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Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool
for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many
cases not straightforward to analyse what is the actual defect structure underlying the RBS/C
signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures,
we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom
coordinates (obtained, e.g. from molecular dynamics simulations). We apply the developed method
to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,
Frenkel point defects and extended defects, respectively. The RBS/C simulations show that even
for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects.
Comparison with experimental result shows that the disorder profile obtained from RBS/C signals
in ion-irradiated Ni is due to a small fraction of extended defects, rather than a large number of
individual random atoms.

I. INTRODUCTION

As a conventional Ion Beam Analysis (IBA) method,
Rutherford Backscattering Spectrometry (RBS) has been
widely used to investigate the structure and composition
of materials by measuring backscattering yields and en-
ergy spectra of swift light ions (typically alpha ions) from
a sample of interest. If the probe ions are impinging
on the surface in a channeling condition, the method is
known as RBS/C (or RBS/channeling). In the RBS/C
technique, backscattering yields increase due to imperfec-
tions in crystals. These yields are then used to analyse
the fraction of defective atoms in crystals. The technique
has been widely used to characterise the damage of crys-
talline materials produced by e.g. ion irradiation[1–3].

Quantitative analysis of RBS/C signals, however, is
fairly confounded as extended defects formed due to
point defect agglomeration may affect the signal of back-
scattered ions. The extent of this uncertainty can be
estimated via a direct simulation of RBS/C spectra from
structures obtained by atomistic simulation of the irra-
diation process under conditions of interest.

In the past decades, several methods were developed to
simulate or calculate the RBS/C spectra from a crystal
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containing defects. Among these methods, the two-beam
methods[4–6], a name used for all methods that distin-
guished the probe beam as channeling and dechanneling
fractions, were commonly used in the analysis of RBS/C
results. In these methods, the back-scattered ions from
the interaction of channeling ions with defect atoms and
those from the interaction of dechanneled ions with atoms
are calculated separately. A typical implementation of
these methods is the iterative procedure [5, 7–9] where
three spectra are required: a RBS/C spectrum from a
sample that is to be analysed, a spectrum from a pris-
tine sample (perfect crystal), and a non-channeling RBS
spectrum. The dechanneling component, assumed to be
zero, starts from a channel on the pristine spectrum ei-
ther right after the surface peak (when the damage is
close to the surface) or near the beginning of the dam-
aged region, and may stop at a channel beyond the dam-
age region where the dechanneling component overlaps
with the RBS/C spectrum. The iterative procedure suc-
cessively moves in depth to the next channel to deter-
mine the dechanneling contribution and to identify the
displaced atoms at that depth. This method can be used
to extract a depth profile of disorder in the damaged
crystal sample. The disorder here, in general, refers to all
types of imperfections in crystals, including point defects,
extended defects, distortions, amporphization, etc. An-
other widely used method is based on a Monte Carlo ap-
proach [10–14]. The first successful Monte Carlo simula-



2

tion of the RBS/C spectra from crystals was developed by
Barrett [10] in 1971. After this pioneering work, several
Monte Carlo codes for RBS/C simulations were devel-
oped by different groups. One of them, the code FLUX,
[11] combines the binary collision and the multi-string ap-
proximations and can be used to simulate backscattering
yields of probe ions passing through the crystals. This
code is usually only used for pristine crystals. The Monte
Carlo Channeling SYmulation (McChasy) code [12] de-
veloped by Lech Nowicki et al. uses the binary colli-
sion model and nuclear encounter probability approach
to simulate the RBS/C spectra from crystals contain-
ing defects. It has been successfully used to analyse
the fraction of displaced atoms in mono-elemental, multi-
elemental and multi-layered crystals [15]. Moreover, the
randomly displaced atoms (RDAs) and long-range ex-
tended defects, such as dislocations, can be distinguished
in McChasy [16]. However, the McChasy lacks the ability
to analyse structural defects, such as distortion around
defects and the corresponding strain fields, i.e. the real
atomic structure around a defect cluster. Another Monte
Carlo code BISIC [13, 14] is developed based on the bi-
nary collision approximation (BCA) code MARLOWE
[17]. Instead of simply regarding the defect as RDA,
BISIC takes the real atomic structure into account. It
has been used to simulate the RBS/C signals from struc-
tures with point defects taking the distortion caused by
interstitial and vacancies into account [18, 19].

All the methods mentioned above are able to calculate
or simulate the RBS/C spectra from crystals with some
simple defects. Moreover, some methods, like the itera-
tive procedure, McChasy and BISIC, have been very suc-
cessfully used to analyse the fraction of defective atoms
in the damaged crystalline materials. None of the exist-
ing codes, however, is able to simulate the RBS/C signals
from an arbitrary atomic structure. Hence the existing
codes are not able to reveal the effect of extended defects
on RBS/C signals. This indicates a need for a specific
type of the code to deal with complex arbitrary structures
containing different types of defects or heavily damaged
structures. Such a code will improve the interpretation of
the RBS/C results and enhance the usage of this versa-
tile and non-destructive analysis technique. Moreover, it
will provide insights of structural defects for more quan-
titative analysis.

In this paper, we introduce a BCA based code RB-
SADEC (RBS-C of Arbitrary Defected Crystals) to sim-
ulate the RBS spectrum from a crystal structure with ar-
bitrarily assumed defects in it. The read-in atom coordi-
nates for the RBSADEC code can be obtained from sep-
arately performed molecular dynamic (MD) simulations.
In the current work, we use the MD method to create an
arbitrary structure with controllably introduced defects
of different types.

This paper is organised as follows. The experiments
which were used to compare the simulation results are
described in Sec. II. The RBSADEC algorithm and how
the read-in atom structures were created by using the

MD method are presented in Sec. III. In Sec. IV the
simulation results as well as the comparison of the sim-
ulation and experimental results are presented and dis-
cussed. Sec. V contains the summary.

