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This paper sets forth the mechanism by which mesoscale staircase structures condense to form
macroscopic states of enhanced confinement. Density, vorticity and turbulent potential enstrophy
(PE) are the variables for this model. Formation of the staircase structures is due to inhomogeneous
mixing of (generalized) potential vorticity (PV). Such mixing results in the local sharpening of
density and vorticity gradients. When PV gradients steepen, the density staircase structure develops
into a lattice of mesoscale ’jumps’ and ’steps’, which are, respectively, regions of local gradient
steepening and flattening. The jumps then merge and migrate in radius, leading to the emergence of
new macroscale profile structure, so indicating that profile self-organization is a global process, which
may be described by a local, but nonlinear model. This work is the first to predict and demonstrate
how mesoscale condensation of staircases leads to global states of enhanced confinement.

A feature common to self-organizing, nonequilibrium
nonlinear systems is the formation of patterns. Pat-
terns of mixed layers, observed in the ocean [1], emerge
from double-diffusive convective instability and salt fin-
gering [2–4]. In the turbulent gas of planetary atmo-
spheres, pattern formation manifests itself by the for-
mation of quasi-periodic flow patterns, such as the lat-
eral belts in the Jovian atmosphere [5, 6]. In magne-
tized plasmas, E×B zonal flow (ZF) shear patterns de-
velop from drift-wave (DW) turbulence. ZFs are also a
topic of interest to the magnetic fusion community due
to their important role in regulating turbulent transport
and triggering the development of the H-mode and inter-
nal transport barriers (ITBs) [7–9] (see Refs. 10 and. 11
for a general review of the zonal flows). Recently Ref. 12
reported the observation of a new class of quasi-periodic
’E×B staircase’ flow patterns in gyrokinetic simulations.
There, E×B staircases formed spontaneously, were self-
organizing, and had a long lifespan. Moreover, ∇Ti cor-
rugations coincided with these flow staircase jumps, while
in-between the shear layers, turbulent avalanching [14–
16] persisted. Furthermore, Ref. 13 reported the experi-
mental evidence for coherent shearing-turbulence modu-
lational states in the Tore Supra tokamak. These results
are consistent with interpretation as an E× B staircase,
though much more data is required to make a conclusive
identification. These observations motivate the search
for a reduced model which can explain the underlying
mechanism generating these long lasting shear patterns
and pressure corrugations.

In a related vein, there have been extensive theoreti-
cal studies of ZF generation mechanisms and ZF growth
rates, and numerous comparisons to numerical simula-
tions [17]. There has also been some limited progress to-
wards the understanding of collisionless saturation mech-
anisms for ZFs [17–19]. However, the spatial structure of
the zonal shearing fields and their nonlinear evolution
in time and space remain poorly understood. Here, we
present a theoretical model for the study of space-time

flow structure in the context of a simple DW turbulence
system. The goal is to better understand two subjects:
1) the evolution and formation of mesoscale density pro-
file staircase structure, and the associated mesoscale
shearing lattice pattern, and scales thereof.
2) how a steady macroscale transport barrier might
emerge from the mesoscale density staircase, as a result
of a global transport bifurcation.
Emergence of shear layers follows from the central idea
of positive feedback resulting from inhomogeneous turbu-
lent mixing. This leads to the formation of regions with
strong mixing and weak wave elasticity [20] (i.e. mem-
ory), separated by interfaces with steepened PV gradi-
ents and sharpened flows. The reduced model presented
here exhibits both the formation of staircases in the mean
density field, similar to buoyancy layering in the Phillips
effect [21], and also the formation of a mean shear flow
lattice pattern, similar to the jet staircase formation in
the PV-Phillips effect [22]. Hence, this model goes be-
yond Ref. 23, in that it evolves two coupled mean fields,
and turbulent enstrophy density (Ref. 23 evolved only
one mean field, the mean buoyancy, and turbulent ki-
netic energy). Here, cross-correlation of mean fields is
addressed self-consistently via the residual stress in the
Reynolds stress. In addition, we show that the evolu-
tion of the mesoscale density staircase and shear lattice
through merger and spatial migration can lead to global
transport bifurcation and the formation of macroscale
barriers by a sequence of jump mergers and spatial mi-
gration.

