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We derive a concise and general expression of the energy dissipation rate for coupled oscillators rotating on

circular trajectories by unifying the nonequilibrium aspects with the nonlinear dynamics via stochastic thermo-

dynamics. In the framework of phase oscillator models, it is known that the even and odd parts of the coupling

function express the effect on collective and relative dynamics, respectively. We reveal that the odd part always

decreases the dissipation upon synchronization, while the even part yields a characteristic square-root change

of the dissipation near the bifurcation point whose sign depends on the specific system parameters. We apply

our theory to hydrodynamically coupled Stokes spheres rotating on circular trajectories that can be interpreted

as a simple model of synchronization of coupled oscillators in a biophysical system. We show that the coupled

Stokes spheres gain the ability to do more work on the surrounding fluid as the degree of phase synchronization

increases.

PACS numbers: 05.45.Xt, 05.70.Ln, 47.63.mf

I. INTRODUCTION

Coupled oscillators and their synchronization phenomena

are ubiquitously found in a variety of scientific and engineer-

ing fields [1–3]. They are typical examples of nonequilib-

rium dissipative systems that are maintained by a balance of

energy injection and dissipation. The relationship between

synchronization and energy dissipation has been attracting

much interest, e.g., in the context of low Reynolds-number

hydrodynamics [4–9] since Taylor’s classical work on hy-

drodynamic synchronization of active objects with periodic

motions [10]. Recent extensive theoretical and experimen-

tal studies on beating eukaryotic flagella and cilia have elu-

cidated the underlying physical mechanism of hydrodynamic

synchronization based on a simplified phase-description with-

out losing its essence [5, 11–20]. In this phase-description,

they are simply modeled as coupled oscillators whose cyclic

motions are described by phase equations. These tiny oscil-

lators are motive-powered by a collection of molecular ma-

chines that convert chemical energy into mechanical work in

a noisy thermal environment [21]. The hydrodynamic flow

generated by such beating flagella and cilia plays a vital and

versatile role in living organisms, utilized, e.g., in the motility

of sperm and material transport by metachronal waves [20–

22]. One important aspect is to understand how synchroniza-

tion/desynchronization between the oscillators that operate in

a noisy environment affects energy dissipation. To develop

this energetics of synchronization, we need to unify energetic

concepts usually treated in thermodynamics with the theory

of coupled oscillators usually treated in nonlinear dynamics.

Such a unification from the stochastic thermodynamics point

of view [23, 24] has been developed, in the analysis of collec-

tive dynamics based on a nonequilibrium equality [25] and in

the optimization of the energy-conversion efficiency in all-to-
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all coupled many-oscillators systems [26].

In the present paper, we study the relationship between syn-

chronization and energy dissipation rate for the simplest and

prototypical case of coupled oscillators rotating on circular

trajectories described by phase equations via stochastic ther-

modynamics. While the difficulty of estimating the energy

dissipation rate comes from the fact that these oscillators can-

not be treated independently, we nevertheless can derive a

concise and general expression of the energy dissipation rate

for them, which can be applied to any type of weak coupling.

Our expression elucidates the relationship between synchro-

nization and energy dissipation rate, where the decomposition

of the coupling function into the even and odd parts, which

express the effect on collective and relative dynamics, respec-

tively, has a key role. From this decomposition, we reveal

that the contribution from the odd part always decreases the

dissipation upon frequency synchronization, while the con-

tribution from the even part yields a characteristic square-root

change of the dissipation near the bifurcation point whose sign

depends on the specific system parameters. We demonstrate

our theory by applying it to a model of two rotating Stokes

spheres on circular trajectories synchronized through hydro-

dynamic coupling [13, 14, 19].

The organization of the rest of the present paper is as fol-

lows. In Sec. II, we introduce our model of coupled oscilla-

tors on circular trajectories described by phase equations. In

Sec. III, we derive the expression of the energy dissipation

rate for our model as the main result. In Sec. IV, we apply

our expression to the example of hydrodynamic synchroniza-

tion of coupled Stokes spheres. We summarize our paper in

Sec. V.

II. MODEL

We consider two oscillators immersed in a viscous fluid as

a thermal environment, where the position of each oscillator is

constrained on a circle with radius l on the same plane (Fig. 1).

Both are coupled, e.g., hydrodynamically [13, 14, 19] or mag-

netically [27, 28]. We assume that their dynamical behavior
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FIG. 1: Schematic illustration of the model.

can be described by the following phase equations

φ̇1 = ω1 + KΓ(φ1 − φ2) + ζ1, (1)

φ̇2 = ω2 + KΓ(φ2 − φ1) + ζ2. (2)

Here, φi (i = 1, 2) is the phase of the i-th oscillator that in-

creases counterclockwise, and φ̇i ≡ dφi

dt
. Because lφi de-

notes the arc length of the circle measured from an origin

to the oscillator, the kinematic velocity of the oscillator in

our model is always proportional to the phase velocity as

lφ̇i. ωi is the natural frequency of the i-th oscillator, which

may be interpreted as resulting from a driving force. Γ is

a 2π-periodic coupling function between the oscillators and

K > 0 is a coupling strength, respectively. ζi is Gaussian

white noise whose correlation function obeys 〈ζi(t)〉 = 0 and
〈

ζi(t)ζ j(t
′)
〉

= 2D̃δi jδ(t − t′), where D̃ ≡ Dl−2 is the normal-

ized diffusion coefficient D ≡ µǫ with µ and ǫ ≡ kBT be-

ing the constant mobility and the noise intensity of the ther-

mal environment where kB and T denote the Boltzmann con-

stant and the temperature, respectively. Hereafter 〈·〉 denotes

a noise average. In general, phase equations may be more

complicated, where the natural frequency is phase-dependent

and the coupling function is no longer the function of the

phase difference (see Eqs. (26) and (27) below as an example).

