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Using the diagrammatic method, we derive a set of self-consistent equations that describe eigen-
value distributions of large correlated asymmetric random matrices. The matrix elements can have
different variances and be correlated with each other. The analytical results are confirmed by nu-
merical simulations. The results have implications for the dynamics of neural and other biological
networks where plasticity induces correlations in the connection strengths within the network. We
find that the presence of correlations can have a major impact on network stability.

Random matrices serve as a useful tool for analyz-
ing the stability and dynamics of a variety of networks,
from neuroscience [1–4] and genetic circuits [5] to ecology
[6, 7]. Spectra of random matrices also help determine
solutions to problems in nuclear [8] and condensed mat-
ter physics [9, 10] as well as in data compression [11, 12].
In particular, the rightmost eigenvalue (the eigenvalue
with largest real component) determines the stability of
the system’s linear dynamics and onset of chaos of the
nonlinear dynamics. Knowledge of the onset of chaos is
also useful for determining the network’s computational
capabilities [13, 14] as well as the network’s response to
inputs [15].
However, most of these results do not address an im-

portant feature of biological circuits where connection
strengths are correlated [16–18]. While correlated Her-
mitian ensembles have received some attention, [19–22],
results about correlated non-Hermitian ensembles are
scarce [23, 24]. Most notably, the correlations in the con-
nection strengths arise as the result of plasticity, where
connections are modified depending on node activity and
network input. One of the predominant effects of plas-
ticity is that it induces correlations between forward and
reverse connections [16, 18]. That is, the degree to which
node i affects node j is correlated with the strength of
the reverse connection from node j to node i. We focus
here on this circuit motif when considering correlations
between matrix elements.
Consider a network with N nodes i = 1, . . .N , with

linear dynamics

ẋi(t) = −xi(t) +
N
∑

j=1

Jijxj(t), (1)

where xi(t) describes the activity of each node and J is
the N ×N connectivity matrix. The solution of this sys-
tem is x(t) = e(1−J)t

x(0). This system has stable equilib-
ria only if the rightmost eigenvalue of J is less than one.
For networks with nonlinear dynamics, mean-field meth-
ods can be used to show that the transition to chaotic
behavior still occurs when the rightmost eigenvalue of J
is < 1 [1, 3, 4].
In this work we use the diagrammatic approach to an-

alyze the case where the matrix elements of J are cor-

related and not identically distributed. Specifically, we
consider an N×N complex non-Hermitian Gaussian ran-
dom matrix J whose elements are distributed according
to

P (J) ∝ exp



−N

2

∑

i,j

(

J∗
ij J∗

ji

)

V
−1

(

Jij
Jji

)



 (2)

where covariance matrix V consists of real-valued vari-
ances

〈JijJ∗
ij〉 =

1

N
g2ij , (3)

and real-valued covariances

〈JijJji〉 =
1

N
τijgijgji. (4)

All other-second order correlations vanish. The gain ma-
trix gij has positive elements. Correlation values τij are
symmetric in i, j, |τij | ≤ 1, and denote the degree of cor-
relation between forward j, i and reverse i, j connections
in the corresponding random network.
To outline the steps of the derivation, we will first seek

the expected density of eigenvalues of J for large N by
first writing the density in terms of the Green’s func-
tion G. While G is analytic for Hermitian matrices, G
is generally non-analytic for non-Hermitian matrices, so
we cannot directly apply the diagrammatic method. We
therefore relate G to the analytic Green’s function of a
Hermitian random matrix H , which we compute with
standard diagrammatic techniques. We derive a set of
self-consistent equations for G for the case where the gain
matrix gij is a continuous function in the limit N → ∞,
and the case where gij is block-structured. Finally, we
apply our method to two example problems and compare
the results to empirical eigenvalue distributions obtained
by exact diagonalization of realizations of J .
We start by writing the expected density of eigenvalues

of J in the complex plane as

ρ(x, y) =

〈

1

N

∑

k

δ(x − Reλk)δ(y − Imλk)