The reduced model is based on the Hasegawa-
Wakatani (HW) system of equations for collisional DW
turbulence in a straight magnetic field [24, 25], with elec-
trons in near-adiabatic regime. In this model, conserva-
tion of PE and inhomogeneous mixing of PV leads to the
spontaneous generation of ZF by turbulence (Reynolds
stress). The system variables are functions of time and
radius, and consist of mean (reduced) density: n ≡
log(N/N0) (N is the particle density and N0 is a nor-
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malization constant), mean vorticity: u ≡ ρ2s∇2
⊥(eφ/Te)

(ρs = c(miTe)
1/2/eB), mean PV: q ≡ n − u, and the

turbulent PE: ε ≡
〈
(δn− δu)2

〉
/2 where δn and δu are

respectively the perturbations in density and vorticity,
and the averaging is over the directions of symmetry y
and z. The set of reduced evolution equations describing
the system are given by:

∂tn = ∂xDn∂xn+Dc∂
2
xn (1)

∂tu = ∂x(Dn − χ)∂xn+ χ∂2xu+ µc∂
2
xu (2)

∂tε = ∂xDε∂xε+ χ[∂x(n− u)]2 − ε−1c ε3/2 + P (3)

The first term in Eq.(1) is the gradient of turbulent par-
ticle flux which is given by a local Fickian diffusive term
Γ = −Dn∂xn, where Dn is the turbulent particle diffu-
sion coefficient. Both the first and the second term in
Eq. (2) come from taking the product of −∂x on the
turbulent vorticity flux Π = (χ−Dn)∂xn− χ∂xu, where
χ is the turbulent viscosity. The first term in Eq.(2)
is the residual stress which is an off diagonal term and
can accelerate vorticity due to the basic density gradi-
ent. The second term in Eq.(2) is the turbulent viscous
diffusion. The terms in Eqs.(1) and (2) which are pro-
portional to µu and Dc are respectively the viscosity and
diffusivity terms that remove energy from fine scales. In
Eq.(3) the term −ε−1c ε3/2 is the dissipative term as the
result of forward cascade of PE. Furthermore, Fickian
diffusive flux form is used for the turbulent flux of PE
〈δvxε〉 = −Dε∂xε, where Dε is the turbulent PE dif-
fusion coefficient. The external turbulence production
source in Eq.(3), i.e., P, is due to sources of free energy
which are external to the closed system described by the
classic DW-HW equations. The production term due to
this mechanism, described by the relation P = γεε, is
linear in ε and is proportional to γε, the characteristic
growth of the instabilities responsible for P.

Imposing the condition ∂xε = 0 at the boundaries pre-
vents the influx-outflux of turbulent PE. As a result,
the system described by the set of Eqs.(1)-(3), mani-
festly conserves the total PE (sum of mean and tur-
bulent PE), up to damping terms and external forc-
ing. In constructing the reduced turbulence model, mix-
ing length and phenomenological arguments are used
to obtain the functional form of the turbulent diffu-
sion coefficients Dn, χ and Dε. The quasilinear flux re-
lations obtained in Ref. 26, and timescale ordering of
αn > ωm/km > v are used to approximate Dn and χ.
For Dn, the approximation |kmδϕ| = |δvx| ≈ lε1/2 gives

Dn ≈ k2⊥
1+k2⊥

k2m|δϕ|
2

ηk2‖

∼= l2 εα , where the parameter α is iden-

tified as the measure of the resistive diffusion rate in the
parallel direction: α = (1 + k2⊥)/k2⊥ηk

2
‖. χ is obtained

as: χ(x) ∼= cχl
2ε/
√
α2 + auu2 . The term auu

2 in the
denominator incorporates the effect of strong flow shear
suppression [27, 28]. The strength of turbulent viscosity
(χ) is controlled by cχ. Moreover, for Dε the expression

Dε(x) ∼= βl2ε1/2 is used. Here the parameter β controls
the strength of turbulence spreading [29] of PE.

a. The mixing length: Inhomogeneous mixing of PV
is implemented via a dynamic mixing length, l which is a
nonlinear hybrid of two length scales; a constant forcing
scale l0 and the Rhines scale [30], lRh =

√
ε/|∂x(n− u)|.