II. EXPERIMENTS

Experiments on ion-radiation were carried out at room
temperature in pure a Ni sample which is irradiated by
1.5 MeV Mn+ to a fluence of 6.4 × 1013 cm-2. After ir-
radiation, the sample was analysed using the standard
RBS/C technique to determine the irradiation damage.
The experiment was performed in the ion beam materials
laboratory (IBML), [20] University of Tennessee. The
analysing beam (α-ions) impinged along the 〈100〉 crys-
talline axis into the samples and the energy of the beam is
3.5 MeV. An energy-resolved silicon detector was placed
in the backscattering angle of 155 degree with the im-
pinging direction to measure the energy spectra of the
back-scattered ions.

III. SIMULATION METHODS

A. Approach to simulate RBS/C spectrum from
read-in atom coordinates

The BCA technique is a method to simulate the pro-
cess of ion irradiation of materials. In this method,
the ions impinging on the surface, scatter by subsequent
individual ion-atom collision events (“nuclear stopping
power”), and slow down mainly due to inelastic interac-
tions with target electrons (“electronic stopping power”).
Between two successive collisions, the movement of ions
is usually regarded to occur along a straight path. The
BCA method has been proven to describe successfully ir-
radiation of either crystalline or amorphous materials, by
energetic ions with relatively high energies (>∼ several
keV/amu).

In the present work, the conventional BCA method was
applied to simulate the three-dimensional paths of ener-
getic ions inside of a material. Unlike the existing BCA
codes, where the material structure is either assumed
amorphous [21–23] or simulated by using a translational
symmetry of crystals [17, 24], our code RBSADEC reads
in three-dimensional atom coordinates of an arbitrary
structure in a standard XYZ file format widely used in
computational chemistry. The arbitrary structures can
be produced by, e.g. MD simulations and confirmed ex-
perimentally by micro-structure analysis [25–27]. Hence,
the structures can contain different types of defects nat-
urally distributed in the structure.

Fig. 1 illustrates the implemented simulation method.
Here, the positions of atoms (full circles) are read-in from
the input file. The atoms displaced from their lattice po-
sitions represent the defects as described by atom coor-
dinates from a read-in file. The solid lines show a path
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of an incident ion (the open circle). In principle, the
RBS/C spectrum can be directly obtained by collecting
the back-scattered probe ions at the detector placed at
a certain angle with respect to the surface of the investi-
gated sample.

The very low Rutherford backscattering cross sections
introduce additional ambiguity in analysis of the spec-
tra of back-scattered ions due to poor statistics. To deal
with this problem, we use a so-called encounter probabil-
ity [10] (see Sec. III A 4), which is the normalised prob-
ability of an incident ion to be back-scattered in every
ion-atom collision. This probability is used to generate
a virtual (weighted) back-scattered ion. A virtual ions
represent distribution of the Rutherford backscattering
probabilities of the probe ion on an encountered target
atom. It is necessary to take into account the distribu-
tion of the probabilities instead of a single value, since
the target atom is not still, but moving around its equi-
librium position due to thermal vibrations. We consider
this backscattering probability as a weighted object – an
ion – with all the corresponding properties of an incident
ion, but its contribution to the final back scattering yield
is weighted according to the Rutherford back scattering
probability at the current place. This virtual ion does not
interact with the real ion in any way and only used to
account for the probability of Rutherford back-scattering
on an colliding target atom. The virtual ion moves along
the back scattered direction, while the real ion continues
its motion (solid line in the figure) in the structure.

The path of the virtual back-scattered ions are indi-
cated by dashed lines in Fig. 1, which are terminated in-
side the material or leaves the surface. Since the virtual
back-scattered ions are not in the channeling regime any-
more, for computational efficiency they are traced back
to the surface according to the amorphous structure BCA
algorithm as in Ref. [22, 28]

After a virtual back-scattered event, those virtual ions
which were emitted from the surface in the direction of
the detector, are collected for the calculation of RBS
spectra. The trajectories of real ions are used to cal-
culate the range of incident ions.

The RBSADEC can simulate the ranges of various
ions in single and multi-elemental samples but not in the
multi-layered samples. Similarly, for RBS/C simulations,
the probe ions can be various light ions (e.g. H+, D+ or
alpha particles), while the samples have to be single lay-
ered. In principle, this code works well in the energy
region where the BCA algorithm is valid (roughly from
100 eV to 1 GeV). But for RBS/C simulations, the ener-
gies of probe ions had better be larger than ∼ 100 keV.

Since RBSADEC utilizes the BCA algorithm, this code
is far more efficient and inexpensive than MD simula-
tions. The code can be easily run on ordinary personal
desktop with dual-core (or more) cpus and 2G(or larger)
memory. The RBS/C simulations usually take from a few
minutes to hours, depending on the system simulated.

In the following we will discuss the algorithm in more
details.
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FIG. 1. The schematic diagram of the RBS/C simulation.
The solid line shows the path of a real ion, while the dashed
lines show the paths of virtual ions used to be speed up the
RBS data collections(see text).

1. How to find an atom for a collision in BCA

The atomic structure that contains defects and is to be
analysed by the RBS/C technique, will be referred as the
“structure” in the text, and an incident ion (α-particle)
as a projectile.