〉

. (5)

where 〈·〉 indicates an average over realizations of J ac-
cording to Eq. (2). Defining ∂ = (∂x − i∂y)/2 and ∂̄ =



2

(∂x + i∂y)/2, and using the identity ∂̄ 1
x+iy

= πδ(x)δ(y)

[25], we can write the density (5) in terms of the Green’s
function

G(z, z̄) ≡
〈

1

N
tr

1

z − J

〉

(6)

as

ρ(x, y) =
1

π
∂̄G(z, z̄). (7)

Since J is non-Hermitian, the eigenvalues of J will in gen-
eral lie in some region of the complex plane. For example,
Ginibre’s circular law states that if the elements of J are
independently and identically distributed with variances
g2/N , then the eigenvalues lie in a disk of radius g [26].
The Green’s function is therefore not in general holomor-
phic, and we cannot expand in powers of 1/z as required
for the diagrammatic expansion. Following [27], we can
find the Green’s function by solving a related Hermitian
random matrix problem, to which we can apply the di-
agrammatic approach. Define the 2N × 2N Hermitian
matrix

H =

[

0 J − z
(J − z)† 0

]

. (8)

The matrix Green’s function for H is

G(η, z, z̄) =
〈

1

η −H

〉

, (9)

where we think of the eigenvalues of H as lying on the
complex plane η. Since H is Hermitian, these eigenvalues
will lie on the real axis, and G is holomorphic in η except
for cuts on the real axis. Once G is computed, we obtain
the original Green’s function G from G by extracting the
lower left matrix block and taking the limit η → i0+:

G(η = 0, z, z̄) =

〈[

0 1
(z−J)†

1
z−J

0

]〉

, (10)

yielding Eq. (6):

G(z, z̄) =
1

N
trG21(η = 0, z, z̄). (11)

Here, G21 is the lower left block of G. To compute G (9),
we first rewrite η −H = G−1

0 − J with

G−1
0 ≡

[

η z
z̄ η

]

and J ≡
[

0 J
J† 0

]

, (12)

so that the random part J has zero mean. Note that G0

is just G with J = 0. We expand G in G0 as follows:

G =

∞
∑

n=0

G0〈(JG0)
n〉 = G0 + 〈G0JG0JG0〉+ . . . (13)

Here, the odd terms vanish since 〈J 〉 = 0. Since the
distribution over J is Gaussian, each term in the sum

α
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β
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α
i

β
j

γ
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δ
l

FIG. 1. Diagrams used in the expansion (13) of G. G is the
sum of all planar diagrams in the large N limit. G can be
re-summed in terms of the self-energy matrix Σ. In the large
N limit, Σ consists of all diagrams nested under a double line
(15).

reduces to the Wick contraction of n factors of J . We
therefore use the diagrammatic technique [28, 29] to rep-
resent each term in the sum. We denote the N node in-
dices by roman letters i = 1, . . .N and index the blocks
by Greek letters α = 1, 2. We represent G0 by a single
directed line carrying one set of indices, and the corre-
lator 〈J J 〉 by a double line carrying two sets of indices
(Fig. 1) [27, 30, 31]. Indices are summed at each con-
necting vertex. The nth term in G is the sum of all
diagrams with n vertices. In the large N limit diagrams
which have crossing lines vanish, and only “planar” di-
agrams remain [32, 33] [34]. This greatly simplifies the
sum, since the only allowed diagrams are nested ‘rainbow
diagrams’ such as those depicted in Fig. 1. This allows
us to evaluate (13) by performing a resummation of G in
terms of the ‘self-energy’ matrix Σ:

G =
∞
∑

n=0

G0(ΣG0)
n =

(

1

G−1
0 − Σ

)

. (14)

In the planar limit, the self-energy matrix is

Σ = 〈J GJ 〉, (15)

encoding the nested ‘rainbow’ structure of the diagrams
[29]. This is depicted diagrammatically in Fig. 1.
In block form, Eq. (14) is

G =

[

A B
C D

]

