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The well-established method of phase reduction neglects information about a limit cycle oscilla-
tor’s approach towards its periodic orbit. Consequently, phase reduction suffers in practicality unless
the magnitude of the Floquet multipliers of the underlying limit cycle are small in magnitude. By
defining isostable coordinates of a periodic orbit, we present an augmentation to classical phase
reduction which obviates this restriction on the Floquet multipliers. This framework allows for the
study and understanding of periodic dynamics for which standard phase reduction alone is inade-
quate. Most notably, isostable reduction allows for a convenient and self-contained characterization

of the dynamics near unstable periodic orbits.

PACS numbers: 02.30.Mv, 02.30.Hq, 05.45.Gg, 87.10.Ca

Oscillatory behavior is a ubiquitous natural phe-
nomenon with a wide array of applications including
neurological behavior, circadian rhythms, chemical
reactions, mechanical vibrations, and chaotic sys-
tems [1-7]. For nearly half a century, phase reduc-
tion has been an indispensable tool to aid in the
understanding and manipulation of such oscillators
[1-6] by allowing periodic solutions of

X = F(x)+ G(x,t), xe€R" (1)

to be represented by the single variable system:
0=w+QO)TG(x,1). (2)

Here, G € R™ is an external perturbation, 8 € [0, 27)
is the phase of oscillation, w = 27 /T is the natu-
ral frequency with T being the natural period, and
Q(0) € R™ is an infinitesimal phase response curve
(PRC), which as its name suggests, is valid for per-
turbations G with small magnitude. Practically, (2)
is valid in a close vicinity of the periodic orbit, ~.
Consequently, the amplitude of allowable perturba-
tions is limited by the size of the Floquet multipli-
ers [8]; stable orbits with Floquet multipliers with
magnitude close to 1 can only admit relatively small
perturbations without the risk of being driven away
from the limit cycle over time. In many applica-
tions [5, 9-11], however, the efficacy of a given con-
trol strategy is directly related to the magnitude of
allowable perturbations. Furthermore, for unstable
periodic orbits, (2) alone cannot adequately describe
the long term behavior of (1), rendering it unusable.
Discrete time proportional state feedback [7, 12] and
delayed feedback control [13] has been used to sup-
press chaos by means of stabilizing unstable periodic
orbits. These classes of chaos control strategies have
found practical applications in cardiac, electronic,
networked and optical systems [14-17]. Phase re-
duction techniques could be of practical interest in
the suppression of chaos if appropriate modifications
could be made.

This work proposes an augmentation of standard
phase reduction which allows for a better under-
standing of systems with either a stable or unsta-
ble periodic orbit. We introduce a set of isostable
coordinates and associated isostable response curves
(IRCs), which represent the distance from the pe-
riodic orbit in an appropriate basis. The notion
of isostables was introduced in [18] (c.f. [19] and
[20]) to represent sets of initial conditions which con-
verge toward a stable fixed point together, in a well-
defined sense. The isostable coordinates used in this
manuscript are defined in a manner that is similar
in spirit, but adapted for use with periodic orbits.
Unlike [21, 22], the strategy proposed here does not
require computationally intensive calculations of an
ad hoc coordinate system with respect to a periodic
orbit of dimensionality greater than 2. Furthermore,
the strategy presented here does not require the pe-
riodic orbit to be exponentially attracting in either
forward or backward time. In the examples given
in this work, we illustrate the utility of this reduc-
tion method in two different oscillatory systems for
which (2) alone is insufficient.

Starting with a general system of ordinary dif-
ferential equations (1), let v be T-periodic orbit
which exists for G = 0. We define a scalar phase
variable on « such that 6(x) : R® — [0,27) for
which df(x(t))/dt = w and 8(x(t)) = 0(x(t + T)),
and choose an arbitrary point xg € ~ for which
0(xg) = 0. By solving for Q(#) (the gradient of the
phase field) using, e.g., adjoint methods [4, 23, 24],
this notion of phase can be extended to any x in
a neighborhood of + by noting that for ¢ > 0,
O(x+ey) = 0(x)+0O(e2) for any y in the null space of
Q(0(x)). This definition of phase is possible regard-
less of the stability type of v. We define isochrons as
level sets of the phase field, i.e. T'yg = {x|0(x) = 0}.
When 7 is a stable periodic orbit, isochrons have an
intuitive meaning: for any initial conditions a(0) €
and b(0) in the basin of attraction of v on the same
isochron, lim;_, [|a(t) — b(¢)|| = 0 [1].



