautious not to propose such a design (at this time) as a route for scalability to large 
memory cell arrays. Since in currently available memory cell array designs memory cells are operated as 
separate (uncoupled) components with separate access to each cell, a seemingly straightforward route 
towards scalability would be following currently available designs (see, for example, references 6, 21, 22, 
23). Moreover, since our proposed memory cell design seems to be much less complicated and lower size 
than, for example, today’s state-of-the-art design [6] where Read and Write operations are implemented 
on separate circuits, peripheral circuits such as sense and current driver circuits could be also less 
complex and consequently lower size and perhaps requiring lower operational energy. We would also like 
to note that scaling memory cell to large arrays requires consideration of all the peripheral circuits 
(including decoders, drivers, sense circuits, and others [6, 21-23]). Consequently, since basic current and 
pulse driving and pulse sensing requirement of the proposed memory cell are rather common to other 
memory cell designs (where scaling to 64 k-bit RAM memory arrays was demonstrated [6]) we believe 
that scaling to large memory arrays is likely. Moreover, proposed memory cell design and input/output 
requirements are simpler and lower size than other memory cell circuits (see, for example memory cell 
circuit in the references [6, 22]).                                        

Summary  
In this paper we demonstrated a paradigm for cryogenic memory operation and presented a specific 
example of a circuit that consists of three inductively coupled Josephson junctions. We have employed 
Josephson junction non-dimensionless parameter values that are consistent with the current state-of-the-
art Josephson junction fabrication capabilities as presented in the references [13]. The principles of 
memory design and operation described in the paper can in principle be implemented for other Josephson 
junction based circuits. In the proposed circuit Write, Read, and Reset operations are implemented on the 
same circuit. For parameter values presented in the paper, access times are of the order of 30 - 100 ps 
while dissipation energy is of the order of 0.1 – 5 aJ. Wide variety of parameters can be used for memory 
operation in the regime of weak-to-moderate coupling ranges while so far the challenge was to increase 
the values of the coupling constant κ to the limit of strong coupling [20] and consequently decrease the 
feature size/area of the inductor. This may require modifications of the presented circuit or modifications 
of the single junction parameters of the circuit.    

 
Acknowledgement 
This work was supported by the United States Department of Defense and used resources from the 
Extreme Scale Systems Center, located at Oak Ridge National Laboratory. Oak Ridge National 
Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-
AC05-00OR22725. We would like to acknowledge very valuable conversations and constructive 
feedback from Stephen Poole. 
 



   

21 
 

References  

1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge 
University Press, (2010). 

2. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Gorbetta, D. C. Van Essen, and M. E. Raichle, Proc. Natl. 
Acad. Sci. U.S.A. 102, 9673 (2005). 

3. B. Kia, J. F. Lindner, and W. L. Ditto, Front. Comp. Neuroscience 9, 1 (2015). 

4. K. K. Likharev, Physica C 482, 6 (2012). 

5. K. K. Likharev, Dynamics of Josephson junctions and circuits, Gordon and Breach science 
publishers, New York, (1986). 

6. S. Nagasawa, K. Hinode, T. Satoh, Y. Kitagawa and M. Hidaka, Superconductor Science & 
Technology 19, S325 (2006). 

7. Q. Liu, K. Fujiwara, X. Meng, S. R. Whiteley, T. Van Duzer, N. Yoshikawa, Y. Thakahashi, T. 
Hikida, and N. Kawai,  IEEE Transactions on Applied Superconductivity 17, 326 (2007). 

8. O. A. Mukhanov, A. F. Kirichenko, T. V. Filippov, and S. Sarwana, IEEE Transactions of Applied 
Superconductivity 21, 797 (2011). 

9. V. V. Ryazanov, V. V. Bol'ginov, D. S. Sobanin, I. V. Vernik, S. K. Tolpygo, A. M. Kadin and O. A. 
Mukhanov,  Superconductivity Centennial Conference 2011 36, 35 (2012).  

10. S. A. Holmes, L. Ripple and M. A. Manheimer (2013), IEEE Transactions on Applied 
Superconductivity 23, 1701610 (2013). 

11. O. A. Mukhanov (2011), IEEE Transactions on Applied Superconductivity 21, 760, (2011). 

12. S. H. Strogatz, Nonlinear Dynamics and Chaos, Westview Press (2015). 

13. S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, L. Johnson, M. Gouker, and W. D. Oliver, IEEE 
Transactions on Applied Superconductivity 25, 110312 (2015).  

14. S. K. Tolpygo, Low Temp. Phys. 42, 361 (2016). 

15. Y. Braiman, F. Family, and H. G. E. Hentschel, Phys. Rev. B 55, 5491 (1997). 

16. Y. Braiman, F. Family, and H. G. E. Hentschel, Appl. Phys. Lett.  68, 3180 (1996).  

17. A. Corana, M. Marchesi, C. Martini, and S. Ridella, ACM. Trans. Math. Soft., 13, 262 (1987). 

18. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science, New Series 220, 671 (1983).  

19. N. Imam, E.N. Glytsis, T.K. Gaylord, K-K. Choi, P.G. Newman, and L. Detter-Hoskin, IEEE Journal 
of Quantum Electronics 39, 468 (2003). 

20. J. Resac, N. Nair, N. Imam, and Y. Braiman (2016), (unpublished).  

21. Q. P. Herr and L. Eaton, Supercond. Sci. and Technol. 12, 929 (1999). 

22. S. Tahara, I. Ishida, S. Nagasawa, M. Hidaka, H. Tsuge, and Y. Wada, IEEE Trans. Magn. 27, 2626 
(1991). 

23. A. Kirichenko, O. A. Mukhanov, and D. K. Brock, Extended Abstract of the 7th International 
Superconductive Electronics Conference (ISEC’99) June 21-25, 1999. 