=

[

η − Σ11 z − Σ12

z̄ − Σ21 η − Σ22

]−1

. (16)

and Eq. (15) is

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

=

〈[

JDJ† JCJ
J†BJ† J†AJ

]〉

(17)
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where we have denoted the blocks of G as A,B,C and
D. Substituting (17) into (16) will give us self-consistent
equations for the blocks of G.
Equations (16) and (17) describe the eigenvalue distri-

bution in the general case, with or without correlations.
Before analyzing the impact of correlations on the eigen-
value distribution, we first check that this result repro-
duces previous results obtained in the absence of correla-
tions. When elements of J are independently distributed,
the covariances (4) vanish. In this case we find [35]:

Σ11
il =

∑

j,k

〈JijDjkJ
†
kl〉 =

1

N
δil

∑

j

gijgljDjj , (18)

Σ22
il =

∑

j,k

〈J†
ijAjkJkl〉 =

1

N
δil

∑

j

gjigjlAjj , (19)

and Σ12 = Σ21 = 0. This means that the matrix Σ is
diagonal. Then, since each block on the RHS of Eq. (16)
is diagonal, each block of G is also diagonal. Inverting
the RHS and equating matrix elements yields

Aii =
η − 1

N

∑

j Ajjg
2
ji

qi(η, |z|)
, Dii =

η − 1
N

∑

j g
2
ijDjj

qi(η, |z|)
,

(20)

Cii = z̄/qi(η, |z|), (21)

where

qi(η, |z|) = (η − 1

N

∑

j

Ajjg
2
ji)(η − 1

N

∑

j

g2ijDjj)− |z|2.

(22)
Writing out the blocks of G in Eq. (9),

[

A B
C D

]

=

〈[

η

η2−(J−z)(J−z)†
J−z

η2−(J−z)†(J−z)
(J−z)†

η2−(J−z)(J−z)†
η

η2−(J−z)†(J−z)

]〉

, (23)

and rewriting η = iǫ, with ǫ > 0, we see that blocks A
andD are positive definite matrices multiplied by−i. We
therefore define aj ≡ iAjj and dj ≡ iDjj , where ai and
di are positive real numbers. We also define cj = Cjj .
This allows us to rewrite (20) and (21) as

ai = âi/qi, di = d̂i/qi, ci = z̄/qi(ǫ, |z|) (24)

with qi(ǫ, r) ≡ −qi(η, |z|) = âid̂i + r2 and

âi ≡ ǫ+
1

N

∑

j

ajg
2
ji, d̂i ≡ ǫ+

1

N

∑

j

g2ijdj , (25)

where r = |z|. We now have a set of 2N self-consistent
equations (24) for the elements ai and di of the Green’s
function G. These can be solved numerically with ǫ = 0
(or ǫ set to a small value if many elements gij are also
small). Once the ai and di are found, the ci can be com-
puted and used to find the original Green’s function G

with Eq. (11), since the trace of G21 ≡ C is the sum of the
coefficients ci ≡ Cii. Note that since cj = re−iθ/qj(ǫ, r)
in polar coordinates, |cj | depends only on r. This allows
us to rewrite Eq. (7) as a function of r only:

ρ(r) =
1

2πN

∑

j

(

∂|cj |
∂r

+
|cj |
r

)

. (26)

The resulting eigenvalue distribution has support on the
disk with radius r =

√

λ1(K), where λ1(K) is the largest
eigenvalue of the matrix Kij ≡ g2ij/N (see Appendix).
Symmetric covariances We now allow J to have cor-

related elements across its diagonal (Eq. 4). Then Σ12

and Σ21 6= 0, yielding a new expression for c:

ci = ĉi/qi(ǫ, z, z̄), ĉi ≡ z̄ − 1

N

∑

j

τijgijgji c̄j, (27)

where now qi = âid̂i + |ĉi|2, bi = c̄i. The τij denote
the degree of correlation between i and j as in Eq. (4).
In this case, the eigenvalue density has the more general
form

ρ(x, y) =
1

π
∂̄G(z, z̄) =

1

Nπ
∂̄

N
∑

j=1

cj(z, z̄). (28)