At the Rhines scale, the turbulence dominated spectral
range crosses over to the strongly elastic, wave dominated
range. The choice of the functional form of lRh captures
the positive feedback which drives the feature forming in-
stabilities and leads to the formation of nonlinear density
staircase and shearing lattice. We employ the following
model for the mixing length. [23]:

l =
l0

(1 + l20[∂x(n− u)]2/ε)κ/2
(4)

In a system with weak mean PV gradient such that
l0 < lRh, l0 is the natural choice for the length-scale
of turbulent mixing. However, locally the PV gradi-
ent of the system can become strong enough such that
lRh < l0 and the mixing length can be approximated by
l ∼ l1−κ0 lκRh. At these locations of steep PV gradient, lRh
is the governing spatial scale for the turbulence.

Feature forming instabilities result from local trans-
port bifurcations. In the relation between the local tur-
bulent flux versus local mean gradient (e.g. PV flux Γq(x)
versus PV gradient ∇q(x)) transport bifurcation mani-
fests in the form of an S-curve. The S-curve consists of
two stable mean gradient ranges in which δΓq/δ|∇q| >
0, enclosing the region of negative diffusion in which
δΓq/δ|∇q| < 0. The positive feedback loop in the nega-
tive diffusion region drives the instabilities which lead to
nonlinear feature formation in the mean profile.

We reduce the number of parameters in the sys-
tem by the following rescaling choices x = x/L,t =
γεt(l0/L)2, ε = ε/γ2ε , n = n l0

Lγ2
ε
, u = u l0

Lγ2
ε
, l = l/l0, α =

α/γε, µc = µc/(γεl
2
0), au = au(L/l0)2. The rescaled evo-

lution equations are:

∂tn=∂x

[(
l2ε

α

)
∂xn

]
+Dc∂

2
xn (5)

∂tu=∂x

[(
l2ε

α
− cχl

2ε√
α2 + auu2

)
∂xn

]
+

cχl
2ε√

α2 + auu2
∂2xu+µc∂

2
xu

∂tε=β∂x

[
l2ε1/2∂xε

]
+Λ

[
cχl

2ε√
α2 + auu2

[∂x(n− u)]2− ε3/2

ε
1/2
c

+ε

]
where Λ = L2/l20. In order to find the parameter ranges
in which there is possibility for the growth and formation
of structures in density and vorticity profiles, linear anal-
ysis is performed on the simple equilibria with uniform
density gradient and turbulent PE, and no flow shear.

b. Numerical solutions of the reduced model The nu-
merical solutions for the set of nonlinear equations (5) are
explored using a finite difference method in space and the
Runge-Kutta-Fehlberg method for time integration. Ini-
tial conditions are chosen as: n(x, 0) = −gix;u(x, 0) =
0; ε(x, 0) = εi. The values gi, εi are obtained from the
linearly unstable region of the parameter space. Bound-
ary conditions are n(0, t) = 0, n(1, t) = −gi;u(0, t) =
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FIG. 1: (2a) Contour plot of the time evolution of |∇n|
along the plasma radius for

Λ = 4000, cχ = 0.95, α = 6, εc = 6.25, β = 0.1, µc =
Dc = 0.78, au = 1, gi = 5.1, εi = 0.002. Horizontal axis

is the log of time; vertical is the scaled radius. Different
stages of evolution are: a) Fast merger of micro-steps

and formation of meso-steps. b) Coalescence of
meso-steps to barriers. c) Barriers propagate along

gradient, condense at boundaries. d) Stationary profile.
(2b) Evolutionary landscape of the vorticity profile

u(i.e., the shearing profile), as a function of position x
and time t.