Changing to phase variables using the chain rule,
one arrives at the phase reduction (2). Here, we are
also interested in the transient behavior of (1) near
which can be understood in terms of Poincaré maps.
By construction, any initial condition in 'y first re-
turns to I'g at time 7" allowing for the definition of
a Poincaré map,

P:Ty—Ty; X'—)¢(X)7 (3)
with P(xg) = X¢. In a small neighborhood of xq we
may approximate ¢ from (3) as

d(x) = x0+ Jp(x —x0) + O(|[x = x0|*),  (4)

where Jp = d¢/dx|x,. Suppose J, is diagonalizable
and let V € R™*™ be a matrix with columns that
form an basis of unit length eigenvectors {vy,k =
1,...,n} of Jp with associated eigenvalues {\g, k =
1,...,n}. The eigenvalues \; are often referred to
as Floquet multipliers of the periodic orbit. For any
eigenvector v; with associated A\; € R > 0 (if any
Ai < 0, one can define the period to be 2T so that
all eigenvalues are positive), we can define a set of
isostable coordinates,

¥i(x) = e] V7 (xp — x¢) exp(—log(\)tr/T). (5)

Here, xpr and tr € [0,T) are defined to be the lo-
cation and time, respectively, at which the trajec-
tory first returns to Iy under the flow x = F(x)
and e; is a vector with 1 in the " position and ze-
ros elsewhere. These isostable coordinates ;(x) are
defined for all x € R", not just on the Poincaré sec-
tion. Intuitively, a trajectory near the periodic orbit
will spiral towards or away at a rate determined by
each of the Floquet multipliers. This growth/decay
is matched by the decay/growth of the exponential
term from (5), giving a sense of the distance in direc-
tions transverse to the periodic orbit. Noting that
dtr/dt = —1 for x(t) & T'g, by direct differentiation
of (5) dip;/dt = 1p;log(A;)/T, therefore,

Vii(x) - F(x) = i log(Ai)/T. (6)

By (4), one can verify that under the flow X = F(x),
Vi (x(t)) = i (x(t5)) + O(||x —x0||?). This discon-
tinuity results from the approximation of (3) as a
linear mapping. Throughout this analysis, we will
assume close enough proximity to the periodic orbit
so that this discontinuity is negligible. Figure 1 gives
a representation of a general 2-dimensional system
in terms of its isostable coordinates. For an an arbi-
trary time 7, if we compute the isostable coordinate
Y(x(7)) = ¥, after one revolution, ¢¥(x(7 +T)) =
A0+ O(||x — x0||?). Furthermore, close to the peri-
odic orbit, when the Poincaré map (3) is well approx-
imated by a linear mapping, two initial conditions

on the same isostable level set will cross successive
isostable level sets together on their way to the limit
cycle (to leading order)

FIG. 1. A sketch of the behavior of a general 2-
dimensional system near its limit cycle. The red and blue
lines represent two trajectories integrated over one pe-
riod which start on the same isostable level set. Dashed
and dotted lines represent two different isostable level
sets. When the Poincaré map defined with respect to
the # = 0 isochron is well approximated as a linear map
the discontinuity across the # = 0 isochron is negliga-
ble, and trajectories on the same isostable level set cross
the successive isostable level sets together. Furthermore,
the isostable coordinate decreases at an exponential rate
governed by the Floquet multiplier A1. Here, isostable
level sets give a sense of the distance from the periodic
orbit.