The density ρ depends on x and y in a nontrivial way,
and the support of the distribution is neither circular nor
elliptical. The boundary of the eigenvalue distribution
now satisfies (see Appendix for a derivation):

λ1(K(z)) = 1, Kij(z) =
1

N
|ci(z)|2g2ij , (29)

where the complex-valued ci(z) are now given by the self-
consistent equations

ci = (z −
∑

j

τijgijgjicj)
−1. (30)

Now, to obtain the boundary, it is necessary to simul-
taneously solve (29) and (30) for each boundary point.
For example, we can set z = reiθ and solve the above for
r for each θ. Note that these expressions reduce to the
circularly symmetric case when τij = 0.
Block structured We now consider the special case for

which the gain matrix gij is block structured. Block
structured matrices describe networks with nodes parti-
tioned into subgroups, for example neural networks with
cell-type-specific connectivity [3], or networks of ecolog-
ical communities [24]. Suppose the nodes of the net-
work are grouped into M populations of size fmN , for
m = 1 . . .M and that J is block structured so that the
gain g2minj

= g2mn and correlations τminj
= τmn de-

pend only on the population indices m and n of the
output and input nodes i and j, respectively. This al-
lows us to sum (24) and (27) over each population. Let
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Nm ≡ N
∑m

n=1 fn. Then define [36]

am ≡ 1

Nfm

Nm
∑

i=Nm+1

ai, (31)

and define cm and dm similarly. Then qm ≡ qi depends
only on the population index, and now we have

am = âm/qm, dm = d̂m/qm, cm = ĉm/qm, (32)

and qm = âmd̂m + |ĉm|2, with

âm = ǫ+

M
∑

n=1

fnang
2
nm, d̂m = ǫ +

M
∑

n=1

g2mnfndn, (33)

ĉm = z̄ −
M
∑

n=1

τmngmngnmfnc̄n. (34)

Now the dependence on N is removed, and we need only
solve 3M self-consistent equations. The eigenvalue den-
sity is now

ρ(x, y) =
1

π
∂̄
∑

m

fmcm(z, z̄). (35)

The boundary of the distribution satisfies equations sim-
ilar to (29), (30), see Appendix. When τmn = 0, the
distribution has boundary |z| =

√

λ1(K), where λ1(K)
is the largest eigenvalue of the matrix Kmn ≡ g2mnfn [3].
To verify our results, we consider a network with

M = 3 populations, with relative population sizes f =
(1/6, 1/3, 1/2), and

g2mn =





.54 .83 .65

.95 .46 .01

.72 .59 .55



 , τmn =





.5 −.2 .9
−.2 .3 .1
.9 .1 −.6



 . (36)

We iteratively solved the self-consistent Eqs. (32) for a
grid of points on the complex plane and approximated the
eigenvalue distribution using finite differences, shown in
Fig. 2(a). We compare this distribution with eigenvalue
histograms generated by exact diagonalization of 1000 re-
alizations of J . We find that realizations of J with com-
plex elements agree with our result (Fig. 2(c,e,f)). Re-
moving the correlations (4) from realizations of J yields
a circular distribution (Fig. 2(b)). Notably, we find that
including these correlations distorts the eigenvalue dis-
tribution in a nontrivial way: the distribution is neither
a circle nor an ellipse. Furthermore, we find using Eqs.
(41),(39) (in the Appendix) that the rightmost eigenvalue
of the distribution has moved from ∼ 0.713 to ∼ 0.890, so
that the corresponding linear system (1) becomes more
unstable.
For any finite N , J has non-universal features that

disappear as N → ∞. In particular, the matrix J with

−0.8

0.0

0.8
(a) (b)

−0.8 0.0 0.8
−0.8

0.0

0.8
(c)

−0.8 0.0 0.8

(d)

0.0

0.5

1.0

−1.0 0.0 1.0
0.4

0.6

0.8

1.0
(e)

−1.0 0.0 1.0

(f)

Reλ Imλ

ρ
(λ
)

