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In this work, we use exact matrix diagonalization to explore the many-body localization (MBL)
transition in a random-field Heisenberg chain. We demonstrate that the fidelity and fidelity suscep-
tibility can be utilized to characterize the interaction-driven many-body localization transition in
this closed spin system which is in agreement with previous analytical and numerical results[26, 27].
In particular, instead of ground-state fidelity, we test the fidelity between two diagonal ensembles
related by a small parameter perturbation dh, it is special that here the parameter perturbation dh;
for each site are random variables like h;. It shows that fidelity of the diagonal ensemble develop a
pronounced drop at the transition. We utilize fidelity to estimate the critical disorder strength h. for
different system size, we get h. € [2.5,3.9] and get a power-law decay with an exponent of roughly
-1.49(2) for system size N, and can extrapolate hi™F of the infinite system is about 2.07 which all
agree with a recent work by Huse and Pal, in which the MBL transition in the same model was
predicted to be he [2,4]. We also estimate the scaling of maximum of averaged fidelity susceptibility
as a function of system size N, it shows a power law increase with an exponent of about 5.05(1).

PACS numbers: 64.60.-i, 03.67.-a, 05.30.-d,75.10.-b

I. INTRODUCTION

disordered systems. Many features of MBL phase have

The concept of Anderson localization is established
and well known since Anderson proposed it in his sem-
inal paper[1] more than half a century ago[2]. It shows
that a static disordered potential can lead to a com-
plete absence of diffusion in an closed quantum system
which has received extensive attention since then and
has formed a complete conclusions that non-interacting
systems in one and two dimensions will be localized for
arbitrary disorder, even for very small disorder [3, 4]. In
Ref.[1], Anderson also conjectured that a closed inter-
acting quantum system with sufficiently strong disorder
would fail to approach thermal equilibrium. Until much
more recently, Basko et al.[5] gave new arguments to re-
vive this idea of many-body localization (MBL). Note
that this is a quantum glass transition that occurs at
nonzero (even infinite) temperature, where equilibrium
quantum statistical-mechanics breaks down. In the lo-
calized phase the system fails to thermally equilibrate.
Like the more familiar ground-state quantum-phase tran-
sitions, this transition is a sharp change in the properties
of the many-body eigenstates of the Hamiltonian, unlike
ground-state phase transitions, the many-body localiza-
tion transition at nonzero temperature appears to be only
a dynamical-phase transition that is invisible in the equi-
librium thermodynamics|6].

Many studies [6-18] have studied and confirmed the
phenomenon of MBL recently, showing that a novel dy-
namical phase transition can happen in the interacting
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been explored. It has been displayed that bipartite en-
tanglement entropy between two sectors of the system
shows a characteristic logarithmic growth in the many-
body localized phase [19-24]. It has also been found that
the total correlations scales extensively in the localized
phase developing a pronounced peak at the transition
[17]. Even though, still many features of MBL are unex-
plored and their broader connections are unknown.

Recently, generous of effort [25-39] has been devoted
to the role of fidelity, a popular concept in quantum infor-
mation theory [40], in quantum critical phenomena[41],
demonstrating that fidelity is useful in characterizing dis-
tinct phases of quantum many-body systems[42]. In par-
ticular, the minimum of fidelity near a critical point has
been studied in several models [27-29]. It has also been
shown that fidelity plays a crucial role in quantum phase
transitions (QPTs) in quantum fields [30]. Particularly,
fidelity as well as Berry phase have also been recently
used to analyze quantum phase transitions from a geo-
metrical perspective. In [35], Venuti et al. unified these
two approaches showing that the underlying mechanism
is the critical singular behavior of a complex tensor over
the Hamiltonian parameter space. The advantage of the
fidelity is that it is a space geometrical quantity, no a
priori knowledge of the order parameter and symmetry
breaking is required in studies of QPTs.

Considering the special and crucial role of fidelity in
quantum critical phenomena, in this work, we apply fi-
delity approach to MBL transitions. In Refs. [26], au-
thors applied fidelity approach to estimate random tran-
sitions of disordered quantum model. They showed that
the fidelity susceptibility and its scaling properties pro-
vide useful information about the phase diagram. So the



point here is phenomenological, we think it should work
based on previous analysis[26, 27], we do the numerics
and we see that it indeed works. Since MBL is concerned
with all energies, and recently it was widely studied with
high excited state[6-11], additionally, states in the mid-
dle of the spectrum are important in MBL[6, 7], and one
can see that such states and their corresponding weights
are nicely and naturally included in the dephased state
from the definition of the dephased state in the following
Eq(1), so here instead of the ground state which repre-
sent low temperature, our focus is on the time-averaged,
dephased state which is the unique state that maximizes
the von Neumann entropy[43] and has also been used
to study MBL recently[17]. So fingerprints of the MBL
transition are expected in the fidelity of this dephased
state. It is worth noting that to test the dephased-state
fidelity, the parameter perturbation §h; for each site used
in this paper are not determinate, but random variables
like hy;.