However, applying standard techniques in nonlinear dynamics

such as cycle averaging under a suitable variable transforma-

tion, we can reduce such phase equations into the same form

as Eqs. (1) and (2) to a good approximation as long as the

coupling strength is sufficiently weak [2], allowing us to dis-

cuss the general aspects of the energetics of synchronization

in coupled oscillators on circular trajectories.

By taking the average or the difference between Eqs. (1)

and (2), we obtain

φ̇1 + φ̇2

2
= ω̄ + KΓe(φ1 − φ2) +

ζ1 + ζ2

2
, (3)

φ̇1 − φ̇2 = ∆ω + 2KΓo(φ1 − φ2) + ζ1 − ζ2, (4)

respectively, where ω̄ ≡ ω1+ω2

2
and ∆ω ≡ ω1 − ω2. Here, Γe

and Γo are the even and odd parts of the coupling function

defined as

Γe(φ1 − φ2) ≡ Γ(φ1 − φ2) + Γ(−(φ1 − φ2))

2
, (5)

Γo(φ1 − φ2) ≡ Γ(φ1 − φ2) − Γ(−(φ1 − φ2))

2
. (6)

From Eqs. (3) and (4), the even and odd parts of the coupling

function express the effect on collective and relative dynam-

ics, respectively. Because Γo has a potential function

U(φ1 − φ2) ≡ −
∫ φ1−φ2

Γo(θ′)dθ′, (7)

Eqs. (1) and (2) can be rewritten as

φ̇i = ωi + KΓe(φ1 − φ2) − K
∂U

∂φi

+ ζi ≡ µFi + ζi. (8)

In the absence of noise (ǫ = 0), the condition for frequency

synchronization

φ̇1 − φ̇2 = ∆ω + 2KΓo(φ1 − φ2) = 0 (9)

is equivalent to the existence of a phase-locked solution φi =

Ωt + φ0
i

for Eq. (8) where Ω and φ0
i

are constants denoting

the shared frequency and the phase offset, respectively. This

condition for frequency synchronization is met if K and ∆ω

satisfy

−2KΓo,max ≤ ∆ω ≤ −2KΓo,min, (10)

where Γo,min and Γo,max denote the minimum and the max-

imum values of Γo, respectively [29]. At the equalities of

Eq. (10), the phase-locked solution vanishes via a saddle-node

bifurcation, and phase slips periodically occur in parameter

ranges that do not satisfy Eq. (10) leading to desynchroniza-

tion.

In the presence of noise (ǫ , 0), the frequency synchroniza-

tion no longer exists in a strict sense. However, for sufficiently

weak noise, when Eq. (10) is satisfied, Eq. (9) approximately

holds, so that the concept of synchronization is still meaning-

ful. Under this assumption, we can expect that the system

satisfying Eq. (10) stays in the vicinity of one of the stable

phase-locked solutions.

The Fokker-Planck equation corresponding to Eq. (8) is

given by

∂p(φ1, φ2, t)

∂t
= −

2∑

i=1

∂Ji(φ1, φ2, t)

∂φi

, (11)

where we denote by p(φ1, φ2, t) the probability distribution of

the phases of the oscillators and byJi(φ1, φ2, t) the probability

current defined as

Ji(φ1, φ2, t) ≡ µFi p(φ1, φ2, t) − D̃
∂p(φ1, φ2, t)

∂φi

. (12)

The stationary solution pss(φ1, φ2) satisfies
∂p(φ1,φ2,t)

∂t
= 0. We

can then define the mean frequencyΩi as

Ωi ≡
〈

φ̇i

〉

=

∫ 2π

0

dφ1

∫ 2π

0

dφ2Jss
i (φ1, φ2), (13)

by using the stationary probability current Jss
i

(φ1, φ2) [24].

A formal expression of Ωi can be obtained as follows. The

probability distribution f (θ, t) of the phase difference θ ≡ φ1−
φ2 is governed by the Fokker-Planck equation

∂ f (θ, t)

∂t
= −∂J(θ, t)

∂θ
, (14)

J(θ, t) ≡ (∆ω + 2KΓo(θ)) f (θ, t) − 2D̃
∂ f (θ, t)

∂θ
, (15)
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where the periodic boundary condition f (θ + 2π, t) = f (θ, t)

is imposed. By putting
∂ f (θ,t)

∂t
= 0 in Eq. (14), we obtain the

following expression for the stationary distribution f ss(θ) [3,

30–32]:

f ss(θ) = N exp

(

−Ueff(θ)

2D̃

) ∫ θ+2π

θ

dy exp

(

Ueff(y)

2D̃

)

, (16)

where Ueff(θ) ≡ 2KU(θ) − ∆ωθ, and

N ≡
[∫ 2π

0

dθ

∫ θ+2π

θ

dy exp

(

Ueff(y) − Ueff(θ)

2D̃

)]−1

. (17)

By using Eqs. (3), (4), (13), and (16), we easily obtain

the averaged mean-frequency Ω̄ and the averaged frequency-

difference ∆Ω:

Ω̄ ≡ Ω1 + Ω2

2
= ω̄ + K 〈Γe(θ)〉 , (18)

∆Ω ≡ Ω1 − Ω2 = ∆ω + 2K 〈Γo(θ)〉

= 4πD̃N
[

1 − exp

(

−∆ωπ
D̃

)]

, (19)

where
〈

Γe,o(θ)
〉 ≡

∫ 2π

0
Γe,o(θ) f ss(θ)dθ. Using Eqs. (18) and

(19), we can also obtain an explicit expression for each

mean frequency Ωi. In the limit of K → 0, N →
[

− 4πD̃
∆ω

(

exp
(

−∆ωπ
D̃

)

− 1
)]−1

andΩi → ωi, implying desynchro-

nization, while for sufficiently large K that satisfies Eq. (10),

N → 0 and Ωi → ω̄ + K 〈Γe(θ)〉, implying synchronization.