Reλ

Im
λ

Im
λ

Reλ

FIG. 2. (Color online) Eigenvalue density for block structured
J with gain and covariance given by (36). (a) Eigenvalue den-
sity calculated from self-consistent equations (32). (b) Em-
pirical histogram of eigenvalues from exact diagonalization of
realizations of J with independent elements. The empirical
histogram for J with covariance is shown with complex (c)
and real (d) entries. (e,f) Cross sections of the density along
the real (e) and imaginary (f) axes, showing the theoretical re-
sult (solid red line), the complex-valued empirical result (blue
dots), and the distribution with no covariance (dashed curve).

real elements will have a higher density of eigenvalues
on the real axis (Fig. 2(d)). However, we find that the
proportion of eigenvalues on the real axis drops off as
1/

√
N , as anticipated for large N [37].

To demonstrate that our technique applies to situa-
tions where the variance and covariance depend continu-
ously on the node indices i, j, we consider a neural net-
work inspired by connectivity around pinwheels in the
visual cortex [38, 39]. The neurons are arranged on a
square grid on the unit square and assigned orientations
based on their position, shown in Fig. 3(a). For neurons
i and j with positions ri and rj , the gain is

gij = g0 exp
[

−|ri − rj |2/w2
r −∆θ2(ri, rj)/w

2
θ

]

, (37)

where ∆θ(ri, rj) denotes the difference in orientation of
neurons at ri and rj . We choose the covariance to be
proportional to the gain: τij = τ0gij . In this example,
wr = 0.2, wθ = 20◦, g0 = 1, and τ0 = 0.8. The gain
matrix for a grid of 16× 16 neuron populations is shown
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FIG. 3. (Color online) Analysis of eigenvalue distribution with
continuously varying gain (37). (a) Orientation map of neu-
rons. (b) Gain matrix gij . (c) Eigenvalue density calculated
from self-consistent equations (top) and from realizations of
J (bottom). Density cross sections along the real (d) and
imaginary (e) axes, plotted as in Fig. 2(e).

in Fig. 3(b). This grid size requires us to solve N = 256
self-consistent equations to determine the eigenvalue den-
sity. For comparison, we generated 1000 realizations of
J with N = 2048; to mitigate finite-N effects [4], we
used block structured matrices with 16× 16 populations,
with 8 nodes in each population. We find that our result
closely matches the empirical distribution (Fig. 3(c-e)).
Increasing the grid size to 32 × 32 and 64 × 64 did not
appreciably change the resulting eigenvalue distribution,
indicating that the current resolution is sufficient. Fi-
nally, using Eqs. (29-30)), we find that including correla-
tions moves the rightmost eigenvalue from 0.24 to 0.41,
decreasing the stability of the system.

Our results can be extended to more general correla-
tion structures, such as correlations between arbitrary
blocks or clusters. However, including more general cor-
relations increases the number of self-consistent equa-
tions that must be solved in (16). Our results can also be
extended to the case of nonzero mean as in [33]. The di-

agrammatic technique can also be used to study further
quantities of interest such as eigenvalue correlations [30],
eigenvector correlations [40, 41], and linear dynamics not
captured by the eigenvalues [33].
In conclusion, we have adapted the diagrammatic tech-

nique to study correlated connectivity matrices that are
not independently or identically distributed, and relevant
to biological circuits. The results indicate that the pres-
ence of correlations can dramatically influence the net-
work stability and dynamics. The correlation structure
is determined by plasticity rules, which act locally on
connections between nodes [16, 18]. The presented ana-
lytical framework therefore makes it possible to evaluate
the impact of local plasticity rules on global network ac-
tivity.

