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We carry out the thermodynamic analysis of a Markovian stochastic engine, driven by a spatially
and temporally periodic modulation in a d-dimensional space. We derive the analytic expressions
for the Onsager coefficients characterizing the linear response regime for the isothermal transfer of
one type of work (a driver) to another (a load), mediated by a stochastic time-periodic machine.
As an illustration, we obtain the explicit results for a Markovian kangaroo process coupling two
orthogonal directions, and find extremely good agreement with numerical simulations. In addition,
we obtain and discuss expressions for the entropy production, power and efficiency for the kangaroo
process.

I. INTRODUCTION

The evaluation of Onsager coefficients for machines
operating under the influence of time-periodic pertur-
bations is a recent development [1–12]. In a recent
paper [13] we obtained Onsager coefficients for a one-
dimensional system composed of a Brownian particle un-
der the influence of a background time-independent pe-
riodic potential perturbed by modulated periodic poten-
tials (both in time and space) and in contact with a heat
bath at temperature T . By separating the modulating
potential into two parts, a driving contribution which ex-
erts work on the Brownian particle and a load on which
the Brownian particle exerts work, we showed that the
Brownian particle could mediate the work transfer.

Here, we generalize our results on two fronts. First, in-
stead of only diffusive processes, we allow the underlying
dynamics of the particle to be a general Markov process
obeying detailed balance. Second, we extend the results
to higher dimensions. This is particularly interesting be-
cause it allows us to consider the problem of work transfer
between different degrees of freedom with a coupling me-
diated by a microscopic machine. The simplest concrete
example are forces operating on a Brownian particle in
spatially orthogonal directions, in presence of a substrate
potential. Even though we have an explicit and exact re-
sult for the Onsager coefficients, it is expressed in terms
of the eigenfunctions and eigenvalues of the stochastic
motion in the space-periodic substrate potential, which
are typically not known for non-trivial potentials [14].
The fact that our result are valid for any Markov pro-
cess, allows to consider coupling via a so-called “kanga-
roo process” [15], in which the particles hop rather than
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diffuse in the substrate potential. Besides the explicit
expression for the Onsager coefficients, the discovery of
this exactly solvable model is another main contribution
of the present paper.

The outline of the rest of this paper is as follows. In
Sec. II we describe the set-up of the problem of periodic
Markovian dynamics. Section III connects the Markovian
dynamics with the thermodynamics and presents the def-
inition of several quantities that will be used throughout
the paper. Next, Sec. IV presents our results for the On-
sager coefficients. Sections V and VI present our results
for the kangaroo process as an example of an exactly solv-
able model for which we are able to calculate explicit ex-
pressions for the Onsager coefficients (Section V) and for
several quantities of interest, namely entropy production,
power and efficiency (Section VI). Finally, we summarize
our results in Section VII.

II. PERIODIC MARKOVIAN DYNAMICS

Our starting point is the Markovian evolution equation
for the probability density Pu(x, t) to observe the system
(e.g., a Brownian particle), at “location” x:

∂Pu(x, t)

∂t
= Ŵ (x, t)Pu(x, t). (1)

While we refer, for conceptual simplicity, to x as “spa-
tial location”, this vectorial quantity can have a different
interpretation with components not referring to degrees
of freedom in translational space (i.e. a chemical coor-
dinate, a rotational coordinate, a configurational state,
etc.) The evolution operator Ŵ (x, t) is both temporally
periodic (with period τ) and spatially periodic [with pe-
riod L = (L1, L2, . . . Ld)]. d is the dimensionality of the
system, and Ll is the spatial period of the construction
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in direction l. In the absence of time-modulated driving,
the operator reduces to a time-independent spatially pe-
riodic form Ŵ0(x). In view of the spatial periodicity, it
will be convenient to consider, instead of the probability
density Pu in unbounded space, the reduced probability
density:

P (x, t) =

∞∑
k1,k2,...,kd=−∞

Pu(x +

d∑
l=0

klLlêl, t), (2)

where êl is a unit vector in direction l. P (x, t) obeys
the master equation Eq. (1) in the region [0,L] with pe-
riodic boundary conditions. From here on we drop the
term “reduced” and simply refer to P (x, t) as the prob-
ability density. Because of the temporal periodicity of
the potential this density function will, at long times,
reach a periodic steady state, following the periodicity
of Ŵ (x, t). More precisely, the probability density at
each point x returns to the same value after every pe-
riod. The existence, uniqueness and convergence to this
periodic state derives from the Perron Frobenius theorem
(assuming ergodicity), see for example [16].