Letting k; = log();)/T, and changing variables to
isostable coordinates, with the chain rule we find

Wil _ G (x) - (F(x) + G(x, 1))

dt
= ki (x) + Vibi(x) - G(x,1).  (7)
Evaluating the vector field at x(6,;), which we
define as the intersection of the trajectory -y, the

1;(x) level set (i.e. isostable), and the 0(x) level set
(i.e. isochron), we have

dt

= Rii(x) + Vi (x7(0,10:)) - G(x7(0, i), 7).
(8)
Here, as in [25] we have ignored an O(|G|?) term so
that (8) is valid for perturbations with small G.
Towards deriving an equation for the numerical
computation of V,;(x7(6,1;)), we will momentar-
ily take G = 0 and consider the effect of a small
perturbation Ax to a trajectory x(t) € v. Ax(t)



evolves according to

dAx(t)
dt

= J(x(t))Ax(t) + O(||Ax[[*),  (9)

where J(x(t)) is the Jacobian matrix evaluated at
x(t). The corresponding isostable shift, Ay; =

i (x(t) + Ax(t)) — ;(x(¢)) is given by
Aty = Vyqythi - Ax(t) + O(|| Ax][?), (10)

where Vy9; is the gradient of 1); evaluated at
x(t) € 7. After the initial perturbation at ¢ = 0,

dAY;
dt

= KAy
= KiVx)¥i - AX (11)

In the spirit of [24] and [26], by taking the time
derivative of (10) and rearranging, to lowest order
in ||Ax]|,

(de(t)z/;i/dt, AX(t» = — <vx(t)1/}i7 dAX(t)/dt>

+ (Ri V() ¥i, Ax)
= — (J(x(t)" V)i — £i V)i, Ax) . (12)

Here, (-,-) is the Euclidean inner product (i.e. dot
product), and 7 indicates the transpose (i.e. adjoint)
of the real-valued matrix J(x(t)). Because (12) is
valid for any Ax,

AVt _

= (il = Jx(0)) Vai, (13)

where [ is the identity matrix. Note the similarity
between (13) and the adjoint equation derived in [21]
which was valid only for two-dimensional systems.
Recall that for x € I'g, tr = 0 and xr = X, so that
from (5), 1;(x) = el V~1(x —x¢). This implies that
Vi (x +nv;) = ¥;(x) +n for n € R, or equivalently

vaﬂ}i V= 1 (14)

This normalization condition along with 7T-
periodicity defines a unique solution of (13). Equa-
tion (1) can then be understood in reduced form.

6=w+QT(0) G(1)
Ui = kg + I (0) - G(t) fori=1,...n— 1, (15)

where Q7(0) = V0|, ) is often referred to as the
PRC, and Z;(0) = VQMN(G) will be referred to as an
TIRC. As shown in Appendix A, the magnitude but
not the shape of the resulting IRCs depends on the
initial choice of #(xg) = 0. Much like in the standard
phase reduction (2), the equations (15) are valid pro-
vided the unreduced state dynamics remain close to

~. In practice, we generally only need to consider a
few isostable coordinates: if |A;z| = 0, any perturba-
tions to ¥ will be quickly forgotten and this coordi-
nate can simply be ignored. Finally, we note that if
Jp is not diagonalizable, a similar reduction analysis
can be performed for any eigenvalue for which the ge-
ometric and algebraic multiplicity are identical. As
we will show in the following examples, isostable re-
duction is essential for understanding phase reduced
systems with eigenvalues close to or greater than 1.
To illustrate the principles derived above, we will
first consider a three dimensional model of gene reg-
ulation [27] which has been used to describe the os-
cillatory behavior of the suprachiasmatic nucleus re-
sponsible for the mammalian circadian clock:

X =0 K')(K? + Z™) — 0o X /(K 4+ X) + L(t),
Y = ksX —u,Y/(Ky+Y),

7 = k5Y—’l)Gz/(k6+Z). (16)

Here X,Y, and Z represent concentrations (ex-
pressed in nM) of the mRNA clock gene per or cry,
the PER or CRY protein, and the nuclear form of
the protein, respectively with all constants taken as
the nominal values from Figure 2 of [27], and L(t)
represents a perturbation from ambient light. Panel
(A) of Figure 2 shows the limit cycle solution of (16)
when L(t) = 0 with a natural period T, = 23.54
hours. The value § = 0 (an arbitrary reference
point) is represented with a black dot, and the I'y
Poincaré section (i.e., the § = 0 isochron) is approx-
imated by the red plane near the periodic orbit. Ini-
tial conditions represented by red dots in Panel (D)
are mapped to the locations in panel (E). Eigenval-
ues A1 and Aq of eigendirections v; and vy of P(x)
are determined numerically to be 0.951 and approx-
imately 0, respectively. Using standard techniques
[4, 23, 24], the PRC, Q°(8) = [Q¥ (6) Q¥ (6) Q(6)]
is calculated with Q%X (6) shown in panel (B). The
IRC, Z£(0) = [ZX(0) I (0) ZZ(0))] is calculated us-
ing (13) with Z;¥ (#) shown in Panel (C).