The approach of finding an atom – a partner for colli-
sion (or simply a partner) – that is used in RBSADEC is
shown in Fig. 2. All atoms in the structure that are
located in front of the moving projectile P (the pro-
jections of the vectors connecting P and the atoms on

the projectile direction ~λ0 are positive) are denoted as
Ti(i = 1, 2 . . .). The impact parameters pi(i = 1, 2 . . .)
of all atoms Ti are calculated and compared to the
maximum impact parameter Rmax, which is defined as
Rmax = n−

1
3 , where n is the atomic density of the struc-

ture. The closest atom Ti along ~λ0 with the impact pa-
rameter pi < Rmax is selected to be a partner. For in-
stance, in Fig. 2, the atom T2 is selected to be the partner
since it is the closest atom in the illustrated example with

the impact parameter less than Rmax in the direction ~λ0.
After the collision, a partner is sought along a new

direction ~λ1, resulting from the previous collision. In
the new search, the atom experienced the collision in the
previous step is excluded to avoid multiple collision with
the same atoms. Thus, in the example of Fig. 2, the atom
T2 will be excluded from the list of possible partners along

the direction ~λ1.
To collect statistically significant information for ac-

curate RBS/C analysis of the structure, it is necessary
to simulate rather large structures with big numbers of
atoms. Searching a partner among all the atoms of the
structure becomes computationally inefficient, since it re-
quires computing the impact parameters of every atom.
In RBSADEC, we utilised the same linked-cell algorithm
[29] as implemented in the PARCAS MD code [30]. This
algorithm allows for searching a partner only within the
closest proximity of the current position of the projectile.

In the linked-cell algorithm, the simulation box is first
divided into small cells of a size slightly larger than the
maximum impact parameter Rmax. The cell currently
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FIG. 2. Illustration of how a collision partner is found in
RBSADEC.

hosting the projectile is labeled Cp. The partner is sought
in the cell Cp or in the cells immediately neighbouring
to Cp. Then, a partner is found based on calculation
of impact parameters of the atoms inside the Cp and
surrounding cells (for 3D simulations, totally 27 cells)
instead of in the entire structure. If all the calculated
impact parameters are larger than Rmax, i.e. the partner
is not found, the projectile will move straight a distance
the size of the cell in the original direction, after which
the procedure of finding a collision partner is repeated
again.

2. Basic binary collision approximation

In our RBSADEC code, the scattering event is calcu-
lated according to the BCA algorithm. Scattering an-
gles and the time integral of a binary collision for dif-
ferent impact parameters and initial energies are pre-
calculated within the universal Ziegler-Biersack-Littmark
(ZBL) screened inter-atomic potential [31] by using the
Gauss-Mehler quadrature integration method [32]. These
values are tabulated and used at demand to find the
new direction ~λ1 and position of the scattered projec-
tile. More details on the approach realised in the current
algorithm can be found in Ref. [17]

The energy loss for electronic excitation in terms of
electronic stopping power, which is from the Stopping
and Range of Ions in Matter (SRIM) database, [23] is
subtracted between the collisions from the energy of the
moving projectile. In the RBS/C technique, the irradi-
ation of probe ions (α-particle) does not and should not
lead to significant changes of the structures of the stud-
ied samples. Therefore, in our simulation, the motion
of knocked-on atoms are not followed, i.e. the read-in
atomic structure is not updated during the simulation.

3. Comparison of ion range profiles by BCA and MD
approaches

The simulation of the ion path in the material is crucial
for the RBS/C simulation. This is why it is important to

verify the results obtained from the current code against
the results obtained from an MD approach. We com-
pare the ion range distributions in crystals obtained by
the RBSADEC and the MDRANGE [33, 34] codes. In
the latter code, the path of an ion, producing primary
knocked-on atoms only, is followed using the molecular
dynamics algorithm. The MDRANGE code has previ-
ously been tested against a wide range of experimental
data [34–40]. Fig. 3 shows an excellent agreement of the
ion range profiles obtained in crystalline silicon (c-Si) by
both RBSADEC and MDRANGE for 20 keV Si ions with
two incident angles 0◦ (along the channeling direction)
and 10◦ off the 〈001〉 crystallographic direction of the Si
crystal.
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FIG. 3. The depth profiles of 20 keV Si ions in c-Si with
different incident angles simulated by the present RBSADEC
code and the MDRANGE code.

A long “channeling tail” of the Si ion range profiles is
clearly seen for both results for the normal incident angle
of ions (in the channeling condition). With a tilt of the
incident angle (10◦ off the normal ), the “channeling tail”
disappears. Additionally, we simulated the range profiles
of other ion-target combinations, such as He on W, Ni on
c-Si as well as Xe on Au. All comparisons showed good
agreement within the statistical uncertainty.

Since we aim to analyse the structure containing ar-
bitrary defects, we also compare the results of our code
with the TRansport of Ions in Matter (TRIM) [23] ion
range calculations. Hence we created a random structure
with a given atomic density, which can be interpreted as
an amorphous sample. Then the ion ranges simulated in
this structure were compared with the results obtained
by TRIM for the same materials. Thus, Fig. 4 illustrates
the perfect agreement obtained for the He ion depth pro-
files in amorphous silicon simulated by both codes.

In addition, table I listed the ranges of He in silicon
and Ni with different energies. All the results show very
good agreement.
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FIG. 4. The depth profiles of He ions in the amorphous silicon
with different energies simulated by RBSADEC and TRIM.

TABLE I. The ranges of He ions in Si and Ni.