III. HEAT POWER AND ENTROPY
PRODUCTION

To make the connection with thermodynamics, we in-
troduce the adiabatic probability density Pad(x, t). It is
loosely speaking the “instantaneous” steady state distri-
bution, achieved when the time-perturbation is infinitely
slow. As we will see below, it naturally appears in the lin-
ear response analysis, even though we will be making no
assumptions on the time scale. It is defined as the (nor-
malized) zero eigenvector of the instantaneous Markov
operator:

Ŵ (x, t)Pad(x, t) = 0. (3)

In the absence of the temporal modulation, Pad(x, t) re-
duces to the equilibrium probability density Peq(x), de-
fined by the condition

Ŵ0(x)Peq(x) = 0. (4)

We now specify that the Markov process describes a
modulated system in contact with a single heat bath.
The adiabatic distribution Pad(x, t) has to be identified
with the canonical distribution, featuring the system’s
energy U(x, t):

Pad(x, t) =
e−βU(x,t)

Zt
. (5)

Here β = (kBT )−1, kB is the Boltzmann constant, T is
the temperature of the heat bath, and

Zt =

∫ L

0

e−βU(x,t)dx (6)

is the “partition function” at time t. The modulation
is produced by two work sources 1 and 2 that shift the
energy levels of the system according to the following
prescription:

U(x, t) = U0(x) + Y1(x)F1(t) + Y2(x)F2(t). (7)

U0(x) is a time-independent background potential, and
the functions Yj(x) are L-periodic, while the Fj(t) have
period τ . Henceforth the indices j and k (that will
appear later) can take on the value 1 or 2. We con-
sider a separate contribution of two periodic potentials
Uj(x, t) = Yj(x)Fj(t) because this allows us to interpret
the set-up as a thermodynamic machine that transforms
work into work: the indices 1 and 2 refer to two work
contributions with 1 playing the role of the load, i.e., the
output work, and 2 the role of the driver, i.e., the input
work. Such work to work transformations are frequently
encountered in biological systems, one example being the
the role of adenosine phosphate as an energy converter in
the cell [17]. It is convenient to suppose that the ampli-
tudes Fj(t) have the units of force and hence Yj(x) the
units of length.

Due to conservation of total energy, the difference be-
tween the work done on the particle and the work done
by the particle as a result of the interplay of the two po-
tentials U1(x1, t) and U2(x2, t) is completely transformed
into heat. More precisely, the first law can be written as
follows [21]:

dU(x, t)

dt
=
∂U(x, t)

∂t
+∇U(x, t) · v, (8)

where v is the velocity of the particle. −∇U(x, t) · v is
the heat per unit time dissipated in the heat bath, and
∂tU(x, t) the power driving the particle.

To formulate a steady state thermodynamic analysis,
we obviously focus on the long time regime in which the
stochastic dynamics of the systems becomes periodic, and
consider quantities averaged over one period. Due to
the periodicity, the average energy of the system is un-
changed after each period, hence power is equal to heat,
when averaged over one period. For the same reason,
the entropy of the system returns to the same value after
each period, and hence the entropy change per period in
the entire construction is the average heat divided by the
temperature. Combining both observations, we can write
the entropy production rate averaged over one cycle as
follows:

Ṡ =
1

T

1

τ

∫ τ

0

∫ L

0

∂U(x, t)

∂t
P (x, t)dxdt. (9)

The time periodicity of the forces suggests that a natu-
ral way to proceed is to expand Fj(t) in a Fourier series,

Fj(t) =
∑
µ

F (j)
µ gµ(t), (10)

where we have introduced the compact notation µ =
(n, ζ), n = 1, 2, . . . , representing the Fourier modes, and
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ζ = c or s such that

gn,c(t) = cosωnt, gn,s(t) = sinωnt, ωn ≡
2πn

τ
.

(11)
The n = 0 term can be absorbed into the background

potential, so we need not consider it here. Using the
Fourier expansion Eq. (10) in Eq. (9), we can write the
entropy production in the standard form of irreversible
thermodynamics [22]

Ṡ =
∑
µ

1

T

1

τ

∫ τ

0

∫ L

0

Y1(x)F (1)
µ ġµ(t)P (x, t)dxdt+

∑
µ

1

T

1

τ

∫ τ

0

∫ L

0

Y2(x)F (2)
µ ġµ(t)P (x, t)dxdt

=
∑
µ

(
X(1)
µ J (1)

µ +X(2)
µ J (2)

µ

)
,

(12)

where we have introduced the thermodynamic forces
(with usual unit of force over temperature) [11–13]:

X(j)
µ =

F
(j)
µ

T
, (13)

and the corresponding fluxes (with appropriate unit of
speed):

J (j)
µ =

1

τ

∫ τ

0

∫ L

0

Yj(x)ġµ(t)P (x, t)dxdt. (14)

IV. LINEAR IRREVERSIBLE
THERMODYNAMICS AND ONSAGER

COEFFICIENTS

So far, our results are valid for forces of any magni-
tude. To make further analytic progress, we turn to the
regime of linear irreversible thermodynamics. We thus
assume that the applied forces are sufficiently small, so
that the fluxes (which vanish in the absence of forces)
depend linearly on the forces:

J (j)
µ =

∑
ν,k

Lj,kµ,νX
(k)
ν . (15)

The proportionality constants Lj,kµ,ν are the celebrated
Onsager coefficients, but introduced here in the novel
context of Markov process periodically perturbed in
space and time. They can obviously be calculated as
follows:

Lj,kµ,ν =
∂J

(j)
µ

∂X
(k)
ν

∣∣∣∣∣
F=0

, (16)

where F = 0 means that all the F
(j)
µ are zero. The only

dependence of J
(j)
µ on X

(k)
ν is through the probability

density P (x, t) [cf. Eq. (14)],

∂J
(j)
µ

∂X
(k)
ν

=
1

τ

∫ τ

0

∫ L

0

Yj(x)ġµ(t)
∂P (x, t)

∂X
(k)
ν

dxdt. (17)

For the long time regime, the derivative of the master

equation Eq. (1) with respect to X
(k)
ν , at F = 0, in the

linear regime, can be written as

∂P (ν,k)(x, t)

∂t
= Ŵ (ν,k)(x, t)Peq(x) + Ŵ0(x)P (ν,k)(x, t),

(18)
where

P (ν,k)(x, t) =
∂P (x, t)

∂X
(k)
ν

∣∣∣∣
F=0

, (19)

Ŵ (ν,k)(x, t) =
∂Ŵ (x, t)

∂X
(k)
ν

∣∣∣∣∣
F=0

. (20)

The solution of Eq. (18) is

P (ν,k)(x, t) = eŴ0(x)tP (ν,k)(x, 0)

+

∫ t

0

dt′eŴ0(x)(t−t′)Ŵ (ν,k)(x, t′)Peq(x).

(21)

The first term on the right hand side vanishes because,
in the long time regime, all information about the initial
state is lost. Now, defining t′′ = t − t′ and changing
variables from t′ to t′′ in the remaining term of Eq. (21),
we have

P (ν,k)(x, t) =

∫ t

0

dt′′eŴ0(x)t′′Ŵ (ν,k)(x, t− t′′)Peq(x).

(22)
We have thus introduced and defined all the quantities

needed to calculate the Onsager coefficients. The calcu-
lation is somewhat lengthy and would distract from the
results we wish to display, so we have placed the calcula-
tion in the Appendix and here just quote what is in fact
the principal result of our paper:
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Lj,k(m,ζ),(n,ζ′) = −(−1)δζ,ck−1
B

ωn
2

[
Yj − Yj

] [
Yk − Yk

]
(1− δζ,ζ′)δm,n + k−1

B

∑
p

1

2

ω2
n

[
−λpδζ,ζ′ + (−1)δζ,cωn(1− δζ,ζ′)

]
ω2
n + λ2

p

×
[∫ L

0

[
Yj(x)− Yj

]
ψp(x)dx

∫ L

0

[
Yk(x′)− Yk

]
ψp(x

′)dx′

]
δm,n,

(23)

where δζ,ζ′ is the Kronecker delta, |ψp〉 is an eigenvector

of Ŵ0(x) with eigenvalue λp,

Ŵ0|ψp〉 = λp|ψp〉, (24)

and we have defined the average of a function f(x) over
the equilibrium distribution function as

f =

∫ L

0

Peq(x)f(x)dx. (25)

On the way to obtaining Eq. (23), we also used the fol-
lowing inner product of two (real) functions for (periodic)
stochastic systems:

〈f |g〉 =

∫ L

0

f(x)g(x)

Peq(x)
dx. (26)

As the system returns to thermodynamic equilibrium
in the absence of driving, the operator Ŵ0 must obey
detailed balance. It is thus symmetric with respect to

the above defined inner product. Hence the eigenvalues
λp are real and one can choose corresponding real eigen-
functions ψp(x). Furthermore, we assume that the latter
form a complete set, so that

∑
p≥0 |ψp〉〈ψp| is the unit

operator.
We conclude this section by pointing out some general

features and properties of our principal result Eq. (23).
The Onsager matrix is positive, in agreement with the
positivity of the entropy production. In particular all the
diagonal Onsager coefficients are positive. The Onsager
coefficients satisfy a frequency Curie principle since per-
turbations of different frequencies do no couple, cf. the
overall factor in δm,n. The Curie principle states that
Onsager coefficients coupling processes of different sym-
metry character (for example scalar and vector) must
be zero [23]. Here it refers to processes of different fre-
quency that do not couple. We identify a symmetric con-
tribution, proportional to δζ,ζ′ and anti-symmetric one
in 1 − δζ,ζ′ . The latter does not contribute to the en-
tropy production. Finally, for one-dimensional systems,
Eq. (23) for the Onsager coefficients becomes

Lj,k(m,ζ),(n,ζ′) = −(−1)δζ,ck−1
B

ωn
2

[
Yj − Yj

] [
Yk − Yk

]
(1− δζ,ζ′)δm,n

+ k−1
B

∑
p

1

2

ω2
n

[
−λpδζ,ζ′ + (−1)δζ,cωn(1− δζ,ζ′)

]
ω2
n + λ2

p

[∫ L

0

[
Yj(x)− Yj

]
ψp(x)dx

∫ L

0

[
Yk(x′)− Yk

]
ψp(x)dx′

]
δm,n.