We can represent the reduced dynamics of this os-
cillator with two coupled ordinary differential equa-
tions:

0 = we + QX (O)L(1), (17)
b1 = ke + I (0) (1), (18)

with w. = 27 /T, and k. = log(A1)/T.. Note that we
do not include v, in the reduction because the stabil-
ity in this coordinate is very strong. To illustrate the
necessity of (18) in the phase reduction, we will test
and implement a simple control strategy for entrain-
ment to an external perturbation. Suppose we would
like to entrain the oscillation to an external periodic
perturbation L(t) = pud(mod(¢, T, + AT)), a control



FIG. 2. Panel (A) shows the limit cycle in black with I'g
in red. Panels (B) and (C) show the PRC and IRC, re-
spectively. Numerical validation of the IRC through cal-
culation of Ay /AX (represented by black dots) for var-
ious phases of perturbation are shown with black dots.
Initial conditions (red dots) in panel (D) are mapped to
locations in Panel (E) after one iteration of the Poincaré
map

objective which is relevant in the treatment in cer-
tain types of circadian misalignment (c.f. [28, 29]).
By simply taking into account the phase reduction
(17), one can understand the phase dynamics as a
series of maps

67 =0+ 2rAT/T, + Q™ (9), (19)

where 6 represents the phase immediately prior to
the application of a pulsatile stimulus, and 61 gives
the phase at a time T, + AT later. Equation (19)
has a fixed point when p = —27AT/T.QX(6). The
minimal control effort required occurs when 6 =
argmax|QX (0)| ~ 1. Letting T, + AT = 22.2 hours,
simple stability analysis reveals that the resulting
fixed point is stable. However, as shown in the right
panels of Figure 3 this control strategy does not give
stable entrainment and the mean period remains un-
changed. From the 3-dimensional trajectory in blue,
we find that the trajectory does not remain close
to the periodic orbit, as would be predicted from
the isostable reduction, as Zi* (1) is relatively large.
Instead, if we choose p as above, numerically we
find = 2 is a stable fixed point of (19), and with
Z:¥(1) = 0, the pulsatile stimulus stably entrains
the oscillator as shown in the left panels of Figure 3.
Numerically, we find that fixed points 6y of (17) are
unstable unless Z () ~ 0.

Next, we show that the notion of isostables can be
used to understand the effect of small perturbations
near an unstable periodic orbit and how they can
be used to optimally drive a given trajectory to an
unstable periodic orbit. Here we consider the three
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FIG. 3. Left: The circadian oscillator can be entrained
(trajectory shown in blue) to periodic d-function pertur-
bations if they are given when the IRC is approximately
zero. Right: Entrainment does not occur even when
analysis of (17) alone predicts it should. Equation (18)
is essential for using phase reduction in this application.

dimensional Lorenz equations [30]:

A=0(B—-A)+u(t),
C = AB - SC. (20)

Here, A, B, and C are nondimensional system vari-
ables, ¢ = 16,8 = 8/3, and p = 350 are con-
stants chosen so that the unperturbed dynamics are
chaotic, and wu(t) is an external perturbation. An
unstable periodic orbit, v, with period 77 = 0.372
and dynamics along the Lorenz attractor are shown
in Figure 4. Along this orbit, # = 0 is taken to
correspond to an arbitrary location along v allow-
ing for the definition of I'y. The resulting Poincaré
section is shown in the top-right panel. Eigenval-
ues A1y and Ao of the Poincaré map’s v; and wvs
eigendirections are numerically determined to be
3.33 and approximately 0, respectively. Using (13)
the IRC of this unstable eigendirection ZF(0) =
[ZA(0) ZB(0) I (0)] is calculated with Z{* () shown
in Figure 5. We also calculate the PRC Q4(6) for
perturbations in the A direction, allowing for the
reduction