Materials Incident
energy (keV)

Mean ranges (nm)

Present work TRIM

Si 20 202.4± 2.2 204.1± 2.2

100 675.2± 3.9 672.3± 4.1

200 1062.0± 4.4 1050.7± 4.4

500 1975.1± 4.9 1963.0± 4.9

1000 3502.5± 5.5 3505.7± 5.2

Ni 20 75.3± 1.2 77.2± 1.1

100 289.4± 2.7 288.8± 2.6

200 495.0± 3.2 487.8± 3.3

500 961.8± 4.2 969.0± 3.9

1000 1676.9± 4.1 1680.2± 4.3

4. Virtual back-scattered ions

In the current algorithm, we consider the encounter
probability that describes the probability of an ion-atom
collision with a very small impact parameter. In these
collisions, either the ion is reflected or a nuclear reac-
tion occurs. Let us assume that x and y are orthogonal
axes that are perpendicular to the direction of ion mo-
tion. Then, in one collision, the encounter probability Qi

normalised by random collision can be expressed by the
formula:

Qi =
1

2πµ2
a

· exp
( (xi − xa)2 + (yi − ya)2

−2.0µ2
a

)
(1)

where xi,a and yi,a are the coordinates of the ion and
the atom participating in the collision. µa is the 1-
dimensional standard deviation of thermal vibrations
which can be obtained from the Debye theory. [41]

The backscattering yield from one collision Zi can be
obtained by collecting virtual ions, i.e. probabilities that
a projectile will be back scattered and thus have an op-
portunity to reach the detector. If the trajectories of
back-scattered ions are exactly straight lines, this collec-

tion of virtual ions can be expressed by the integration,

Zi =

∫ ∆Ωd

0

Qiσ(θ)dΩ (2)

where ∆Ωd is the solid angle of the detector, θ is the
backscattering angle, and σ is the Rutherford cross sec-
tion. In this RBS/C simulation, Qi is the probability to
generate a virtual back-scattered ion and σ(θ) defines the
weight (ω) of the generated virtual ions. As it is seen in
Eq. 1, the probability Qi may be larger than unity. This
means that more than one virtual ion can be generated
in a single collision.

Based on the Monte Carlo algorithms, the Eq. 2 is
expressed as

Zi =

N1∑
t=1

Qiσ(θt)

N1
∆Ωd (3)

where θt is a back scattered angle (initial directions of
virtual ions) randomly chosen inside of the solid angle
∆Ωd. The total backscattering yield Y is the summation
of the yield from every single collision Zi,

Y =

N2∑

i=1

Zi (4)

where i is the index of collisions and N2 is the number of
collision events simulated. In our simulation N2 is suffi-
ciently large to fulfil the requirement of good statistics,
thus we chose N1 (in Eq. 3) equal to 1, i.e. the initial
directions of virtual ions are randomly chosen inside of
solid angle ∆Ωd in all collision events.

In reality, a virtual ion which has an initial direction
inside (or out) of the solid angle ∆Ωd still might not (or
might) result in a signal on the detector due to the multi-
ple scattering on the way back to the surface. To produce
RBS/C spectra including this multiple scattering effect
in an efficient way, it is very important to optimize the
choice of initial directions of virtual ions. This issue has
been addressed in Ref. [42] where the initial directions of
scattered ions were refined to a solid angle ∆Ωc, which is
larger than that of detector ∆Ωd and encloses up to 95%
of scattered ions. This approach was used later in Ref.
[21]. In the current simulations, we refined the initial di-
rection of virtual ions to the solid angle ∆Ωc = π, which
has an opening angle θc = 120◦ and a symmetric axis
from the place where the collision took place towards the
centre of the detector. This solid angle ∆Ωc is enough to
include almost all of the possible initial directions that
can make virtual ions finally to contribute to an RBS/C
signal due to multiple scattering, since the energies of
probe ions in RBS/C technique are usually of MeV en-
ergy range. In this range the multiple scattering effect
does not change the initial direction dramatically. This
way, we reduce the computational time spent on the tra-
jectories of virtual ions which do eventually not reach the
detector.
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5. Simulation of RBS/C signals

When the virtual back-scattered ion j reaches the de-
tector, the energy Ej , which corresponds to a channel
number Chj and a weight (ωj) of the ions, will be used
to calculate the spectrum. To take the energy straggling
introduced by the detector into account, the energy of
detected ions will spread in a Gaussian shape. The spec-
trum is calculated as follows [21]:

C[i] =
1√

2πσd

N∑

j

ωjexp
( (Chi − Chj)2

−2σ2
d

)
(5)

where C[i] are the counts in channel i, j is the index of
detected ions, N is the total number of detected ions, ωj

is the weight of jth detected ions, and σd is the resolution
of the detector divided by energy interval, Chi is the
channel number i, Chj is the channel number which is
corresponding to the energy of jth detected ions. The
yield of RBS-C can be expressed by the formula:

Y [i] =
C[i]

Nh
∆Ωc (6)

where Y [i] is the yield in channel i, Nh is the number of
the simulated incident ions, and ∆Ωc is the solid angle
of the cone which the emitted direction of back-scattered
ions are confined into.

B. Methods to create defective crystal structures

The MD method is widely used to study macroscopic
and microscopic properties of materials. MD simulations
have proven to be able to predict reasonably well final
atomic structures that are damaged by e.g. ions, photons,
and so on [43, 44]. Hence we chose to employ the MD
method to relax the structure, after some defects were
introduced by removing or adding atoms into this struc-
ture. The relaxed defective structures include a reason-
able description of the lattice distortion (strain) caused
by the defective atoms.

To distinguish the difference between RBS/C signals
generated due to the different defects, three types of
defects, including RDAs, Frenkel point defects and ex-
tended defects, were respectively introduced into the
crystalline Ni structures by different techniques in this
work. The structures containing point defects or ex-
tended defects were relaxed by MD methods to mimic
the distortion around defects, while the one containing
RDAs without relaxation was used to reveal the effect of
the distortion on the RBS/C signals.

In the RBS/C technique, the paths of the probe ions
are almost straight lines along the impact direction due
to the high energy of ions and a small mass. In addi-
tion, the fraction of defective atoms usually vary with the
depth of the sample. To comply with these conditions,
we used a simulation box with a size of 30 × 30 × 3600

lattice units. The long side of the box was chosen along
the [001] crystallographic direction to coincide with the
z coordinate. This direction was also used to analyse the
defective structure of the sample as a function of depth.
Periodic boundary conditions are used in the other two
directions, i.e. x and y.