III. ENERGY DISSIPATION RATE AND

SYNCHRONIZATION

A. Expression of energy dissipation rate under weak coupling

According to stochastic thermodynamics [23, 24], the heat

flux q̇i flowing from the i-th oscillator into the environment is

given as the product of the exerted force on the oscillator and

its kinematic velocity as q̇i ≡ lFi ◦ lφ̇i, where ◦ denotes the

Stratonovich product. Then the total energy dissipation rate P

can be calculated as the sum of the noise average of q̇i as

P ≡
2∑

i=1

〈q̇i〉 = l2
2∑

i=1

∫ 2π

0

dφ1

∫ 2π

0

dφ2FiJss
i (φ1, φ2)

= γl2
2∑

i=1

∫ 2π

0

dφ1

∫ 2π

0

dφ2(ωi + KΓe(φ1 − φ2))

×Jss
i (φ1, φ2), (20)

where we defined the drag coefficient γ as γ ≡ µ−1, and used
[

UJss
i

]2π
0 = 0 because of the periodicity of U and Jss

i
and

the stationarity
∂pss(φ1,φ2)

∂t
= 0 in Eq. (11). Under the weak

coupling condition K ≪ |ωi|, we can simplify Eq. (20) as

P = γl2
∑2

i=1 ωiΩi + 2γl2ω̄K 〈Γe(θ)〉 + O(K2) where the small

quantity of O(K2) arises from Γe. For Γ = Γo, it vanishes as

well as the second term. By using Eqs. (18) and (19), and

neglecting the term of O(K2), we obtain P in a form that high-

lights the role of the odd and even coupling functions Γo and

Γe as

P = γl2(ω2
1 + ω

2
2) + Po + Pe, (21)

where Po and Pe are defined by

Po ≡ γl2K∆ω 〈Γo(θ)〉 = γl2∆ω(∆Ω − ∆ω)

2
, (22)

Pe ≡ 4γl2ω̄K 〈Γe(θ)〉 = 4γl2ω̄(Ω̄ − ω̄), (23)

respectively. The former stems from Γo and depends on

the frequency tuning because of coupling, whereas the latter

stems from Γe and depends on the phase difference. In the

limit K → 0 (∆Ω = ∆ω), P = γl2(ω2
1
+ ω2

2
) follows from two

uncoupled oscillators. The concise and general expression of

the energy dissipation rate Eq. (21) for the coupled oscillators

rotating on the circular trajectories is the main result of the

present paper. This expression can be applied to any coupling

function Γ with any higher-order Fourier modes as long as the

coupling strength is sufficiently small. We can also derive the

same formula for the noiseless case (ǫ = 0) (see Appendix A

for a derivation).

B. Effect of odd part Po

For Γ = Γo, i.e., for a conservative force only, we obtain

P = γl2(ω2
1 + ω

2
2) + Po = 2γl2ω̄2 +

γl2∆ω∆Ω

2
. (24)

For the frequency-synchronized state (∆Ω = 0), indepen-

dently of the phase difference θ, P behaves as P = 2γl2ω̄2 as

if it originated from a single synchronized oscillator. Because

the second term γl2∆ω∆Ω/2 is nonnegative due toN ≥ 0 and

∆ω
[

1 − exp
(

−∆ωπ
D̃

)]

≥ 0, dissipation always decreases by the

frequency synchronization. In the desynchronized state, dis-

sipation increases because the coupled oscillators sometimes

slip in phase unavoidably thus consuming extra energy.

C. Effect of even part Pe near bifurcation point

By contrast, for Γe , 0, Eq. (21) depends on the phase

difference θ through Pe in Eq. (23). This can be clearly

seen in a change of Pe near the bifurcation point ∆ω =

−2K∗Γo,max or − 2K∗Γo,min for ǫ = 0, where the transition

between phase-slip and phase-locked states occurs. For ǫ = 0,

by expanding 〈Γe(θ)〉 = Γe(θ) in Pe in Eq. (23) around the

bifurcation point θ∗ as 〈Γe(θ)〉 ≃ Γe(θ∗) + Γ′e(θ∗)(θ − θ∗), we

obtain a square-root change of Pe for any Γ as

Pe = P∗e ± 4γl2ω̄Γ′e(θ∗)

√

−2K∗Γo(θ∗)

Γ′′o (θ∗)
(K − K∗)1/2, (25)

where P∗e ≡ 4γl2ω̄K∗Γe(θ∗) and the plus (minus) sign corre-

sponds to the left (right) equality in Eq. (10). This expression
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is valid for any stable phase-locked state near the bifurcation

point where the oscillators synchronize in out-of-phase. Even

in the presence of weak noise (ǫ , 0), we can expect a char-

acteristic change of Pe reflecting Eq. (25), as will be demon-

strated in the next section.

IV. EXAMPLE

A. Setup: hydrodynamically coupled oscillators

As an important example of the coupled oscillators illus-

trated in Fig. 1 to which our formulation can be applied,

we consider two rotating Stokes spheres on circular trajec-

tories interacting through hydrodynamic coupling in a three-

dimensional Stokes flow. For our purpose, we here adopt the

phase-description approach of Refs. [13, 14] where necessary

conditions for synchronization of active rotors with fixed tra-

jectories by hydrodynamic coupling have been studied. For

hydrodynamically coupled Stokes spheres with radius a mov-

ing on circles with radius l whose centers are separated by a

distance d (a ≪ d, l ≪ d) (Fig. 2 (a)), the phase evolution

of the i-th sphere subject to noise [19] is given by (see Ap-

pendix B for a detailed derivation)

φ̇1 = ω1(φ1) + γ−1l−1GH(φ1, φ2)F2(φ2) + ζ1, (26)

φ̇2 = ω2(φ2) + γ−1l−1GH(φ1, φ2)F1(φ1) + ζ2. (27)

Here, Fi(φi) is the profile of the driving force to the i-th sphere,

ωi(φi) ≡ Fi(φi)/γl is the phase-dependent natural frequency,

H(φ1, φ2) ≡ cos(φ1 − φ2) + sinφ1 sin φ2 (28)

is the geometric factor for the present case of the circular tra-

jectories [13, 14], γ is given as γ = 6πηa with η being the

viscosity by the Stokes’ law, and G ≡ 3a
4d

is the hydrodynamic

coupling parameter. We here adopt

Fi(φi) = Fi

[

1 − A sin 2φi

]

(29)

with Fi being constants, for which the in-phase state is stable

in the absence of noise and natural-frequency difference for

0 < A < 1 [13, 14]. Displacement of the Stokes spheres with

circular trajectories and the above force profile were experi-

mentally realized in [19] by using feedback-controlled optical

tweezers.