0= wr, + QA(O)ul(t),
I = rp + I3 (O)ult), (21)

where wy, = 27/Ty, and k;, = log(A\1)/Tr. Under-
standing the Lorenz system in reduced coordinates
allows for the formulation of a control problem to
drive any initial condition to the unstable periodic
orbit provided it is close enough to the orbit so that
the reduction is valid. Towards this calculus of varia-
tions problem formulation [31], we define a cost func-



FIG. 4. Top-left: Trajectory along the Lorenz attractor
in blue with an unstable periodic orbit outlined in black.
Top-right: A small portion of the periodic orbit is shown
as a thick black line. Eigendirections of the Poincaré
map are shown as thin lines. Initial conditions in red are
mapped to the locations in blue after one application
of the map. Bottom: an example uncontrolled chaotic
trajectory on the Lorenz attractor.

tional

Mid,0u0] = [ [u2<t> G~ wn — QA (O)u(t))

+ Cof{thr — KLt — If(@)u(t)}] dt,
(22)

with ®(t) = [0(t), 11 (¢), ¢1(¢), C2(t)]. Here, Lagrange
multipliers (; and (5 force the dynamics to satisfy
the phase and isostable reduced equations. The as-
sociated Euler-Lagrange equations are

OM _d (OMY OM _d (MY oo
u  dt\9u ) 9D  dt\ 9d )

Optimal solutions to the cost function satisfy (23)
with boundary conditions §(0) = 0, 6(1L) = 2w,
¥1(Tr) = 0, and 91 (0) determined from initial data.
This two-point boundary problem can be solved,
e.g., with a double bisection algorithm and is chosen
so that after one cycle, the trajectory ends on the
stable manifold of the Poincaré section I'g. The nu-
merically determined optimal control u*(t) is shown
in Panel (C) of Figure 5 for multiple choices of
1¥1(0) € [—20,20]. In this range, u*(¢) is approxi-
mately proportional to 1/41(0). Using this informa-
tion, we can devise a control algorithm to drive the
Lorenz system to the unstable periodic orbit: for any
initial condition, wait until the trajectory crosses I'y
close enough to the unstable periodic orbit, calcu-
late 11(0) to determine u(t). Panels (D) and (E)
of Figure 5 show the result of this strategy where
the control is set to engage when 1(0) < 20. After
the first control application at ¢ ~ 3.5, the system is
nearly driven to the periodic orbit, but because (13)

provides an approximation to the IRC, a second and
third control application (of rapidly decreasing mag-
nitude) are required to bring the system exactly to
the periodic orbit.

2
—~ 002 A (o
s ~
3 0 S o
S 002 5,
.3 B =~
<2 =
= *_ _4
<=1 S
N
-6
o 2 4 6 ) 0.1 02 03
0 t
500
= 400 1D
O 300t
150F ‘ ‘ ‘ ‘ ‘ —
= 100 M 1E
< 50
n n n '} n n n

FIG. 5. Panels (A) and (B) give the PRC and IRC for
this system. IRC values are numerically validated by cal-
culating Ay /AA at various phases and shown as black
dots. Panel (C) shows an optimal stimulus which takes
an initial condition in I'g and returns it to I'g with ¢ =0
one period later. A control strategy using this informa-
tion is shown in panels (D) and (E).

The chaos control strategy illustrated here differs
from discrete time proportional feedback methods
(for example [7], [12]) in that it uses information
at all locations near the periodic orbit, not just
along the Poincaré surface. This added informa-
tion about the system allows for the definition of
an optimal control problem which yields a continu-
ous solution. In many control applications, allow-
ing for continuous waveforms can lead to a substan-
tial decrease in energy required to achieve a con-
trol objective as compared to discrete time control
[5], [32]. One drawback of the method developed
here is that the periodic orbit must be known before
IRCs can be measured and control strategies can be
implemented. In this case, in an experimental set-
ting one might envision that the unstable orbit could
be found, for instance with delayed feedback control
strategies [13], after which an IRC could be mea-
sured with an experimental protocol similar to the
‘direct method’ [33], [34] for measuring PRCs. Such
a protocol could make a chaos control described here
more feasible in an experimental setting.