To create the atomic structure that contains defects,
firstly, we built pristine face-central cubic (FCC) crys-
talline Ni cells with the equilibrium lattice constant
(a = 3.5196 Å). Then, different types of defects were
introduced into the created crystalline cells applying the
corresponding techniques described below. One type of
defects was created at a time.

1. Randomly displaced atoms

In our simulations, RDAs are the defects formed by
randomly displaced lattice atoms without stress relax-
ation of the stress caused by these displacements. Even
though this model of point defect is rather unphysical,
it has been widely used in RBS/C simulations since the
dechanneling of probe ions by this defect can be solved
analytically. [4] The RBS/C yields obtained from such
a structure then are compared to those obtained from
the structure with point defects that was relaxed in MD
simulations.

In this work, to create a RDA, a lattice atom was
randomly selected and displaced. The displacement in
every dimension was randomly chosen from the range
of [−a/2, a/2], where a is the lattice constant. Fig. 5a
demonstrates an atomic structure with 0.3 at% RDAs in
a cube of the size of 30×30×30 lattice units obtained in
this manner. The image shows the defects in the 〈100〉
crystallographic direction (top view).

2. Point defects

Frenkel pair type point defects, i.e. vacancies and in-
terstitials, were created by removing an atom from a
randomly chosen lattice site or adding an extra atom
between the two randomly selected neighbouring lattice
sites in the structure. For interstitials, to avoid the added
atoms being too close with lattice atoms, the interstitials
were added at one of the energetically favourable posi-
tions, i.e. the octahedral interstitial sites.

The number of vacancies (removed atoms) is same as
that of interstitials (added atoms) to ensure the conser-
vation of total number of atoms in the simulation box.
The minimum distance between the point defects was set
to 10 Å to avoid spontaneous annihilation/clustering of
the point defects during the MD relaxation.

The created system containing the vacancies and in-
terstitials was relaxed by the conjugate gradient (CG)
algorithm, implemented in the LAMMPS code [45]. The
embedded atom method (EAM) potential [46] was used
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FIG. 5. The atomic structures with (a) 0.3 at% randomly dis-
placed atoms from 〈001〉 view; (b) 0.3 at% interstitials plus
vacancies from 〈001〉 view, with the inset showing the close
view of 〈100〉 dumbbell; (c) 0.3 at% interstitials forming ex-
trinsic SF from 〈111〉 view; and (d) 0.3 at% vacancies forming
a stacking fault tetrahedron from 〈111〉 view.

in these simulations. The analysis of the number of de-
fects after the relaxation did not indicate any significant
change in the number of defects. The demonstration of
the relaxed atomic structure with point defects in the size
of 30× 30× 30 lattice units from the view of orientation
〈100〉 is given in Fig. 5b. As is shown by the inset in
the figure, the added self-interstitial shared a lattice po-
sition with the original lattice atom and formed a 〈100〉
dumbbell structure after relaxation.

3. Extended defects

(a)

A

B

C

A

B

C

[111]

[112̄]

(b)

A

B
A
C

A

B

C

FIG. 6. Stacking sequence of (a) perfect FCC structure; (b)
extrinsic stacking faults (before relaxation).

Dislocations, stacking faults (SFs) and stacking fault
tetrahedra (SFT) are the extended defects that are most

commonly observed in metals and metal alloys irra-
diated by ions at room temperature. In a previous
study, both experimental result and MD simulations [26]
showed that the self-interstitials created by ion irradi-
ation in Ni tend to agglomerate forming an interstitial
loop, i.e. an extrinsic (or interstitial) type stacking fault
surrounded by Frank partial dislocations with Burgers
vector 1

3 〈111〉. The clusters of vacancies in ion-irradiated
Ni may form a stacking fault tetrahedron via different
formation mechanisms.[47–49] Hence here the extrinsic
SFs and SFT were introduced into the simulation cells
to reveal how the agglomeration of interstitials and the
clustering of vacancies (extended defects) are reflected in
the RBS/C signals.

To create stacking faults, one needs to pay particular
attention to the stacking sequence of the atom structure.
As shown in Fig. 6, the stacking sequence in a perfect
FCC crystal is · · ·ABCABC· · ·, where A, B and C are
the different {111} layers. Extrinsic stacking faults can
be created by adding an extra {111} atom layer in per-
fect crystal. As shown in Fig. 6b, the stacking sequence
after adding an extra layer A became · · ·AB|A|CABC· · ·,
where the symbol | denotes the location of the stacking
faults. The red line in the Fig. 6b guides the eyes to
the added atoms (interstitials) that were created in the
exact middle of the two equivalent {111} layers, i.e. oc-
tahedral interstitial sites of the FCC structure. In the
present work, we added an extra {111} atom layer with
an equilateral triangular shape to the crystalline struc-
tures. Therefore, the extrinsic stacking faults were cre-
ated inside of this triangular area. At the same time,
a partial dislocation loop with Burgers vector of 1

3 〈111〉
was formed, outlining the edge of this extra layer.

For SFT, several formation mechanism have been con-
firmed by various simulations[49–51]. Among these,
the most widely discussed one was proposed by Silcox
and Hirsh,[47] which can be briefly described as follows.
Firstly the cluster of vacancies collapses to form a Frank
partial dislocation loop. The formed Frank dislocation
loops then dissociate into stair-rod partial dislocations
and Shockley partial dislocations. Finally, a stacking
fault tetrahedron is formed by the gliding of Shockley
partials towards the apex of the tetrahedron.