(27)

This expression was first obtained in [13] for a Brownian
particle in contact with a heat bath and under the influ-
ence of a spatially and temporally periodic potential in
the overdamped limit. Here we have shown that this re-
sult is still valid for more general Markov processes. Ob-
viously, the eigenfunctions of Ŵ0 and the specific func-
tional dependence of the displacement functions Yj(x),
which determine the eigenvalues and spatial averages, do
depend on the particular Markov process, and so do the
values of the Onsager coefficients. Nevertheless, formally
the expression is the same.

V. KANGAROO PROCESS: AN EXACTLY
SOLVABLE TWO-DIMENSIONAL MODEL

We are particularly interested in the Onsager coeffi-
cients linking “orthogonal” forces. By orthogonality we
mean that the forces act in different subspace, i.e., one
has Yj(x) = Yj(xj) meaning that the perturbation j only
acts along the coordinate xj . The Onsager coefficients
are then given by:
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Lj,k(m,ζ),(n,ζ′) = −(−1)δζ,ck−1
B

ωn
2

[
Yj − Yj

] [
Yk − Yk

]
(1− δζ,ζ′)δm,n + k−1

B

∑
p

1

2

ω2
n

[
−λpδζ,ζ′ + (−1)δζ,cωn(1− δζ,ζ′)

]
ω2
n + λ2

p

×
[∫ L2

0

∫ L1

0

[
Yj(xj)− Yj

]
ψp(x)dx1dx2

∫ L2

0

∫ L1

0

[
Yk(x′k)− Yk

]
ψp(x

′)dx′1dx
′
2

]
δm,n.

(28)

The transfer of energy between the two directions is
now only possible due to the coupling induced via the
stochastic substrate dynamics encapsulated in Ŵ0. A
most natural candidate would be a two-dimensional dif-
fusion process in a periodic potential. We are however
faced with the problem that very few results are known
about eigenfunctions and eigenvalues when the potential
is nontrivial, see e.g., [14]. A way out would be to con-
sider that the coordinate states xj of the system are not
a continuous but a discrete variable, with a discrete pe-
riodicity `, ` being a positive integer. In this case, one
needs to find the eigenfunctions and eigenvalues of the
corresponding ` by ` transition matrix. There is however
a much more elegant and interesting model, for which
the calculation proceeds without undue effort, and for
which the assumption of continuous space does not have
to be dropped. We consider the so-called kangaroo pro-
cess [15], which is a stochastic process where the particle
jumps at random times from its current location to a new
location. Between jumps, the particle stays put. The
distribution of time intervals during which the particles
reside in a position before the next jump is Poissonian,
in agreement with the Markovian nature

P (∆t) =
1

τr
e−∆t/τr , (29)

where τr is the characteristic time between jumps. The
kangaroo process has been used in modeling a variety of

physical systems, including the well known BGK [18, 19]
and Kubo Anderson [15, 20] processes. For a general
kangaroo process, τr may depend on the position of the
particle before the jump. However, in our case detailed
balance requires τr to be a constant. The new position
of the particle after a jump is given by the equilibrium
probability distribution

Peq(x) = 〈x|ψ0〉, (30)

independently of the position of the particle before the
jump. For this process, the operator Ŵ0 can be written
as

Ŵ0 = −1− |ψ0〉〈ψ0|
τr

, (31)

where |ψ0〉 is the (normalized) ground state of Ŵ0 with

eigenvalue 0 (since Ŵ0|ψ0〉 = −(|ψ0〉 − |ψ0〉)/τr = 0|ψ0〉)
and all other eigenstates |ψn〉 have eigenvalue λn =
−1/τr.

We note that the ground state contribution to the sum
in Eq. (28) vanishes, and that all other eigenvalues are
equal. Hence using the identity

∑
p>1

[∫ L2

0

∫ L1

0

f(x)ψp(x)dx1dx2

∫ L2

0

∫ L1

0

g(x)ψp(x)dx′1dx
′
2

]
=
∑
p>1

〈Peqf |ψp〉〈ψp|Peqg〉

= 〈Peqf |
(∑
p>1

|ψp〉〈ψp|
)
|Peqg〉 = 〈Peqf | (1− |ψ0〉〈ψ0|) |Peqg〉

=

∫ L2

0

∫ L1

0

f(x)g(x)Peq(x)dx1dx2 −
∫ L2

0

∫ L1

0

f(x)Peq(x)dx1dx2

∫ L2

0

∫ L1

0

g(x′)Peq(x′)dx′1dx
′
2

= fg − fg =
(
f − f

)
(g − g)

(32)

with f(x) = Yj(xj)− Yj and g(x) = Yk(xk)− Yk we obtain

Lj,k(m,ζ),(n,ζ′) = k−1
B

ωn
2

[
Yj − Yj

] [
Yk − Yk

][ωnτ−1
r δζ,ζ′ + (−1)δζ,cτ−2

r (1− δζ,ζ′)
]

ω2
n + τ−2

r

δm,n, (33)