In summary, we have developed a set of isostable
coordinates which allow classical phase reduction to
be useful for understanding the dynamics near peri-
odic orbits without Floquet multipliers near 0. The
computational complexity of implementing this re-
duction strategy is comparable to that of standard
phase reduction calculations. The reduced dynamics
are particularly useful for the problem of stabilizing



unstable periodic orbits as a means of controlling
chaotic dynamical systems [7, 12-17]. Additional
applications of this reduction strategy could include
investigating effect noise on a system in on the dy-
namics in directions transverse to the periodic orbit
(similar to how the variance of the firing rate of an
oscillator was studied in [35]). Furthermore, it could
be of interest to use this isostable coordinate system
to investigate how the phase response characteristics
of an oscillator change when perturbed from the pe-
riodic orbit, which may have applications to memory
effects from pacing history [36], [37]. Continued de-
velopment of strategies for understanding isostable
coordinates of periodic orbits will assist in the un-
derstanding of these systems in problems pertaining
to synchronization, entrainment, and stabilization of
oscillatory dynamics when (2) alone is insufficient.

Support for this work by National Science Founda-
tion Grants NSF-1363243, NSF-1264535, and NSF-
1602841 is gratefully acknowledged.

Appendix A: Relationship between the choice of
Poincaré section and the resulting isostable
response curve

In general, the choice of # = 0 on the periodic orbit
used to define the initial Poincaré section will change
the isostable coordinates and will affect resulting
isostable response curves. However, the shape of the
isostable response curve for any isostable field de-
fined as in (5) from the main text is invariant to the
choice of 6 for which we use to define our Poincaré
section provided the algebraic multiplicity of the as-
sociated eigenvalue A; is unity. This will be shown
here by examining the relationship between isostable
changes caused by arbitrary perturbations in coordi-
nate systems defined by two different Poincaré sec-
tions.

To begin let v be a T-periodic solution of the vec-
tor field

X = F(x)+ G(x,t), xeR" (A1)

where F' € R"™ represents the unperturbed dynam-
ics and G € R™ is an external perturbation. As
in the main text, we define a scalar phase variable
0(x) : R" — [0,27) for which df(x(t))/dt = w and
0(x(t)) = 0(x(t+T)). We also define isochrons to be
level sets of the phase field, i.e. T'y = {x|0(x) = 6}.

Let x; and x5 be any two points on ~ such
that 6(x1) = 61 and 0(x3) = 2. The associated
isochromns, I'g, and I'p, can be used to define Poincaré

maps
P1 : Fgl — F91
x = ¢1(x), (A2)
PQ : F92 — F92
X = Po(x). (A3)

In the analysis to follow, we will restrict our at-
tention to the dynamics of these maps in a small
neighborhood of x; and x5. Taylor expanding, one
can show that for any time ¢; (resp. t2) for which
x(t1) € Ty, (resp. x(t2) € T'y,),

x(T +t1) —x1 = Ji(x(t1) — x1) + O(|[x(t1) — x1]?),

X(T + t2) = %2 = Ja(x(t2) — x2) + O(||x(t2) — x2*),
(A4)

where J; = d¢1/dx|x, and Jo = dp2/dx|x,. By
construction of the phase field, I'p, is the image of
I'p, under the flow of the vector field (Al) with G =
0. As discussed in Chapter 11 of [38], this defines a
C" diffeomorphism

h: Fgl — F92
x = £(x) (A5)

and implies that the eigenvalues of J; are equal to

the eigenvalues of Jo. Note that h(x;) = X2 so that

in a small neighborhood of x;, we can approximate
(A5) as

h(x) = %2 + H(x — x1) + O(lx — xa|[?),  (A6)
where H = d£/dx|x,

Towards the definition of isostables with respect
to each map, suppose the J; and Jy are both di-
agonalizable. Let Vi (resp. V3) € R™*™ be matri-
ces with columns that form an orthonormal basis

of unit length eigenvectors {v},k = 1,...,n} of J;
(resp. {vi,k =1,...,n} of J3) associated with the
eigenvalues { A,k =1,...,n}.