To create the SFT in this work, we removed one {111}
atom layer with an equilateral triangular shape to imi-
tate the initial condition of Silcox and Hirsh processes,
i.e. a collapse of a cluster of vacancies. After the atoms
were removed, Frank partials formed at the edge of this
removed equilateral triangle. Here we only created the
initial condition for Silcox and Hirsh processes. The for-
mation of a complete stacking fault tetrahedron came out
of the relaxation procedure.

Finally, the structures created by removing or adding
atoms were relaxed by the same procedure as for the
structure with Frenkel pair defects. During the relax-
ation, the SFT were formed according to the Silcox and
Hirsh processes. The extrinsic stacking faults with rea-
sonable distortion and the partial dislocations surround-
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ing these extrinsic stacking fault atoms were created af-
ter relaxation. Fig. 5 shows the 〈111〉 view of the atomic
structure with extrinsic stacking faults in a region with
size of 30 × 30 × 30 lattice units. The cyan line in the
figure is the Frank partial dislocation loop surrounding
the extrinsic stacking faults. The dislocation analysis
shown in this figure was performed by the atomic struc-
ture visualisation software OVITO. [52] Fig. 5d is also the
〈111〉 view of atomic structure of a stacking fault tetrahe-
dron, the violet lines show the stair-rod dislocations that
formed the stacking fault tetrahedron. In the remainder
of this paper, the extended defects refer to the structure
containing both extrinsic SFs and SFT.

IV. RESULTS AND DISCUSSION

A. Simulated RBS/C spectra

To reveal the sensitivity of RBS/C signals to different
defects, atom structures with the same depth profiles but
different types of defects were created. The depth profiles
of defects were chosen in the form,

nD(z) =





0 z < 900

0.24 at% 900 < z < 1800

0 z > 1800

(7)

where the depth z is written in the lattice units. For con-
venience, in the following, the region with depth z < 900
will be referred to as the surface region, 900 < z < 1800
as the middle region and z > 1800 as the deep bulk re-
gion. The number of RDA defects was counted by the
number of displaced atoms, while the interstitials (vacan-
cies) meant added (removed) atoms. For the extended
defects, the concentration of defects in the present work
was also counted by the number of the interstitials that
formed extrinsic stacking faults, or the vacancies that
formed the SFT.

After creating the atom structures with RDAs, point
defects or extended defects, we used the RBSADEC code
to simulate the RBS/C spectra from these structures. All
the parameters used in the RBS/C simulations, e.g. the
energy of probe ions, geometry of experimental setup and
so on, are same as in the experiment (see sec. II). To
provide the reference level, the RBS/C spectra from a
pristine crystal and a random structure were simulated
as well. For all the simulations, the incident angle of the
probe ions (He) was allowed to have an uncertainty of 0.1
degree to emulate the effect of various systematic uncer-
tainties in the experiment, e.g. spread of angle and en-
ergy of the probe ions, imperfection in surface of pristine
samples, and so on. The simulated spectra are shown
in Fig. 7. Here, the red, blue, green, violet and black
color lines show the RBS/C spectra of the pristine crys-
talline structure, the structures with RDAs, with point
defects, with extended defects and random (amorphous)
structure, respectively.
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FIG. 7. Simulated RBS/C spectra from the crystal struc-
ture, from the structure with randomly displaced atoms, from
the structure with Frenkel point defects, from the structure
with extended defects, and from an amorphous structure. For
each kind of defects, 0.24 at% defective atoms uniformly dis-
tributed in the middle region which is indicated by the shad-
owed area.

The RBS/C spectra in the energy range of [2400, 2750]
correspond to the structures of the surface regions of the
simulation boxes. Since in all studied structures, the sur-
face regions were left intact (pristine crystals), the energy
spectra are almost identical to the spectrum of a crystal
in this energy range.

The energy range of [2000, 2400] corresponds to the
depth of the defective structures in the middle region
(shadowed area in Fig. 7). In this region, the RBS/C
yields from the structure with extended defects are sig-
nificantly larger than either those from the structure with
point defects or those from structure with RDAs, which
indicates the RBS/C signal is much more sensitive to ex-
tended defects than to point defects or RDAs. Both the
structure with extended defects and the structure with
point defects were relaxed by MD procedures. The main
difference between the two structures is that a strong
strain field exists in the structure with extended defects,
but not in that with point defects. Therefore, this strain
field induced by extended defects might be the cause of
the significant difference in RBS yields obtained from the
two structures.

The middle region contains different structural defects
and the RBS/C spectra from this region are expected
to show a different behaviour with the crystals for each
structure. However, we see that the spectrum from the
structure with point defects and the structure with RDAs
did not show a distinct difference with that of the crys-
talline one. The reason is that 0.24 at% of point de-
fects or RDAs in the middle region is not sufficient to
be detected by the RBS/C measurements. We increase
the concentration of defects to 0.5 at% for point defects
and RDAs. The RBS/C simulations from these two ad-
ditional structures were performed, and the results are
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FIG. 8. Simulated RBS/C spectra from the crystal, the struc-
ture with randomly displaced atoms and the structure with
point defects. The signal is for 0.5 at% RDAs or point defects
uniformly distributed in middle region.

shown in Fig. 8. Here we can clearly see that the RBS/C
yields from structures containing defects differ from the
pristine crystals and these defects become detectable.