The above explicit expression for the Onsager coeffi-
cients still depends on the prefactor involving the corre-

lation function of the Y ’s. This prefactor quantifies the
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strength of the coupling induced by the kangaroo pro-
cess. It depends on equilibrium probability distribution
that defines the kangaroo process. As expected, all the
off-diagonal coefficients vanish if Peq(x) can be written
as the product of a function of x1 and a function of x2,
and we do not see work transfer from the driver to the
load. For the purpose of illustration we consider a sim-
ple situation of coupling induced by having Peq(x) peak
strongly along the first diagonal of the x1/L1 and x2/L2

axes:

Peq(x) =

1 + αδ

(
x1

L1
− x2

L2

)
L1L2 (1 + α)

. (34)

Here, the height of this peak is quantified by the param-
eter α. In view of the previously cited Curie property,
we consider for the displacement functions Yj(xj)

Y1(x1) = L1 cos

(
2πx1

L1

)
, Y2(x2) = L2 cos

(
2πx2

L2

)
,

(35)
together with

F1(t) = F1 cos (ωmt) , F2(t) = F2 cos (ωnt) . (36)

The spatial integrals reduce to:

Y1 = Y2 = 0, Y 2
1 =

L2
1

2
, (37)

Y 2
2 =

L2
2

2
, Y1Y2 =

L1L2α

2 (1 + α)
, (38)

leading to the Onsager coefficients (j = 1, 2)

Lj,j(m,c),(n,c) = k−1
B

(ωnLj)
2

4

τ−1
r

ω2
n + τ−2

r

δm,n, (39)

L1,2
(m,c),(n,c) = L2,1

(m,c),(n,c) = k−1
B

ω2
n

4

L1L2α

(1 + α)

τ−1
r

ω2
n + τ−2

r

δm,n. (40)

As expected, the Onsager coefficients are the same for
both Y1(x1) and Y2(x2) sines or cosines (since the coeffi-
cients can not depend on the chosen origin of time). How-
ever, if one of them is a sine and the other a cosine, we
have L1,2

(m,c),(n,c) = L2,1
(m,c),(n,c) = 0. This is a consequence

of the strong coupling introduced by the delta function.
That is, the kangaroo process defined by the probability
density function Eq. (34) does not allow anti-symmetric
Onsager coefficients. If α → 0 there is no coupling and
the off-diagonal elements again vanish.

We performed simulations of the kangaroo process de-
fined by Eq. (34), modulated by the displacements Yj(xj)
given in Eq. (35) and the forces Fj(t) given in Eq. (36).

With such a choice, the operator Ŵ (x, t) becomes

Ŵ (x, t) =
1− |ψ0,ad〉〈ψ0,ad|

τr
, (41)

where |ψ0,ad〉 is the ground state for the modulated kan-
garoo process for a fixed long time, and

Pad(x, t) = 〈x|ψ0,ad〉 =

[
1 + αδ

(
x1

L1
− x2

L2

)]
e−β[F1(t)Y1(x1)+F2(t)Y2(x2)]

L1L2 [I0 (βF1 cos(ωmt)) I0 (βF2 cos(ωnt)) + αI0 (βF1 cos(ωmt) + βF2 cos(ωnt))]
. (42)

In our simulations, we set m = n = 1 in Eq. (42). In
addition, we set L1 = L2 = 1 and ωn = ωm = 2π (i.e.,
τ = 1). The fluxes where then calculated according to
the following algorithm:

1. Choose a random initial point (x, y) where x and y
are both uniformly distributed in the range [0, 1].

2. Choose the time interval between jumps according
to the exponential distribution P (∆t) = τre

∆t/τr .

3. Calculate the fluxes between t and t+∆t and add to

the total flux J
(j)
tot = J

(j)
tot +Yj(xj) [g(t+ ∆t)− g(t)].

4. Choose a new position according to the probability
distribution Eq. (42).

5. Repeat steps 2 to 4 until the time tmax is reached.
In our simulations, tmax = 5000.

6. Calculate the average flux J
(j)
tot/tmax.

7. Repeat steps 1 to 6 Nsamples times and calculate the
average flux. In our simulations, Nsamples = 100.
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In Fig. 1 we successfully compare the predictions of linear
response theory for the fluxes with the simulations for
three different values of α for weak forces. For strong
forces (see inset), the fluxes saturate, as expected. Also,

the prediction of linear response theory that the flux J
(1)
c

(as a function of F1) does not depend on α holds for
strong forces. In Fig. 2, we compare the result of the
numerical simulations with the theoretical prediction for
the entropy production.
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FIG. 1. Flux as a function of βF1. In the simulations we
set F2 = 0 and τr = 1

2π
. The lines represent the theoretical

results for the linear response regime J
(j)
c =

F1

T
L1,j

(1,c),(1,c)

with the Onsager coefficients given by Eqs. (39-40), and the
symbols represent the results of the numerical simulations for

both fluxes: J
(1)
c (squares) and J

(2)
c for α = 10.0 (plus signs),

1.0 (triangles) and 0.1 (circles). In the inset, we show the
saturation of the fluxes for strong forces.
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FIG. 2. Entropy production as a function of βF1. The param-
eters are the same as in the previous figure, but only a single
value of α (0.1) was used because the result is independent of
α.