Appendix

Derivation of the boundary of the eigenvalue distribu-

tion in the absence of covariance between matrix elements

Here we first show that the eigenvalue density (26) for
J with independent elements (τij = 0) has support on

the disk with radius R =
√

λ1(K), where λ1(K) is the
largest eigenvalue of the matrix Kij ≡ g2ij/N . There are
two solutions to the self-consistent equations (24) in the
limit ǫ → 0: a trivial solution, with all ai = di = 0,
and a non-trivial solution, with all ai, di > 0 [42]. The
trivial solution corresponds to the region where ρ(r) = 0
[27, 31]. Indeed, we see that when ai = di = 0, all
qi = r2. Then by (24) ci = 1/z, and therefore ρ(r) = 0
by (26).
Now consider the region where ρ 6= 0, where all the ai

and di are nonzero. Then, combining (24) and (25) for
di in the ǫ → 0 limit yields

qidi =
1

N

∑

j

gijdj . (38)

We determine the radius R of the boundary by finding
where the two solutions match. Assuming continuity of
the ai and di, then as di → 0+ as we approach the bound-
ary, all the qi → R2. Then, in the limit, (38) indicates
that d is an eigenvector of Kij = g2ij/N with eigenvalue

R2. Furthermore, since K and d have only positive en-
tries, R2 must be the largest eigenvalue λ1(K) of K by
the Perron-Frobenius theorem. Thus, the boundary of
the eigenvalue distribution has radius R =

√

λ1(K). A
nearly identical argument shows Kmn = g2mnfn for the
block structured case. This result was previously pre-
sented in [43] and [4], and a similar argument was used
in [33] for the case of matrices with non-zero mean. How-
ever, previous analyses do not hold when J has covariant
elements.
Boundary with covariance Now we show that when

τij 6= 0, the boundary of the eigenvalue distribution sat-
isfies (29) and (30). Again, we have ai, di 6= 0 on the
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support of the eigenvalue distribution, and ai = di = 0
otherwise. Plugging the trivial solution into (27), the ci
now satisfy

ci = (z −
∑

j

τijgijgjicj)
−1. (39)

Now, approaching the boundary from the inside as be-
fore, in the limit di → 0+,

di =
∑

j

|ci|2g2ijdj . (40)

where the ci satisfy (39) in the limit. Since all the di > 0,
this means that d is the Perron-Frobenius eigenvector of
the matrix Kij = |ci|2g2ij with eigenvalue 1. This means
that the points z on the boundary satisfy

λ1(K) = 1 (41)

where λ1(K) is the largest modulus eigenvalue of K. To-
gether, (39) and (41) determine the points z that lie on
the boundary of the eigenvalue distribution. We have
found that these equations can be solved efficiently as
follows: First we write z = reiθ and fix θ. Then, to find
the r satisfying (41), we use a root finding algorithm: at
each step of the root finding algorithm, we iterate (39)
to find the ci(z).
If gij is block-structured, then we have only M vari-

ables cm, with

cm = (z −
∑

n

τmngmngnmfncn)
−1 (42)

and

Kmn = |cm|2g2mnfn (43)
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1413 (2004).
[15] K. Rajan, L. F. Abbott, and H. Sompolinsky, Phys. Rev.

E 82, 011903 (2010).
[16] M. Gilson, A. N. Burkitt, D. B. Grayden,

D. A. Thomas, and J. L. van Hemmen,
Biological Cybernetics 101, 427 (2009).

[17] S. Song, P. J. Sjstrm, M. Reigl, S. Nelson, and D. B.
Chklovskii, PLoS Biology 3, e68 (2005).

[18] D. Miner and J. Triesch, PLoS computational biology 12,
e1002581 (2016).

[19] Vinayak and A. Pandey,
Phys. Rev. E 81, 036202 (2010).

[20] P. Shukla, Physical Review E 71, 026226 (2005).
[21] A. Khorunzhii, Mathematicheskaya fizika, analiz, ge-

ometriya 3, 80 (1996).
[22] Z. Burda, J. Jurkiewicz, and B. Wac law, Physical Re-

view E 71, 026111 (2005).
[23] H. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein,

Physical review letters 60, 1895 (1988).
[24] T. Rogers, S. Allesina, and J. Grilli, Nature Communi-

cations 7 (2016).
[25] This relation follows from the solution ∂̄∂ log z =

πδ(x)δ(y) of Poisson’s equation in two dimensions. See
also [27].

[26] J. Ginibre, Journal of Mathematical Physics 6, 440
(1965).

[27] J. Feinberg and A. Zee, Nuclear Physics B 504, 579
(1997).
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