With the same fraction of defects, the RBS/C yields
from the structure with RDAs in fig. 8 are obviously lower
than those from the structure with point defects. This re-
sult clearly shows that the defect model of RDAs, which
is commonly used in RBS/C simulations, will overesti-
mate the fraction of defective atoms, since the lattice
distortion induced by the defective atoms is not taken
into account. This conclusion is consistent with the one
previously obtained from the the RBS/C simulation in
silicon. [19]

B. Dechanneling of probe ions

As is assumed in the standard analysis of RBS/C spec-
tra (two-beam model), the RBS/C yields are formed due
to the interactions of channeling ions with displaced (de-
fective) atoms and the interactions of dechanneled ions
with the rest of the material atoms. The RBS/C yields
χD(z) which are normalised by the yields from the amor-
phous structure can be expressed as [4]

χD(z) = χR(z) + [1− χR(z)]fnD(z)/n (8)

where χR(z) is the fraction of the dechanneled ions,
nD(z) is the concentration of the defective atoms, n is
the crystal atomic density and f is the defect scattering
factor. The first term on the right-hand side χR(z) de-
scribes the interactions of dechanneled ions with material
atoms, and the second term describes the interactions of
channeling ions with defective atoms.

The structures in the surface and deep bulk region
are perfectly crystalline according to the depth profiles
of defects expressed by Eq. 7, i.e. nD(z) = 0. Then
we will have χR(z) = χD(z), if we use nD(z) = 0 in
Eq. 8. This means the fraction of dechanneled ions in

the surface or deep bulk region can be denoted by the
normalised RBS/C yield. From Fig. 7, the fraction of
dechanneled ions after getting through the middle region
with extended defects is much larger than that after get-
ting through region with point defects. This indicates
that, with same amount of defective atoms, extended de-
fects would lead to more probe ion dechanneling than
either point defects or RDAs.

To study the dechanneling of probe ions, the concentra-
tion of defects RDAs in middle region (900 < z < 1800)
was increased to 20 at%. With this concentration, the
RBS/C signals showed a distinct difference to that from
the perfect crystal, as shown in fig. 9a.

The fraction of dechanneled ions χR(z) while passing
through the materials, can be written as [7]

χR(z) = χv(z)+[1−χv(z)]
[
1−exp

(
−
∫ z

0

σDnD(z′) dz′
)]

(9)
where χv(z) is the RBS yield from the pristine crystals
normalised by the yield from amorphous structure, and
σD is the dechanneling cross section (or dechanneling
factor) for a given defect. This equation was used to
fit the fraction of ions dechanneling in the surface and
deep bulk region. The fraction of dechanneled ions in
the middle region can be deduced by fitting the fractions
of dechanneled ions in the surface and deep in the bulk.
The deduced fraction of dechanneled ions χR(z) passing
through the structures with RDAs and extended defects
were shown by the black lines in Fig. 9a and 9b, respec-
tively.

Knowing the fraction of the dechanneled ions χR(z),
the RBS yield contributed by the interaction of chan-
neling ions with defects (direct scattering) and by the
interaction of dechanneled ions with atoms can be dis-
tinguished according to the Eq. 8. As shown in Fig. 9a
and Fig. 9b, the yellow area denotes the RBS/C yields
collected due to the increase of dechanneled ions, while
the green area is the yield from direct backscattering from
defective atoms. Comparison of the proportions of green
(or yellow) areas in two figures allows us to determine the
preferred mechanism of defects contributing in the final
RBS/C spectra. For instance, in the spectra obtained
from the structure with RDAs (Fig. 9a), the signals ob-
tained from direct backscattering on RDAs were com-
parable with that obtained from the dechanneled ions,
i.e. both of those two mechanisms are of roughly equal
significance.

However, the analysis of the spectra from the structure
with extended defects (Fig. 9b), indicates that the contri-
bution of direct scattering is insignificant, which means
that the extended defects affect the RBS/C yield rather
by increasing the fraction of the dechanneled ions. This
conclusion is consistent with the previous study, in which
the contribution of directing backscattering was approx-
imately ignored in the analysis of RBS/C spectra from
ion-implanted Al samples where extended defects were
predominant [53].
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FIG. 9. (a). the RBS/C spectra (red line) from the structure
with 20 at% randomly displaced atoms. (b) RBS/C spec-
tra (red line) from the structure with 0.24 at% extended de-
fects. In both of (a) and (b), the RBS/C yield (Y axis) was
normalised by the non-channeling RBS yields; χR(z) (black
line) denotes the fraction of dechanneled ions; blue line is the
RBS/C signals from perfect crystalline structure.

C. Comparison with experiments

The experimentally obtained RBS/C spectrum from
the Ni sample irradiated by 1.5 MeV Mn+ ions with the
fluence of Φ = 6.4 × 1013 cm-2 is shown as green sym-
bols in Fig. 10a. The black and the cyan symbols here
demonstrate the RBS/C spectrum obtained experimen-
tally from the random and the pristine crystal samples,
respectively. The purple and orange lines are the simu-
lated spectrum from random (amorphous) and crystalline
structures, respectively.

To fit the experimental results, we created structures
containing either RDAs or extended defects. We use the
defect model of RDAs instead of Frenkel point defects
here, since: (i) RDAs have been widely used as the model
defects for RBS/C simulations; (ii) it is impossible to
create the large fraction of non-interacting Frenkel point
defects.

The experimental RBS/C spectrum from the irradi-
ated sample was fitted by adjusting the depth profiles
of the defects. The resulting fitted RBS/C spectrum
from the structure with RDAs is shown in Fig. 10a by

a blue line, while the fitted spectrum from the struc-
ture containing extended defects is shown by a red line.
Both of these spectra show a very good agreement with
the experimental results, except in the first few tens of
nanometers region. The small discrepancy between the
experimental and simulated RBS/C signals in this region
can be attributed to the complex of surface structures in
the experimental samples, e.g. relaxation/reconstruction
of surface structures, maybe existence of impurities and
other complex factors.