Finally, in Fig. 3 we compare the Onsager coefficients
obtained from the numerical simulations with the the-
oretical predictions as a function of τr. The numerical
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FIG. 3. Onsager coefficients as a function of τr. The parame-
ters are the same as in the previous figure. The squares repre-
sent the results of the numerical simulations for L1,1

(1,c),(1,c) and

the circles for L2,1
(1,c),(1,c). The lines, are the plots of Eqs. (39)

and (40).

simulation results were obtained by linear regression of
the fluxes as functions of the force F1 (for weak forces),
for each value of τr. Once again, the agreement between
the numerical results and the theoretical predictions is
notable.

We end this section by stressing that no fitting param-
eter was required in any of our results.

VI. KANGAROO PROCESS: EFFICIENCY,
POWER AND ENTROPY PRODUCTION

It is straightforward to evaluate various quantities of
interest from the Onsager coefficients obtained in the pre-
vious section. Using the displacement functions Eq. (38)
and forces Eq. (36), with m = n, one finds for the entropy
production per cycle,

Ṡ = X(1)
c J (1)

c +X(2)
c J (2)

c

=
1 + α (1− σ)

2
+ σ2

1 + α
ṠMD.

(43)

For the power P extracted by the load per cycle,

P
T

= −X(1)
c J (1)

c =
α− σ (1 + α)

1 + α
σṠMD, (44)

and for the efficiency of the machine,

η = −X
(1)
c J

(1)
c

X
(2)
c J

(2)
c

=
α− σ (1 + α)

1 + α (1− σ)
σ, (45)

where

σ = −F1L1

F2L2
(46)
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and

ṠMD/kB =
ω2
nτ
−1
r F 2

2L
2
2

4 (kBT )
2 (
ω2
n + τ−2

r

) . (47)

To give an idea of the order of magnitude of these
quantities, we consider the case F2 = 2.0 pN, F1 =
−1.0 pN, τr = 1/2π ms, ωn = 2π kHz, L1 = L2 =
1.0 µm, T = 300.0 K and α = 10.0. The power ex-
tracted per cycle is P = 0.16 pW and the entropy pro-
duction per cycle is 8.6× 10−4 pW/K.

It is clear from the expression for the power, Eq. (44),
and efficiency, Eq. (45), that σ must be positive, since
otherwise P and η would be negative – the power would
be injected instead of extracted by the load. Hence,
the signs of F1 and F2 must be different. What is
more, there is a minimum driving force necessary to
make the machine work, σ < α/ (1 + α). In the range
0 ≤ σ ≤ α/(1+α), the entropy production is a monoton-
ically decaying function of σ. Therefore, the maximum
entropy production occurs for σ = 0 (F1 = 0), which

gives Ṡ = ṠMD defined in Eq. (47). At σ = α/(1 + α),
the entropy production is a minimum,

ṠmD =
1 + 2α

(1 + α)
2 ṠMD. (48)

In both cases (maximum and minimum entropy produc-
tion), the power extracted from the machine and the ef-
ficiency vanish.

The maximum power that can be extracted from
the machine can be straightforwardly calculated from
Eq. (44) to occur at σMP = α/ [2(1 + α)] and to be

PMP

T
=

α2

4 (1 + α)
2 ṠMD. (49)

At maximum power, the entropy production is

ṠMP =
4 + 8α+ α2

4 (1 + α)
2 ṠMD, (50)

and the efficiency becomes

ηMP =
α2

4 + 8α+ 2α2
. (51)

In Fig. 4 we show the efficiency as a function of the pa-
rameter σ for three values of α. For small α, the predilec-
tion of the kangaroo process for the diagonal is weak and
so is the coupling between the forces. Consequently, the
machine is extremely inefficient. As we increase α, the
coupling between the forces becomes stronger and the
machine becomes progressively more efficient. It is also
clear from the figure that for any given α there is an op-
timum value of σ for which the efficiency is maximum,
which can readily be shown to be

σME =
1 + α−

√
1 + 2α

α
, (52)
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FIG. 4. Efficiency as a function of the parameter σ for α = 0.1
(dotted line), 1.0 (dashed line) and 10.0 (continuous line).

which leads to the maximum efficiency

ηME =
α
(
4 + α− 2

√
2α+ 1

)
+ 2− 2

√
2α+ 1

α2
, (53)

the power,

PME

T
=

1 + α−
√

2α+ 1

α2(α+ 1)

×
[
α
(√

2α+ 1− 2
)

+
√

2α+ 1− 1
]
ṠMD,

(54)

and the entropy production,

ṠME =
2(2α+ 1)

(
1 + α−

√
2α+ 1

)
α2(α+ 1)

ṠMD. (55)

It is also worth noting that for α→∞, the efficiency be-
comes η∞ = σ. In this case, the machine may become a
perfect machine (η = 1) for σ = 1. The power extracted
by the load and the entropy production both vanish, that
is, the machine becomes reversible. In Fig. 5 we show
the maximum efficiency and the efficiency at maximum
power (main panel). As α increases and the machine
becomes more efficient, the difference between the maxi-
mum efficiency and the efficiency at maximum power also
increases. For α→∞, the efficiency at maximum power
becomes equal to half of the maximum efficiency. In the
inset, we see that the maximum efficiency is reached with
smaller values of σ than the ones required to have maxi-
mum power.