Next we first review the definition of the dephased
state. For a fixed initial state p and non-degenerate
Hamiltonian H, the dephased state or time-averaged
state w has the following form[17]

= oy LT g i itH
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where |E,,) are the eigenvectors of H. This is long-time
equilibrium state, and is often referred to as the diagonal
ensemble, since for the non-degenerate Hamiltonian H,
the off-diagonal elements each time average to zero. It
is known that the dephased or time-averaged state is the
unique state that maximizes the von Neumann entropy,
holding all constants of motion fixed [43]. If the expecta-
tion value of an observable equilibrates on average during
the time evolution of a system, then the equilibrium ex-
pectation value can be computed from it [44, 45].

To test the fidelity of the dephased state w, we use the
mixed-state fidelity, which is given by [46]

1 1
F(po, p1) == tr\/ pf popi (2)

This quantity measures the degree of distinguishability
between the two quantum states pg and p;. The fidelity
is related to the statistical Bures distance: D(pg, p1) =

2(1 — F)[32]. We will use Eq. (2) to compare two di-
agonal ensembles wy and w1 related by a small parameter
perturbation dh, then we get F'(wp,w1) corresponding to
F(h,h+ 6h). In the limit fidelity is close to unity and it
can be approximated by the lowest-order nontrivial Tay-
lor expansion
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The prefactor in the quadratic term, x(h), is called

fidelity susceptibility [37]. It has been recently intensively

studied as a probe of quantum criticality [27, 29, 42].

F(h,h+ 6h) ~ 1 — x(h)

II. MODEL USED FOR NUMERICS.

It has been shown that many-body localization appears
to occur for a wide variety of particle, spin or qubit mod-
els. Here we study a spin model, the Heisenberg spin
chain with random fields in the z direction [7]. The
Hamiltonian of this model is given by

N
H = Z[J(stfﬂ +sisiy +sisip) Hhisi] (4)
i=1

where the h; represent identically distributed static
fields on each site i, each with a probability distribu-
tion that is uniform in [-h, h]. We consider the chains
are of size N with periodic boundary conditions.The sys-
tem is completely characterized by the disorder strength
h and the coupling constant J. This is one of the simpler
models that shows a many-body localization transition.
Through dephased-state fidelity and fidelity susceptibil-
ity we will present evidence that the MBL transition at
h = h. = 3.5+ 1.0 also dose occur in this model, in cor-
respondence with the prediction in [7]. For all values of
the parameters, this model has two global conservation
laws: total energy and total magnetization S* along the
z direction, so in the numerics we only pay attention to
states with zero total S#. Here the initial states we take
are all eigenstates of the Hamiltonian EZJ\; s7 from the
subspace with total S* = 0. These initial states are prod-
uct states, for each initial state, according to Eq(1), we
can compute the corresponding diagonal ensemble wy.
To test fidelity of the diagonal ensemble, for the small
parameter perturbation dh; for each site, we have three
options: (a) 6h; = €, (b) 0h; = €h, (¢) dh; = €h; (e is
a small constant). The parameter perturbation dh; for
each site are same constant in case (a) and (b), but dif-
ferent random variables in case (c). We have tried these
three cases, only in the case (¢) dh; = eh;, we can see the
phenomenon of MBL transition through fidelity to de-
note. So in this paper we do all computation in the case
(c) 6h; = €h;, and let € = 1073, we then compute for each
initial state the diagonal ensemble wy, fidelity F(wo,w1)
and fidelity susceptibility x. Averaging over all selected
initial states and disorder realizations yields the mean
value E[F| and E[x]. The numerics were performed using
standard libraries for matrix exact diagonalization. Total
S% symmetry and parallel programming techniques were
employed to make computations feasible. The number of
disorder realization for each disorder amplitude |h| and
system size N we used in the data shown in this paper
is 10* for N=6 and N=8, 2000 for N=10 and N=12, 200
for N=14 and 50 for N=16.