u(1, t) = 0 and ∂xε(0, t) = ∂xε(1, t) = 0. Numerical solu-
tions of the system exhibit roughly three stages of evolu-
tion 1) development of nonlinear mesoscale features from
microscale instabilities 2) evolution of mesoscale struc-
ture through local merger processes leading to the for-
mation of mesoscale barriers 3) detachment of the struc-
tures from their inception locations and their migration
towards the boundaries, resulting in the formation of the
steady macroscale structure. Each stage of evolution has
a characteristic time-scale and length-scale. Figures 1a
and 1b respectively show the evolution landscape of den-
sity profile and vorticity profile from the initial to the
final state. In the first stage of evolution, features de-
velop in the profiles due to the linear instability of the
initial profiles. These are secondary modulational insta-
bilities, in contrast to the primary linear DW instabilities.
Growth of these instabilities results in the formation of
nonlinear features in the mean profiles, as well as in the
turbulent PE profile. In the density profile these features
are in the form of staircases; series of jumps (steepening)
and steps (flattening) in the density profile. Simultane-
ously, the vorticity profile develops jagged (corrugated)
features. These features are quasi-periodic with a char-
acteristic length scale lq.

Variable profiles evolve and transform through the lo-
cal merger process. Merger of two jumps (steps) results
in the formation of a wider jump (step) (see Fig. S1
in SM). The location of the jumps (steps) in n coincide
with locations of maximum negative (positive) slope in u.
Moreover, merger results in the increasing of the ampli-
tude of the resulting shearing layer in the vorticity profile.

As a result of mergers, system scale size lq grows and the
profiles become smoother.

The process of mesoscale mergers gradually slows and
stops. Although beyond this evolutionary time, and
away from the boundaries, the profiles formed are lo-
cally stationary, they will evolve globally by profile mi-
gration. Migration refers to when density staircase and
the shear lattice, detach and delocalize from their initial
positions and migrate towards the boundaries. Migrat-
ing density barriers and shear layers condense as they
reach the boundaries. This process continues until the
steady macroscale density barrier and the shearing pro-
file form. We should note that a pattern propagation was
also advocated by Kosuga et al [31, 32], in an alternative
theory approach to E× B shear layer pattern formation
due to the propagation of heat-flux modulations. Figure
2 shows the density and shearing profile during the mi-
gration stage. In Fig.2a the density barriers move up the
the density gradient in an ”escalator”-like motion. More-
over, Fig.2b shows that along with the density profile, the
shearing pattern also moves to the left and condenses at
the boundary. Migration takes place over a much longer
evolutionary time ∼ O(104), in comparison to the earlier
stages of evolution ∼ O(102) (note that time is scaled
to the external production timescale γ−1ε ). Therefore,
mesoscale features spend most of their lifetime migrat-
ing.
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FIG. 2: (a)Upward, escalator-like migration of the step
at times t = 700 and t = 1300. (b) Detachment of

shearing pattern from the location of formation, and
migration towards the boundary.

Spreading of turbulent PE is necessary in the forma-
tion of structures as it regulates the steepening in the
ε profile. Lowering β results in the formation of more
steps and jumps in the density profile (see Fig.S2 in SM).
Moreover, below a value for β, the numerical solutions
become too stiff to carry out, due to the fine spatial scale
of instabilities and extreme local steepening of gradients.
Raising β results in the formation of smaller number of
jumps-steps in the staircase profiles. In the extreme case
of large β, turbulent spreading of PE prevents the for-
mation of any spatial structure in the mean fields.

c. Flux driven evolution: For the study of the global
transport bifurcation of the steady macro-state we use
the amplitude of an additional external particle flux
drive, Γ0, as the control parameter. The external source
is taken to be sharply peaked on the axis with a constant
width. For the initial condition of the density, the form
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FIG. 3: Transformation in the profiles of (3a) density,
(3b) vorticity, (3c) turbulent PE, and (3d) turbulent
particle flux. Forward transition is from A to B, and

backward transition is from C to D
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FIG. 4: Global particle flux versus density gradient,
showing hysteresis behavior.

n0(x) = −gi
(
x− 1 + 1

b

[
e−bx − e−b

])
is used (b � 1).