In Fig. 6, we show the maximum power and the power
at maximum efficiency as a function of α. While the max-
imum power increases monotonically, eventually saturat-
ing to T ṠMD/4, at maximum efficiency the power reaches
a maximum and slowly decays to zero (as α→∞).

In Fig. 7, we show the entropy production at maximum
efficiency and at maximum power, and the minimum en-
tropy production. Both the minimum entropy produc-
tion and the entropy production at maximum efficiency
vanish proportionally to 1/α as α → ∞. At maximum
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FIG. 5. Maximum efficiency (solid line) and efficiency at max-
imum power (dashed line) as a function of α (main panel) and
σ at maximum efficiency (solid line) and maximum power
(dashed line) also as a function of α (inset).
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FIG. 6. Power at maximum efficiency (solid line) and maxi-
mum power (dashed line) as a function of α.
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/Ṡ

m
ax

S

α

FIG. 7. Entropy production at maximum efficiency (solid
line) and at maximum power (large dashed line) and minimum
entropy production (small dashed line) as a function of α.

power, however, the entropy production saturates to 1/4
of its maximum value.

We finally note that the expressions obtained in this
section for the entropy production at minimum dissipa-
tion Eq. (48), power at maximum power Eq. (49), maxi-
mum efficiency Eq. (54) and minimum dissipation (which
vanishes), and efficiency at maximum power Eq. (51)
and maximum efficiency Eq. (53) are compatible with
the general relations obtained in [12].

VII. SUMMARY

In this contribution we have discussed the problem
of a particle in a heat bath whose dynamics follows a
Markov process, governed by a temporally and spatially
periodic transition matrix obeying detailed balance. We
obtained expressions for the Onsager coefficients in terms
of the eigenvalues of Ŵ0 and averages over the equilib-
rium probability density Peq(x) in any dimension. For
one-dimensional systems, we recovered the previous re-
sults for the Onsager coefficients for a Brownian particle
in contact with a heat bath subjected to periodic po-
tentials [13]. We also provided an interesting example
of a simple two-dimensional system (the kangaroo pro-
cess) for which explicit expressions for the Onsager co-
efficients, entropy production, power and efficiency were
obtained. Our results are in very good agreement with
numerical simulations and obey exact general relations
obtained earlier in [12] for the entropy production, power
and efficiency, under different physical circumstances.
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Appendix: Onsager coefficients

In order to calculate the Onsager coefficients, we first

take the derivative of Eq. (3) with respect to X
(k)
ν in the

limit of vanishing modulation,

Ŵ (ν,k)(x, t)Peq(x) + Ŵ0(x)P
(ν,k)
ad (x, t) = 0, (A.1)

and use this result to eliminate the dependence of
Eq. (22) on Ŵ (ν,k),

P (ν,k)(x, t) = −
∫ t

0

dt′′eŴ0(x)t′′Ŵ0(x)P
(ν,k)
ad (x, t− t′′)

= −
∫ t

0

dt′′
deŴ0(x)t′′

dt′′
P

(ν,k)
ad (x, t− t′′).

(A.2)

Next, we integrate Eq. (A.2) by parts, so that

P (ν,k)(x, t) = − eŴ0(x)t′′P
(ν,k)
ad (x, t− t′′)

∣∣∣t
0
−
∫ t

0

eŴ0(x)t′′ Ṗ
(ν,k)
ad (x, t− t′′)dt′′. (A.3)

Due to the exponential decay of eŴ0(x)t (the eigenval-

ues of Ŵ0 cannot be positive, and are zero only in equi-
librium [24]), the first term of the integration by parts
vanishes at long times, so that

P (ν,k)(x, t) = P
(ν,k)
ad (x, t)−

∫ t

0

eŴ0(x)t′′ Ṗ
(ν,k)
ad (x, t−t′′)dt′′.