These phase equations can be brought into the form of

Eqs. (1) and (2), by first performing the variable transforma-

tion

Φi ≡
2π

Ti

∫ φi

0

dφ′
i

ωi(φ
′
i
)

(30)

with Ti being a natural period Ti ≡
∫ Ti

0
dt =

∫ 2π

0

dφi

ωi(φi)
[13, 14].

The phase equations Eqs. (26) and (27) are then rewritten as

Φ̇1 = ω1 +Gω1

F̃2(Φ2)

F̃1(Φ1)
H̃(Φ1,Φ2) +

ω1

ω̃1(Φ1)
ζ1, (31)

Φ̇2 = ω2 +Gω2

F̃1(Φ1)

F̃2(Φ2)
H̃(Φ1,Φ2) +

ω2

ω̃2(Φ2)
ζ2, (32)

where we put ωi =
2π
Ti

as the constant natural frequency,

F̃i(Φi) ≡ Fi(φi), ω̃i(Φi) ≡ ωi(φi), and H̃(Φ1,Φ2) ≡ H(φ1, φ2).

When |∆ω|/|ω̄|,G, D̃/|ω̄| ≪ 1, we can average Eqs. (31) and

(32) over one cycle 2π as [2]

Φ̇1 = ω1 +Gω̄Γ(Φ1 −Φ2) + ζ1, (33)

Φ̇2 = ω2 +Gω̄Γ(Φ2 −Φ1) + ζ2, (34)

to the lowest order, where we have also assumed |A| ≪ 1 for

analytical tractability. The coupling function is given by (see

Appendix A for details)

Γ(Φ1 −Φ2) =
3

2
cos(Φ1 − Φ2) − A

2
sin(Φ1 −Φ2). (35)

Eqs. (33) and (34) now have the same form as Eqs. (1) and

(2) with K = Gω̄. The potential function of the odd part

is U(Φ1 − Φ2) = − A
2

cos(Φ1 − Φ2). A purely odd coupling

function was previously used in [18] to model hydrodynamic

synchronization of spatially-separated two eukaryotic flagella

in an experimental setup (see also [15, 16]).

We note that the new phase Φi as introduced in Eq. (30)

slightly deviates from the actual position of the oscillator as

φi denotes in Fig. 1. However, if we neglect the small discrep-

ancy of O(AG, A2) in the energy dissipation rate before and

after the variable transformation, we can regard lΦi as the arc

length measured from the origin to the position of the oscilla-

tor, and after the cycle-averaging, our expression Eq. (21) can

be applied to the dynamics of Φi given by Eqs. (33) and (34).

See Appendix C for details.

B. Comparison of theory with numerical calculations

To numerically solve the equations, we use typical param-

eters for a micron-sized Stokes sphere in a viscous fluid by

reference to the actual experiment [19] as a = 6.45µm, l =

9.68µm, η = 1.45mPa · s, T = 300K, kB = 1.38 × 10−23JK−1,

and D̃ = kBT

γl2
=

kBT

6πηal2
≃ 2.5 × 10−4s−1. We choose F1/γl =

150.0s−1 and F2/γl = 151.0s−1 that lead to ω1 ≃ 149.248s−1

andω2 ≃ 150.243s−1, respectively. We also choose A = 0.1 so

that Eq. (35) is a good approximation. The saddle-node bifur-

cation point G∗ for the cycle-averaged dynamics Eqs. (33) and

(34) in the absence of noise is determined by the combination

of the three parameters as G∗ =
∣
∣
∣
∆ω
ω̄A

∣
∣
∣ from Eq. (10). Because

in this hydrodynamic model we are assuming a regime where

the cycle-averaging approximation is valid, we need to choose

ω̄, ∆ω, and G such that they satisfy
∣
∣
∣
∆ω
ω̄

∣
∣
∣ ,G ≪ 1. Therefore,

even for given small |A|, we should make G∗ =
∣
∣
∣
∆ω
ω̄A

∣
∣
∣ suffi-

ciently small by choosing much smaller
∣
∣
∣
∆ω
ω̄

∣
∣
∣ than |A| to study

the energy dissipation rate around G∗. The above parameters

that give G∗ =
∣
∣
∣
∆ω
ω̄A

∣
∣
∣ ≃ 0.0664 were adopted to satisfy this

condition. In the numerical calculations, the noise average is

replaced with the long-time average.

Figure 2 (b) shows the G-dependence of the mean fre-

quency Ωi obtained from the original dynamics given by

Eqs. (26) and (27) and the cycle-averaged one given by
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FIG. 2: (a) Schematic illustration of hydrodynamically coupled ro-

tating Stokes spheres described by Eqs. (26) and (27). (b) the mean

frequency Ωi and (c) the energy dissipation rate P normalized by

γl2 as a function of the hydrodynamic coupling parameter G. The

numerical data obtained by Eqs. (26) and (27) (original), Eqs. (33)

and (34) (cycle-averaged), and Eqs. (33) and (34) with ǫ = 0 with

other parameters being unchanged (noiseless) are compared, where

the theoretical bifurcation point G∗ =
∣
∣
∣
∆ω

ω̄A

∣
∣
∣ ≃ 0.0664. The theoretical

expression of P in Eq. (21) (theory) is also compared with its numeri-

cal counterpart (cycle-averaged) in (c). The dotted line in (c) denotes

the contribution from the (normalized) uncoupled part ω2
1
+ ω2

2
in

Eq. (21).