III. RESULTS AND DISCUSSION

Here we take J = 1, for this case the MBL transi-
tion in the model (4) was predicted to be h. € [2, 4] in
[7]. According to the pronounced data change shown in
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FIG. 1: Averaged fidelity of the depased state as a function
of h for system size from 6 to 16. The system size N is in-
dicated in the legend. Statistical error bars for every data
points are given. In the ergodic phase [7](small h) E[F] de-
cays substantially under the dynamics until h approaches to
the critical point A, then in the localized phase (large h) E[F]
turns to increase approximately approaching to 1. The drop
gets sharper as system size N increases. The inset corresponds
to enlarged pictures for system size N=6 and 8 with the same
data.
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FIG. 2: Averaged fidelity susceptibility of the depased state
as a function of h for system sizes from 6 to 16. The system
size N is indicated in the legend. For every system size, the
critical line is plotted. In the inset, subtracting the values
of hi™ (the critical disorder strength in the infinite system)
from h. one can see that the decrease versus system size N
(the asterisks) is well captured by a power-law with exponent
of approximately -1.49(2) (dashed line guide to the eye
N~149D),

Fig. 1 and Fig. 2, one can obtain the approximate crit-
ical disorder strength h. for different system size N. For
N=6, h. — 3.9, N=8, h. — 3.3, N=10, h, — 2.9, N=12,
he — 2.7, N=14, h, — 2.6, N=16, h, — 2.5. So we
obtain h. € [2.5, 3.9] for the breakdown of egodic phase,
which agree with the prediction in [7, 13]. In Fig.1, we
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FIG. 3: Averaged fidelity E[F] as a function of system size N
for different values of disorder strength h from small to large.
The value of h is indicated in the legend. E[F] decays as the
system size increases, it decays the fastest when h=2.5.
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FIG. 4: Maximum of averaged fidelity susceptibility as a func-
tion of system size N and the fitting curve to the data points,
one can see that the increase of E[x] for system size N (the
circles) is well captured by a power-law exponent of approxi-
mately 5.05(1) (dashed line guide to the eye oc N*-%());.

show one standard-deviation error bars, and from this
figure, one can see the E[F] versus h show an initial de-
crease at low h towards a minimum and then increase
at higher disorder approximately approaching to 1. The
critical disorder strength h. is size dependent, we do the
fitting h. with expression as h. ~ A+ B/N®, where A,
B, C are the fitting parameters, get A=2.07, B=26.7,
C=1.49(2). So one can extrapolate the critical disorder
strength h"/ of the infinite system is about 2.07 which
also agree with the prediction in [7]. In the inset of Fig.2,
subtracting the values of h?"f from h. one can see that
the decrease of (h. — hi"f) for system size N is well cap-
tured by a power-law with exponent of approximately
-1.49(2). As the data change of Fig. 1 and Fig. 2, it
shows that here MBL transition is not a sharp transition



which can also be seen in recent studies [7, 14]. In Fig.
3, E[F] decays as the system size increases, it decays the
fastest when h=2.5, and one can see that when the value
of h is small, h=0.1, and when it is large, h=8, E[F] de-
cays very little with system size N. It can be predicted
that the Fidelity E[F] will be independent of system size
N at very large h, namely Fidelity E[F] approximately
keep not to be changed in the localized phase. In Fig.
4, scaling of maximum of averaged fidelity susceptibil-
ity E[xm] is estimated. It shows a power-law increase
of E[x.m] for system size with an exponent of roughly
5.05(1), i.e. E[xy] oc N>05(1),

IV. SUMMARY

In this paper, the numerical simulations performed
show that the fidelity and fidelity susceptibility of the
diagonal ensemble denote the MBL transition in a spe-
cial way which is in agreement with previous analytical
and numerical results[26, 27]. We test the fidelity be-
tween two diagonal ensembles related by a small param-
eter perturbation dh, it is special that here the parameter
perturbation dh; for different site are random variables
like h;. Undoubtedly the transition from an ergodic to
a MBL phase is a highly non-equilibrium phenomenon
which is poorly understood at present. Our study of
the exact matrix diagonalization of the model in (4) can
demonstrate some of the properties of the ergodic and lo-
calized phases. It shows that in the ergodic phase (small
h) E[F]decays substantially under the dynamics until h

approaches to the critical disorder strength h., then in
the localized phase (large h) E[F] turns to increase ap-
proximately approaching to 1. If the disorder strength
is large enough, the Fidelity E[F] will keep not to be
changed in the localized phase for arbitrary system size.
We also get the critical disorder strength h, € [2.5,3.9] for
the breakdown of ergodic phase, the fitting h. with ex-
pression as h, ~ A+B/N® A=2.07, B=26.7, C=1.49(2).
Then one can extrapolate the critical strength of the dis-
order in the infinite system hi"/ is about 2.07. The de-
crease of ( h.-hi"l) for system size N is well captured
by a power-law with exponent of approximately -1.49(2),
ie., (he — hi") oc N=149() We also estimate the scal-
ing of maximum of fidelity susceptibility as a function of
system size N, it shows a power-law increase of E[y,,] for
system size N with an exponent of roughly 5.05(1), i.e.,
E[xm] o< N>05() We hope that the present work pro-
vides a novel window into the remarkable phenomenon
of many-body localization.
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