(A.4)

Using this result, the Onsager coefficients can be written
as

Lj,kµ,ν =
1

τ

∫ τ

0

dt

∫ L

0

dxYj(xj)ġµ(t)P
(ν,k)
ad (x, t)− 1

τ

∫ τ

0

dt

∫ L

0

dxYj(x)ġµ(t)

∫ t

0

dt′eŴ0t
′
Ṗ

(ν,k)
ad (x, t− t′). (A.5)

The derivative P
(ν,k)
ad (x, t) of the adiabatic probability density Pad(x, t) can be expressed as

P
(ν,k)
ad (x, t) = −k−1

B Yk(x)gν(t)Peq(x) + k−1
B Peq(x)gν(t)

∫ L

0

Peq(x′)Yk(x′k)dx′ = k−1
B gν(t)Peq(x)

[
Yk − Yk(x)

]
. (A.6)

Substituting this expression in the first integral of Eq. (A.5), we have

1

τ

∫ τ

0

dt

∫ L

0

dxYj(xj)ġµ(t)P
(ν,k)
ad (x, t) = k−1

B

[
1

τ

∫ τ

0

ġµ(t)gν(t)dt

] [∫ L

0

Yj(x)
[
Yk − Yk(x)

]
Peq(x)dx

]

= k−1
B

[
1

τ

∫ τ

0

ġµ(t)gν(t)dt

] [
Yj Yk − YjYk

]
.

(A.7)

The remaining temporal integral vanishes if the frequen-
cies of the Fourier modes µ and ν are different. Even if
they are the same, it still vanishes for µ = ν. Writing
µ = (m, ζ) and ν = (n, ζ ′), we have

1

τ

∫ τ

0

dt

∫ L

0

dxYj(x)ġµ(t)P
(ν,k)
ad (x, t)

= (−1)δζ,ck−1
B

ωn
2

[
Yj Yk − YjYk

]
(1− δζ,ζ′)δm,n.

(A.8)

We now turn our attention to the remaining integral
in Eq. (A.5), which, after substituting the expression for

P
(ν,k)
ad given by Eq. (A.6) reads
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1

τ

∫ τ

0

dt

∫ L

0

dxYj(xj)ġµ(t)

∫ ∞
0

dt′eŴ0t
′
k−1
B ġν(t− t′)Peq(x)

(
Yk − Yk(x)

)
= k−1

B

1

τ

∫ τ

0

dtġµ(t)

∫ ∞
0

dt′ġν(t− t′)
∫ L

0

dxYj(x)eŴ0t
′
Peq(x)

[
Yk − Yk(x)

]
. (A.9)

Next, we note that for any real functions f(x) and g(x) we have that

〈f |eŴ0t|g〉 = 〈f |
(∑

p

|ψp〉〈ψp|
)
eŴ0t|g〉 =

∑
p

〈f |ψp〉〈ψp|eŴ0t|g〉 =
∑
p

〈f |ψp〉〈ψp|eλpt|g〉

=
∑
p

[∫ L

0

f(x)ψp(x)

Peq(x)
dx

∫ L

0

ψp(x
′)g(x′)eλpt

Peq(x′)
dx′

]
.

(A.10)

Identifying the leftmost Yj(x) in the last integral of

Eq. (A.9) as f(x)/Peq(x) and Peq(x)
[
Yk − Yk(x)

]
as

g(x), we can write this last integral as,

∑
p

[∫ L

0

Yj(x)ψp(x)dx

×
∫ L

0

ψp(x
′)eλpt

′ [
Yk − Yk(x′k)

]
dx′

]
.

(A.11)

Combining the results of Eqs. (A.8), (A.9) and (A.11),
the Onsager coefficients of Eq. (A.5) with µ = (m, ζ) and
ν = (n, ζ ′) become

Lj,k(m,ζ),(n,ζ′) = (−1)δζ,ck−1
B

ωn
2

(
Yj Yk − YjYk

)
(1− δζ,ζ′)δm,n − k−1

B

∑
p

1

τ

∫ τ

0

dtġµ(t)

∫ ∞
0

dt′eλpt
′
ġν(t− t′)

×
∫ L

0

Yj(x)ψp(x)dx×
∫ L

0

ψp(x
′)
[
Yk − Yk(x′k)

]
dx′.

(A.12)

We rewrite this expression in a more symmetrical form
noticing that

∫ L

0

ψp(x
′)Ykdx

′ = Yk

∫ L

0

ψp(x
′)Peq(x′)

Peq(x′)
dx′

= Yk〈ψp|Peq〉.
(A.13)

Since |Peq〉 = |ψ0〉, we have that this integral is zero for
j > 0. For j = 0, the last integral in Eq. (A.12) yields∫ L

0

Peq(x′)
[
Yk − Yk(x′)

]
dx′ = Yk − Yk = 0 (A.14)

so we can write the Onsager coefficients as

Lj,k(m,ζ),(n,ζ′) = −(−1)δζ,ck−1
B

ωn
2

[
Yj − Yj

] [
Yk − Yk

]
(1− δζ,ζ′)δm,n

+ k−1
B

∑
p

1

τ

∫ τ

0

dtġµ(t)

∫ ∞
0

dt′eλpt
′
ġν(t− t′)

[∫ L

0

[
Yj(x)− Yj

]
ψp(x)dx

∫ L

0

[
Yk(x′)− Yk

]
ψp(x)dx′

]
.

(A.15)

To actually perform the integral over t′ we need to dis- tinguish between cosine and sine Fourier modes. Most of
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the remaining integrals involve simply exponentials and
sines or cosines. After some tedious steps we finally arrive
at Eq. (23) for the Onsager coefficients.
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