Eqs. (33) and (34) (Ωi obtained from the cycle-averaged dy-

namics Eqs. (33) and (34) with ǫ = 0 is also shown as a guide-

line). Although
〈

φ̇i

〉

=
〈

Φ̇i

〉

under the variable transforma-

tion holds for stationary states in general, a small discrepancy

arises because of the cycle averaging that explains the bifur-

cation in the original dynamics at the slightly smaller G than

G∗ for the cycle-averaged dynamics.

Figure 2 (c) shows the G-dependence of the energy dissi-

pation rate P. The theoretical curve is obtained by Eq. (21)

where ∆Ω in Po and Ω̄ in Pe are derived from the data of the

cycle-averaged dynamics given in Fig. 2 (b), while the crosses

denote the data obtained from the definition P =
∑2

i=1 〈q̇i〉 us-

ing the cycle-averaged dynamics Eqs. (33) and (34) (The case

of ǫ = 0 is also shown as a guideline). Both are in good

agreement, and the discrepancy originates from the neglected

term of O(K2) in Eq. (21). The original curve obtained from

the definition P =
∑2

i=1 〈q̇i〉 using Eqs. (26) and (27) is also

shown for comparison.

In Fig. 2 (c), we can see that P changes drastically around

the bifurcation point: the oscillators consume more energy as

G increases, i.e., they gain the ability to do more work on the

surrounding fluid in association with the increase of the de-

gree of phase synchronization. This behavior can be explained

based on Eq. (25) as the effect of Γe. In the synchronized state
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hydrodynamic coupling parameter

Eq.(36)
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 2000
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Eq.(37)
(a) (b)

FIG. 3: The decomposition of the energy dissipation rate (theory)

from Fig. 2 (c): (a) The odd part Po as a function of the hydrody-

namic coupling parameter G with the (normalized) theoretical value

in Eq. (36). (b) The even part Pe as a function of the hydrody-

namic coupling parameter G with the (normalized) theoretical curve

after the frequency synchronization in Eq. (37) with θ∗ = − π
2

and

G∗ =
∣
∣
∣
∆ω
ω̄A

∣
∣
∣ ≃ 0.0664.

∆Ω = 0, Po in Eq. (22) becomes constant as

Po = −γl2
∆ω2

2
, (36)

while Pe in Eq. (25) with the plus sign is given as

Pe = −6
√

2γl2 sin θ∗ω̄2G∗1/2(G −G∗)1/2 (G ≥ G∗). (37)

See the G-dependence of Po and Pe in Fig. 3 (a) and (b), re-

spectively, for these behaviors. From Eq. (37), we then notice

that the out-of-phase synchronization with θ∗ = − π
2

for A > 0

gives the observed behavior, whereas the out-of-phase syn-

chronization with θ∗ = π
2

for A < 0 results in the opposite

behavior; dissipation decreases as G increases. This example

elucidates an important role of the interplay between Γo and

Γe on the energetics of hydrodynamic synchronization.

We note that in the case of ∆ω = 0 and ǫ = 0, we obtain

P = 2γl2ω̄2(1 + 3G cos θ) (38)

as Eq. (21), where the in-phase synchronization (θ = 0 for

A > 0) gives the maximum value while the anti-phase syn-

chronization (θ = ±π for A < 0) gives the minimum value.

Interestingly, these behaviors are opposite to those found in

a study of hydrodynamic synchronization of two-dimensional

waving sheets [7] where the in-phase (anti-phase) state gives

a minimum (maximum) energy dissipation. We finally stress

that a measurement of P via our main result Eq. (21) is ex-

perimentally feasible without knowing the detailed Γ, since

what is needed are only the measurable quantities of Ωi and

ωi, where ωi could be measured as Ωi for each oscillator in

isolation [18].

V. SUMMARY AND DISCUSSION

For coupled oscillators rotating on the circular trajecto-

ries described by phase equations, we have obtained a con-

cise and general expression of the energy dissipation rate
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that can be applied to any type of weak coupling by using

stochastic thermodynamics. We have elucidated how syn-

chronization/desynchronization affects the energy dissipation

rate where the decomposition of the coupling function into

the even and odd parts plays the important role. As an ex-

ample, we have studied the hydrodynamic synchronization

of coupled Stokes spheres rotating on circular trajectories in

three-dimensional Stokes flow. Although the original phase

equations of this system are more complicated than the ones

we assumed in our theory, by using a variable transforma-

tion and cycle-averaging, we have simplified these equations

into a form to which our theory can be applied. As predicted

by our theory, these coupled Stokes spheres gain the ability

to do more work on the surrounding fluid as the degree of

phase synchronization increases under the system parameters

we used.

This nonlinear dynamics feature of the energetics may be

utilized in, e.g., propulsion of active microorganism with flag-

ella in a viscous fluid [20–22], where the roles of both a

biochemical noise surpassing the thermal noise [15–17] and

elasticity in a complex biological environment [22] may also

become relevant issues. In this context, the swimming effi-

ciency [33] of a Stokes swimmer [34–37] as a simple model

of such propulsion with additional motional-degrees of free-

dom of a body of the microorganism beyond those of flag-

ella would be worth of further investigation. Developing the

concise description of energy dissipation for more compli-

cated collective dynamics, e.g., hydrodynamic synchroniza-

tion of microswimmers [38] and cilia in metachronal coordi-

nation [9, 39, 40], will also be interesting. To this end, ex-

tensions of our theory so that it includes radial flexibility [19]

with general orbital shapes [13, 14] and the formulation for

many-body systems will be required to achieve a more gen-

eral formulation of the energetics of synchronization in cou-

pled oscillators. We expect that the present work triggers fur-

ther studies of phenomena governed by both nonequilibrium

thermodynamics and nonlinear dynamics.
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Appendix A: Derivation of main result for noiseless case (ǫ = 0)