Away from x = 0, ∂xn0 is uniform and close to −gi. The
density equation including the flux drive is given by:

∂tn = −∂xΓtot; Γtot(x, t) = Γ(x, t) + Γdr(x) (6)

where Γ(x, t) = −
[(

l2ε
α

)
+Dc

]
∂xn is the sum of the

turbulent and the collisional diffusion fluxes. As the solu-
tions evolve to their final steady-state, Γtot saturates and
becomes uniform. As Γ0 is increased beyond a thresh-
old of transition Γth, the steady macro-state of the sys-
tem undergoes a transport bifurcation. As a result, the
steady-state profiles of the n, u and ε undergo a dras-
tic transformation. Fig.3 shows the transformation of
the steady-state profiles as Γ0 is raised from 6 to 8 and
brought back down to 6, in one parameter scan run. Time

variation of Γ0 is adiabatic, so that at all times the sys-
tem is close to a steady-state solution, except for the
short transition times.

Two different transitions can occur. The forward
transition (FT) occurs for Γ0 = Γf

th ≈ 7.39, as Γ0

is increasing, and backward transition (BT) occurs for
Γ0 = Γb

th ≈ 6.838, as Γ0 is decreasing. In Fig.3, curves
labeled A and B are snapshots of the profiles for which
Γ0 is respectively, slightly below and slightly above Γf

th,
i.e., Γ0|A . Γf

th . Γ0|B (in the BT, Γ0|D . Γb
th . Γ0|C).

During these fast transitions, the system is not in steady-
state. For the FT (from A to B), Fig.3a shows the rise in
n with the formation of macro-step and Fig.3c depicts the
drop in ε level in the density jump region x > 0.65. More-
over, Fig.3d shows a drop in the turbulent particle flux
beyond xstep, which implies that the steady macro-step
acts as a barrier for the turbulent transport of particles.
Furthermore, Fig.3b shows a sign reversal of u for B com-
pared to A (except in the close vicinity of x = 0) along
with the enhancement of its amplitude. The differences
between the profiles for Γ0 > Γf

th and Γ0 < Γf
th, lead us

to define the former as the enhanced confinement (EC)
modes and the latter as the normal confinement (NC)
modes. In the BT, the system transitions from the EC
mode (C) to the NC mode (D). In this fast process, the
barrier position xstep moves from x ≈ 0.65 to the right
boundary at x = 1, as the height of the barrier decreases
to zero.

In order to elucidate the physics of hysteresis in the
process described above, the global particle flux-density
gradient relation of the steady-states is mapped in Fig.4.
The vertical and the horizontal axes are respectively 〈Γ〉
and 〈−∂xn〉, where 〈 〉 is averaging over the spatial di-
mension. Data points shown with diamonds (triangles)
are the (〈−∂xn〉 , 〈Γ〉) values of the system as Γ0 increases
(decreases). Critical transition points are shown in Fig. 4.
The A - B, and C - D gaps result from the transport bi-
furcation, leading, respectively, to barrier formation in
the FT, and barrier annihilation in BT. The loop formed
due to the separation between the FT and the BT, results
from transport bifurcation taking place at different val-
ues of Γth in each direction. This loop is a clear depiction
of hysteresis behavior in this process.

In summary, this reduced analytical model manifests
emergence of quasi-periodic mesoscale density staircase
structures, colocated with a lattice of shears. These
meso structures reorganize and evolve through merger
and spatial migration, and so form a macro steady-state.
Some turbulent spreading is necessary to the formation
of structures as it regulates the steepening of the tur-
bulent PE. The macro-state of a system driven by an
external particle flux undergoes a global transport bifur-
cation, from a normal confinement state to an enhanced
confinement state, as the amplitude of the flux drive is in-
creased beyond a threshold of transition. This transition
is identified by the transformation of the system profiles:
formation of a step-jump structure with the rise in over-
all level in the density profile n, a regional drop in the
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level of turbulent PE and turbulent particle flux, sign re-
versal and amplitude enhancement of the shearing profile
u. Furthermore, the system exhibits hysteresis between
the forward and backward transition of the macro-state.
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