Let e; be a vector with 1 in the " position and
zeros elsewhere. Mirroring the definition used in the
main text, we define two isostable fields ¢} and 1?
with respect to the Poincaré sections I'g, and I'y,:

¥l (%) = e V; ! (xr, — x;) exp(—log(\)tr, /T),
J=12 (A7)

where xp, and tp, (resp. xr, and tr,) are the loca-
tion and time, respectively, at which the trajectory
under the flow x = F(x) next returns to I'g, (resp.
['y,). Here, ~! denotes the matrix inverse and 7 de-
notes the matrix transpose. To present the follow-
ing derivation in a more intuitive way, we will define
the scalars s}(x) = el V, 'x and s?(x) = e/ V, 'x



which give the coordinates of x in the basis of eigen-
vectors of eigenvectors of J; and Js, respectively.
Using (A4), one can show that

si(x(T +t1) — x1) = Aisj (x(t1) — x1)

s?(x(T +1il2) —x9) = )\Z’S?(X(tg) — X3). (A8)

For convenience of notation in (A8) we have dropped
the higher order error terms that would carry
through from (A4).

Consider any initial condition x(0) € T'y,. Written
in the basis of eigenvectors of J;

x(0) = x1 = s7(x(0) — x1)v]
+o 5, (x(0) = x1)y,
x(T) —x1 = Als%(x(O) - xl)v%

4+ .+ )\nsi(x(()) — X1)U71N (A9)

where we have used (A8) to obtain the second line.
Using (A6), we can write to leading order ||x(0) —
X1 ‘ |27

x(At) —xg = H[s ) —x1)v;
ot s, ( (0) —x1)v;]
x(At +T) — xo = H[ s} (x(0) — x;)vi
+'~~+)\nsn( (0) — x1)vp].

(A10)

Here At = w(fy — 6;) with § = w under the flow

%X = F(x). When calculating isostables using (A7)
tr, = 0 for any x € T'p,. Because x(At) € T'y,,
2 (x(At)) = s2(x(At) —x3). Also, x(At+T) € Ty,,

and using (A8), ¥?(x(At +T)) = \is?(x(At) — x2).
With (A10), this implies

)\,SZZ(H [sl(x( ) —x1)v; + -+ s (x(0) — xl)vrﬂ )
= 57 (H [Mis1(x(0) — x1)v]
F o Ash(x(0) —x1)t]). (AT1)

Equation (A11) holds for any x(0). We will assume
that A\; has an algebraic multiplicity of 1 so that by
linearity of s} and s?, (A11) implies

sf(ijl) =0 for all j # 1, (A12)

and

s2(H(x —x1)) = s} (x — x1)s2(Hv}). (A13)

Using this information, we can now show that the
isostable response curve is invariant to the value of
0 we use for our initial Poincaré section.

Consider any initial condition z(0) € R™ which
returns to g, at time ¢;. Let s}(z(t1) — x1) = S,
then by (A7)

i (2(0) — x1) = Bexp(—log(\)t1/T).  (Al4)
Now consider a perturbed initial condition y(0) =
z(0) + Ax which returns to I'g, at time ¢; + p with
si(y(t1 +p) —x1) = p+ B. We can write

¥; (y(0) — x1) = (u + B) exp(—log(\i) (t1 + p)/T)
(A15)
so that
¥ (¥(0) = x1) — 9} (2(0) — X1) =
(1 + B) exp(—1log(A;)(t1 +p)/T)
—ﬂexp(—log( )t /T)
=A. (A16)

Now consider the isostables with respect to the I'y,
Poincare section. Each trajectory will reach I'g, at
a time At after it reaches I'g,. Using (A6),

Z(tl + At) = H(Z(tl) — Xl) + Xo
+O(|lz(ty) — x1l1?)
H(y(t1 +p) —x1) + X2

+ O(ly(ts +p) — xa1[]%).
(A17)

y(ti +p+ At) =

Using (A13), we find

U7 (2(0) — x2) = Bs} (Hv})
% exp(—log(\)(t + A)/T)
V7 (y(0) = x2) = (u+ B)s7 (Hv;)
x exp(—log(\;)(t1 +p+ At)/T).
(A18)
Algebraic manipulation yields
U7 (y(0) — x2) — ¥7(2(0) — x2)
= s2(Hv}) exp(—log(\)At/T)A.  (A19)

Note here that s?(Hv}) and exp(—log(\;)At/T) are
both constant terms so that equations (A16) and
(A19) imply that regardless of which isochron is cho-
sen for the Poincaré section to define isostables, the
shape of the resulting isostable response curves will
be identical provided \; has an algebraic multiplicity
of 1. The magnitude of the isostable response curve
can vary depending on the geometry of the periodic
orbit.
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