For a derivation of the energy dissipation rate in Eq. (21)

in Sec. III for the noiseless case (ǫ = 0), we replace the

Stratonovich product with the usual product and the noise av-

erage with the long-time average. P is then calculated as

P =

2∑

i=1

〈

lFi · lφ̇i

〉

=

2∑

i=1

lim
T→∞

1

T

∫ T

0

lFi · lφ̇idt

= γl2
2∑

i=1

lim
T→∞

1

T

∫ T

0

(

ωi + KΓe(θ) − K
∂U(θ)

∂φi

)

· φ̇idt

= γl2
2∑

i=1

ωi lim
T→∞

1

T

∫ T

0

φ̇idt

+γl2
2∑

i=1

lim
T→∞

1

T

∫ T

0

KΓe(θ) · (ωi + O(K))dt

−γl2K lim
T→∞

1

T

∫ T

0

2∑

i=1

∂U(θ)

∂φi

dφi

dt
dt

︸                               ︷︷                               ︸

=limT→∞
1
T

∫ T

0
dU
dt

dt=0

= γl2
2∑

i=1

ωiΩi + 2γl2ω̄K 〈Γe(θ)〉 + O(K2), (A1)

where we used Ωi = limT→∞
1
T

∫ T

0
φ̇idt, 〈Γe(θ)〉 =

limT→∞
1
T

∫ T

0
Γe(θ)dt, and the fact that the potential energy

U(θ) is bounded from its 2π-periodicity. By using Ω̄ =
Ω1+Ω2

2
= ω̄ + K 〈Γe(θ)〉 and ∆Ω = Ω1 −Ω2 = ∆ω + 2K 〈Γo(θ)〉

in Eq. (A1), we obtain the same expression as the main result

Eq. (21) for this noiseless case.

Appendix B: Derivation of phase equations in hydrodynamically

coupled oscillators

We derive Eqs. (26), (27), and (33)–(35) in Sec. IV.

Our description is partially based on [19], where a phase-

description model of hydrodynamically coupled oscillators

proposed in [13, 14] and its extension with radial flexibility

were experimentally studied using Stokes spheres under the

presence of noise. For our purpose here, we just focus on

the phase degree of freedom under the presence of noise by

assuming that the radial flexibility can be neglected. We use

basically the same notations and symbols below as in the main

text.

Let us consider hydrodynamically coupled Stokes spheres

with radius a moving on circles with radius l whose centers

ri0 ≡ (di, 0) (i = 1, 2) are separated by a distance d ≡ d2 −
d1 > 0 in the x-direction on the x-y plane (see Fig. 2 (a) in

the main text). While we assume that these spheres are in a

three-dimensional Stokes flow, their motions are restricted on

the circles on the x-y plane. We define ex ≡ (1, 0) and ey ≡
(0, 1) as the unit vectors in the x-and y-directions, respectively.

Then the phase evolution equations Eqs. (26) and (27) in the

main text of the i-th sphere at position ri = ri0 + l cos φiex +

l sin φiey = (di + l cos φi, l sin φi) can be derived from the force
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balance equation as [19]

Fi −
2∑

j=1

H−1
i j · ṙ j + fi = 0, (B1)

where Fi is the profile of the driving force to the i-th sphere.

Hi j is the Oseen tensor for a three-dimensional bulk fluid. Un-

der the assumptions of a ≪ d and l ≪ d, it is explicitly given

by [19]

Hi j =
I

γ
δi j +

G

γ
(I + ex ⊗ ex) (1 − δi j), (B2)

where the drag coefficient γ defined as the inverse of the mo-

bility µ is given by the Stokes’ law as γ = µ−1 = 6πηa using

the viscosity η, and G = 3a
4d

is the hydrodynamic coupling pa-

rameter. We define I ≡ ex ⊗ ex + ey ⊗ ey as the unit tensor.

Then the inverse tensor H−1
i j

in Eq. (B1) is explicitly given as

H−1
i j =

(
γ

1 − 4G2
ex ⊗ ex +

γ

1 −G2
ey ⊗ ey

)

δi j −
(

2γG

1 − 4G2
ex ⊗ ex +

γG

1 −G2
ey ⊗ ey

)

(1 − δi j). (B3)

We denote by fi(t) the thermal random force that satisfies

〈 fi(t)〉 = 0 and
〈

fi(t) ⊗ f j(t
′)
〉

= 2ǫH−1
i j
δ(t − t′) with ǫ being

the noise intensity of the thermal environment [19, 41, 42].

Here we are assuming that the radial degree of freedom Ri

of the sphere does not change in time, and that the sphere is

always constrained on the circular trajectory as Ri = l. This

assumption is justified if both the time scale of relaxation of Ri

to a steady value by a restoring force in the normal direction

to the circle is much faster than the that of the phase φ j, and

the radial stiffness is sufficiently large for deviation of Ri from

l as the equilibrium point to be neglected [19]. Under this as-

sumption of no radial flexibility, we can assume that Fi and fi

effectively have only a tangential component as Fi = Fi(φi)ti

and fi = fi ti, where ti ≡ dri

dφi
/
∣
∣
∣
∣

dri

dφi

∣
∣
∣
∣ = (− sinφi, cosφi) is the

tangential vector to the circle.

By applying H ji to Eq. (B1) and summing with respect to

i, we obtain

Hii · Fi +
∑

j,i

Hi j · F j − ṙi +

2∑

j=1

Hi j · f j = 0, (B4)

where we used
∑2

i=1 HkiH
−1
i j
= Iδk j. By noting that the com-

ponent of the velocity ṙi = lφ̇i(− sinφi, cos φi) tangential to

the circle is given as ti · ṙi = lφ̇i, we can rewrite the force bal-

ance equation Eq. (B1) by taking the inner product of ti with

Eq. (B4) multiplied by l−1 as

Fi(φi)

γl
+

GH(φ1, φ2)F j(φ j)

γl
− φ̇i + ζi(t) = 0 (i , j), (B5)

where H(φ1, φ2) = cos(φ1−φ2)+ sin φ1 sin φ2 is the geometric

factor [13, 14], and ζi(t) is defined as

ζi(t) ≡ l−1

2∑

j=1

ti · Hi j · f j =
fi(t)

γl
+

GH(φ1, φ2) f j(t)

γl
(i , j).