The blue dashed line in Fig. 10b demonstrates the
depth profile of the RDAs corresponding to the fitted
RBS/C spectra, while red solid line is the profile of the
densities of extended defects multiplied by 50. Here, the
densities of these two kinds of defects are shown in terms
of fraction of defect atoms (left y axis), i.e. the ratio of
defect atoms to total number of atoms in simulations.
For extended defects, the defect atoms were counted by
the number of added atoms (interstitials) forming the ex-
trinsic SFs and removed atoms (vacancies) forming the
SFT. The green dashed line in Fig. 10b denotes the depth
profiles of the disorder (right y axis) extracted by the it-
erative procedure [5] method. Here the disorder, includ-
ing all kinds of imperfection in crystals, is a comprehen-
sive quantity that measures the damage in the irradiated
sample.

In the irradiated sample used in current work, the dis-
placement per atom (dpa) in the region of the maximum
of deposited energy in nuclear collision is about 0.076 ac-
cording to the NRT equation [54]. Usually, the dpa value
is an overestimation of the amount of defects generated
by ion irradiation in metals [55]. Experiments and MD
simulations of collision cascades have shown that most
of the displaced atoms in the initial collision stage will
recover to lattice position and only a few defects will re-
main finally. [56–59] The concentration of RDAs needed
to fit the experimental results is up to 14 at%. This is an
obvious overestimation of defect concentration even com-
pared to the dpa values, although the latter is already an
overestimation itself compared to the number of realis-
tically created defects in the irradiated sample. More-
over, the high-resolution scanning transmission electron
microscopy (STEM) image (Fig. 11a) of Ni after irra-
diation was measured in Ref. [25]. The comparison of
an atom structure containing 10 at% RDAs (Fig. 11b)
and the STEM image (Fig. 11a) of irradiated Ni showed
clearly that the concentration of defects should be far
smaller than 10 at%. Therefore, we concluded that us-
ing the RDAs to imitate the defects in the irradiated Ni
sample would lead to overestimating the concentration of
defects.

The previous collision cascade simulation in Ni showed
that only less than 1 at% defects were observed after
Ni samples were irradiated up to about 0.5 dpa. [60]
Besides, the diffuse X-ray scattering measurement in
Ni irradiated by self-ions to 1 dpa also shows that less
than 1 at% of defects was observed.[61] Furthermore, as
shown in the STEM image (Fig. 11a), most of atoms
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were still in the lattice position and only a small frac-
tion of defective atoms were observed after irradiation.
However, such strong RBS/C signals as those from the
structure with more than 10 at% RDAs were observed
in the experiment, even though both the experiments
and MD simulation showed only a small fraction of dis-
placed atoms. The current RBS/C simulation from the
structure with extended defects reveals the reason for
this phenomenon. The key observation is that a small
fraction (about 0.2 at%) of extended defects leads to a
RBS/C spectrum that is similar to the one generated
by the structure with more than 10 at% RDAs. The
〈110〉 view of a structure with 0.2 at% of extended de-
fects is shown in Fig. 11c. Comparison of this structure
and the STEM image shows the structure with extended
defects is more reasonable than that with RDAs. There-
fore, the agglomeration of defects created by irradiation
which leads to formation of extended defects, enhances
the probability of probe ion dechanneling, which is re-
flected in the RBS/C spectra of ion-irradiated Ni as sig-
nals from a heavily damaged sample, while such heavily
damage is not observed by experiment or collision cas-
cade simulation.

In Fig. 10b, not only the concentrations of defects are
completely different, but also the depth profiles of the
RDAs and the extended defects show a visible discrep-
ancy. As we can see, the damage peak fitted by assuming
RDAs are deeper than that fitted by assuming extended
defects. This discrepancy arises from the different mech-
anisms how the defects affect the RBS/C signals (see Fig.
9). The normalized depth profile of extended defects is
consistent with the depth of the disorder obtained by the
iterative procedure, which is another proof of that the
disorder in irradiated Ni extracted by RBS/C is mainly
from a small fraction of extended defects, rather than the
RDAs.

V. CONCLUSIONS

In conclusion, we developed a BCA code to simulate
the RBS/C spectra from arbitrary atomic structures de-
scribed by a set of atomic coordinates (which can e.g.
be obtained from an independent MD simulation). We
used the MD method to create the atomic structures of
Ni samples with different types of defects, namely, ran-
domly displaced atoms, point defects and extended de-
fects. The comparison and analysis of simulation results
reveal that: (a) the commonly used model of defects in
RBS/C simulations, randomly displaced atoms, leads to
strong overestimation of number of defects in Ni, since
the lattice distortion induced by the defective atoms is
not taken into account; (b) the RBS/C signal is more sen-
sitive to the extended defects than to point defects, and
the strong long-range strain field induced by extended
defects is suggested to explain this difference; (c) instead
of by directly leading to probe ions backscattering, the
extended defect increase the RBS/C yields by increasing
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FIG. 10. (a). The comparison of the experimental (black,
green and cyan markers) and simulated (orange, red blue
and purple lines) RBS/C spectra of Ni samples. The
cyan(orange), black(purple) color show the spectra of pristine
crystal and fully amorphous reference structures obtained by
experiment(simulations). The green markers show the ex-
perimental result for a Ni sample irradiated by Mn+ ions
(E0 = 1.5 MeV, Φ = 6.4× 1013 cm-2). The blue and red lines
are the fitted RBS/C spectra from the structure with RDAs
and the structure with extended defects, respectively. (b).
The depth profile of defects. The blue line is the depth pro-
file (left y axis) of RDAs corresponding to the fitted RBS/C
spectrum in (a), while the red line is the fitted depth pro-
file (left y axis) of extended defects multiplied by 50. The
green dashed line denotes the depth profiles (right y axis) of
disorder extracted by the iterative procedure [5].

the dechanneling probability of channeling probe ions.
Finally, we compared the simulation results with the ex-
periment. Through the comparison, we proved that the
RBS/C signal is more sensitive to the extended defects,
and explained the reason why large RBS/C yields are
obtained in the Ni samples with a relatively low level of
damage visible in STEM.
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