(B6)

To obtain the correlation function of ζi(t), we use

〈

fi(t) f j(t
′)
〉

= 2ǫ
(

ti · H−1
i j · t j

)

δ(t − t′)

= 2ǫ

[(
γ

1 − 4G2
sinφi sin φ j +

γ

1 −G2
cos φi cosφ j

)

δi j −
(

2γG

1 − 4G2
sin φi sinφ j +

γG

1 −G2
cosφi cos φ j

)

(1 − δi j)

]

δ(t − t′)

= 2γǫ
(

δi j −GH(φ1, φ2)(1 − δi j)
)

δ(t − t′) + O(ǫG2). (B7)

We then approximate ζi as the independent Gaussian white

noise whose correlation function is given as
〈

ζi(t)ζ j(t
′)
〉

=

2D̃δi jδ(t − t′) + O(D̃G), where D̃ = Dl−2 is the normalized

diffusion coefficient D = µǫ. The force balance equation

Eq. (B1) now becomes the following phase evolution equa-

tions corresponding to Eqs. (26) and (27) in the main text as

φ̇1 = ω1(φ1) + γ−1l−1GH(φ1, φ2)F2(φ2) + ζ1, (B8)

φ̇2 = ω2(φ2) + γ−1l−1GH(φ1, φ2)F1(φ1) + ζ2, (B9)

where Fi(φi) = Fi

[

1 − A sin 2φi

]

(Fi ≡ F0+δFi (|δFi| ≪ |F0|))
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with F0 and δFi being constants [13, 14].

By the variable transformation Eq. (30), the phase equa-

tions Eqs. (B8) and (B9) are then rewritten as

Φ̇1 = ω1 +Gω1

F̃2(Φ2)

F̃1(Φ1)
H̃(Φ1,Φ2) +

ω1

ω̃1(Φ1)
ζ1, (B10)

Φ̇2 = ω2 +Gω2

F̃1(Φ1)

F̃2(Φ2)
H̃(Φ1,Φ2) +

ω2

ω̃2(Φ2)
ζ2, (B11)

which correspond to Eqs. (31) and (32) in the main text. When

|∆ω|/|ω̄|,G, D̃/|ω̄| ≪ 1, we can average Eqs. (B10) and (B11)

over one cycle 2π as [2]

Φ̇1 = ω1 +Gω̄Γ(Φ1 −Φ2) + ζ̄1, (B12)

Φ̇2 = ω2 +Gω̄Γ(Φ2 −Φ1) + ζ̄2, (B13)

to the lowest order. The coupling function Γ(Φ1 −Φ2) regard-

ing the phase difference is defined as

Γ(Φ1 −Φ2) ≡ 1

2π

∫ 2π

0

F̃0(Φ)H̃(Φ1 −Φ2 + Φ,Φ)

F̃0(Φ1 − Φ2 + Φ)
dΦ, (B14)

where F̃0(Φi) ≡ F0(φi) = F0

[

1 − A sin 2φi

]

. ζ̄i is the Gaus-

sian white noise that satisfies
〈

ζ̄i(t)
〉

= 0 and
〈

ζ̄i(t)ζ̄ j(t
′)
〉

=

2D̄δi jδ(t − t′), where D̄ is the cycle-averaged diffusion coeffi-

cient as [2]

D̄ ≡ D̃

2π

∫ 2π

0

ω̄2

ω̃2
0
(Φi)

dΦi, (B15)

where ω̃0(Φi) ≡ F̃0(Φi)/γl.

By assuming |A| ≪ 1 for analytical tractability [14], we

can approximate φi ≃ Φi +
A
2

cos 2Φi = Φi + O(A), and hence

F̃0(Φi) = F0[1−A sin 2Φi]+O(A2), H̃(Φ1,Φ2) = H(Φ1,Φ2)+

A (sinΦ1 cosΦ2 cos 2Φ2 + cosΦ1 sinΦ2 cos 2Φ1) −
A
2

(sinΦ1 cosΦ2 cos 2Φ1 + cosΦ1 sinΦ2 cos 2Φ2) + O(A2),

and D̄ = D̃(1 + O(A2)). With this approximation, we can

reduce Eqs. (B12) and (B13) to

Φ̇1 = ω1 +Gω̄Γ(Φ1 −Φ2) + ζ1, (B16)

Φ̇2 = ω2 +Gω̄Γ(Φ2 −Φ1) + ζ2, (B17)

by neglecting the quantity of O(GA2, D̃A2). Here, the cou-

pling function Eq. (B14) is calculated as

Γ(Φ1 −Φ2) =
3

2
cos(Φ1 − Φ2) − A

2
sin(Φ1 − Φ2), (B18)

up to O(A), which corresponds to Eq. (35) in the main text.

Eqs. (B16) and (B17) correspond to Eqs. (33) and (34) in the

main text.

Appendix C: Energy dissipation rate under the variable

transformation

We show that the energy dissipation rate P obtained from

the original dynamics Eqs. (26) and (27) with the variable φi

can be rewritten by using Φi with the dynamics Eqs. (31) and

(32) via the relation

φ̇i =
ω̃i(Φi)

ωi

Φ̇i =
Ti

2π
ω̃i(Φi)Φ̇i (C1)

obtained from Eq. (30). For this purpose, we rewrite the orig-

inal phase equations Eqs. (26) and (27) for φi as

φ̇i = ωi(φi) +GΓi(φ1, φ2) + ζi ≡ µFi(φ1, φ2) + ζi, (C2)

where we put

Γ1(φ1, φ2) ≡ H(φ1, φ2)
F2(φ2)

γl
, (C3)

Γ2(φ1, φ2) ≡ H(φ1, φ2)
F1(φ1)

γl
, (C4)

respectively. Then we can also rewrite Eqs. (31) and (32) for

Φi as

Φ̇i = µ
ωiF̃i(Φ1,Φ2)

ω̃i(Φi)
+
ωi

ω̃i(Φi)
ζi, (C5)

where

F̃i(Φ1,Φ2) ≡ Fi(φ1, φ2). (C6)

We also use the following approximations:

Ti =

∫ 2π

0

dφi

ωi(φi)
=

∫ 2π

0

1
Fi

γl

[

1 − A sin 2φi

]dφi

=
2πγl

Fi

+ O(A2), (C7)

ω̃i(Φi) =
Fi

γl
[1 − A sin 2Φi] + O(A2). (C8)

In the following, we consider the noiseless case (ǫ = 0) and

the case under the presence of noise (ǫ , 0), respectively.
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1. Noiseless case (ǫ = 0)

By using Eqs. (C1), Eq. (C5) with ǫ = 0, and Eqs. (C6)–

(C8), we obtain

P =

2∑

i=1

〈

lFi(φ1, φ2) · lφ̇i

〉

=

2∑

i=1

lim
T→∞

1

T

∫ T

0

lFi(φ1, φ2) · lφ̇idt

=

2∑

i=1

lim
T→∞

1

T

∫ T

0

(

l
ωiF̃i(Φ1,Φ2)

ω̃i(Φi)

ω̃i(Φi)

ωi

)

·
(

l
ω̃i(Φi)

ωi

Φ̇i

)

dt

= l2
2∑

i=1

lim
T→∞

1

T

∫ T

0

ωiF̃i(Φ1,Φ2)

ω̃i(Φi)
·
(

1

2π

)2 (

2πγl

Fi

+ O(A2)

)2

×
(

Fi

γl
[1 − A sin 2Φi] + O(A2)

)2

Φ̇idt

= l2
2∑

i=1

lim
T→∞

1

T

∫ T

0

ωiF̃i(Φ1,Φ2)

ω̃i(Φi)
[1 − 2A sin 2Φi] Φ̇idt

+O(A2) (C9)

= l2
2∑

i=1

lim
T→∞

1

T

∫ T

0

ωiF̃i(Φ1,Φ2)

ω̃i(Φi)
· Φ̇idt

−2γl2A

2∑

i=1

ωi lim
T→∞

1

T

∫ Φi(T )

Φi(0)

sin 2ΦidΦi

︸                           ︷︷                           ︸

limT→∞
1
T

[

− cos 2Φi
2

]Φi (T )

Φi (0)
=0

+O(AG, A2)

=

2∑

i=1

〈

l
ωiF̃i(Φ1,Φ2)

ω̃i(Φi)
· lΦ̇i

〉

+ O(AG, A2). (C10)

This form of the first term in Eq. (C10) together with the dy-

namics Eq. (C5) with ǫ = 0 allows us to interpret that lΦi

effectively denotes the arc length measured from the origin to

the position of the oscillator in this noiseless case. Our main

result Eq. (21) as is also shown for this noiseless case in Ap-

pendix A can then be applied to this form after the suitable

cycle averaging of Eqs. (31) and (32) with ǫ = 0 into the form

of Eqs. (33) and (34).

2. Under the presence of noise (ǫ , 0)

By replacing the long-time average with the noise average

in Eq. (C9), we can obtain the same expression as Eq. (C10)

under the presence of noise as

P =

2∑

i=1

〈

lFi(φ1, φ2) ◦ lφ̇i

〉

= l2
2∑

i=1

〈

ωiF̃i(Φ1,Φ2)

ω̃i(Φi)
[1 − 2A sin 2Φi] ◦ Φ̇i

〉

+ O(A2)

= l2
2∑

i=1

〈

ωiF̃i(Φ1,Φ2)

ω̃i(Φi)
◦ Φ̇i

〉

− 2γl2A

2∑

i=1

ωi

〈

sin 2Φi ◦ Φ̇i

〉

+O(AG, A2)

=

2∑

i=1

〈

l
ωiF̃i(Φ1,Φ2)

ω̃i(Φi)
◦ lΦ̇i

〉

+ O(AG, A2), (C11)

where we used
〈

sin 2Φi ◦ Φ̇i

〉

= 0. This can be shown as

〈

sin 2Φi ◦ Φ̇i

〉

=

∫ 2π

0

dΦ1

∫ 2π

0

dΦ2 sin 2ΦiJ̃ss
i (Φ1,Φ2)

=

∫ 2π

0

dΦ1

∫ 2π

0

dΦ2

∂

∂Φi

(

−1

2
cos 2Φi

)

J̃ss
i (Φ1,Φ2)

=

∫ 2π

0

[

−1

2
cos 2ΦiJ̃ss

i (Φ1,Φ2)

]φi=2π

φi=0

dΦ j

︸                                              ︷︷                                              ︸

=0

−
∫ 2π

0

dΦ1

∫ 2π

0

dΦ2

(

−1

2
cos 2Φi

)
∂J̃ss

i
(Φ1,Φ2)

∂Φi
︸           ︷︷           ︸

=−
∂J̃ss

j
(Φ1 ,Φ2 )

∂Φ j

(i , j)

=

∫ 2π

0

dΦi

(

−1

2
cos 2Φi

)
[

J̃ss
j (Φ1,Φ2)

]φ j=2π

φ j=0
︸                 ︷︷                 ︸

=0

= 0, (C12)

where we used the stationary solution of the Fokker-Planck

equation for Φi corresponding to the dynamics Eqs. (31) and

(32) in the main text with J̃ss
i

(Φ1,Φ2) being its stationary

probability current.
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