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We propose a conceptually new method for solving nonlinear inverse scattering problems (ISPs)
such as are commonly encountered in tomographic ultrasound imaging, seismology and other appli-
cations. The method is inspired by the theory of nonlocality of physical interactions and utilizes the
relevant formalism. We formulate the ISP as a problem whose goal is to determine an unknown inter-
action potential V from external scattering data. Although we seek a local (diagonally-dominated)
V as the solution to the posed problem, we allow V to be nonlocal at the intermediate stages of
iterations. This allows us to utilize the one-to-one correspondence between V and the T-matrix of
the problem, T . Here it is important to realize that not every T corresponds to a diagonal V and
we, therefore, relax the usual condition of strict diagonality (locality) of V . An iterative algorithm
is proposed in which we seek T that is (i) compatible with the measured scattering data and (ii)
corresponds to an interaction potential V that is as diagonally-dominated as possible. We refer to
this algorithm as to the data-compatible T-matrix completion (DCTMC). This paper is Part I in a
two-part series and contains theory only. Numerical examples of image reconstruction in a strongly
nonlinear regime are given in Part II. The method described in this paper is particularly well suited
for very large data sets that become increasingly available with the use of modern measurement
techniques and instrumentation.

I. INTRODUCTION

Inverse scattering problems (ISPs) are encountered in
optical diffusion tomography [1, 2], diffraction tomog-
raphy [3, 4], electrical impedance tomography [5–7], in
near-field [8–10] and far-field [11–13] tomographic elec-
tromagnetic imaging, in seismic tomography [14, 15],
and in many other physical and engineering applications.
Solving nonlinear ISPs is a difficult computational task,
especially in three dimensions. This is even more true for
problems involving large data sets that are available with
the use of modern experimental techniques. Developing
efficient algorithms for solving nonlinear ISPs remains a
fundamental problem of computational physics and an
important challenge.
Nonlinear ISPs are amply reviewed in the litera-

ture [16–20]. The mainstream approach to solving these
problems numerically is Newton’s method and its vari-
ants such as Levenberg-Marquardt method, iteratively
regularized Gauss-Newton method, Newton-Kantorovich
method and steepest descent (Landweber iteration).
These methods (except for Newton-Kantorovich) are suc-
cinctly explained in [21]. Newton-Kantorovich iterations
are closely related [22] to the method of inverse Born
series [7, 23, 24]. A different class of non-deterministic
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inversion approaches that make use of some form of prior
knowledge about the medium is based on Bayesian infer-
ence [25]. The common feature of all these approaches
(except for the inverse Born series) is that a certain cost
function is minimized and updated iteratively and that
this cost function depends on all available measurements
(data points). In the case of inverse Born series, the solu-
tion is obtained as an analytically-computable functional
of the data.
The method proposed in this paper is conceptually dif-

ferent from the methods reviewed above and is based on
a digression into a seemingly unrelated field of physics,
namely, into the theory of nonlocality. This theory ac-
counts for the fact that certain physical processes occur-
ring at the point r in space can be influenced by the
field in some finite vicinity of that point. For exam-
ple, in local electrodynamics, Ohm’s law is written as
J(r) = σ(r)E(r). In a nonlocal theory, this linear relation
is generalized by writing J(r) =

∫

V (r, r′)E(r′)d3r′. Of
course, we expect on physical grounds that V (r, r′) → 0
when |r−r′| > ℓ, where ℓ is the characteristic scale of non-
locality (the radius of influence), which is usually much
smaller than the overall size of the sample. If the electric
field E(r) does not change noticeably on the scale of ℓ,
we can define the local conductivity as

σ(r) =

∫

V (r, r′)d3r′ (1)

and use Ohm’s law in its local form. This is all well
known in physics. However, implications of nonlocality
for nonlinear ISPs have not been considered so far.
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Let us assume that we want to find σ(r) from the mea-
surements of voltage drop for a direct current injected
into the sample by two point-like electrodes attached
to its surface at various points (Calderon problem). It
turns out that it is much easier to find a nonlocal ker-
nel V (r, r′) that is consistent with the measurements.
Of course, V (r, r′) can not be determined uniquely from
a typical data set because the number of unknown pa-
rameters (degrees of freedom) in V (r, r′) is usually much
larger than the number of measurements. However, as
explained above, we also expect that V (r, r′) should be
approximately diagonal. We then proceed as follows:

(1) First, we define a class of kernels V (r, r′) that are
compatible with the data. This is the only instance
when the data are used, and it turns out that the
size of the data set is not a limiting factor for this
step.

(2) Then we iteratively reduce the off-diagonal norm
of V (r, r′) while making sure that V (r, r′) remains
within the class of “data-compatible” kernels.

(3) Once the ratio of the off-diagonal and diagonal
norms of V (r, r′) is deemed sufficiently small, we
compute σ(r) =

∫

V (r, r′)d3r′. This gives an ap-
proximate numerical solution to the nonlinear ISP.

The above algorithm can be generalized to other ISPs.
We refer to it as to Data-Compatible T-matrix Comple-
tion (DCTMC) method.
The role of the T-matrix in solving nonlinear ISPs has

been recognized previously [14, 15, 26, 27]. The key new
insight used in DCTMC is to relax the requirement that
V be strictly diagonal. This allows one to establish a
one-to-one correspondence between T and V . The first
advantage of using this approach is that the T-matrix
is source- and detector-independent. For example, finite-
difference and finite elements forward solvers must be run
anew for each source used. The T-matrix approach is free
from this requirement. The price of this simplification is
that the transformations between T and V involve in-
version of dense matrices. However, the computational
complexity associated with T to V and V to T operations
can be reduced, for example, by exploiting the sparsity
of V . Second, the T-matrix-based approach results in a
useful data reduction, which is applicable to both linear
and nonlinear image reconstruction regimes. Finally, the
method does not utilize a cost function in the traditional
sense and therefore it is not affected by the problem of
local minima of the cost function (false solutions).
We underscore that physical interactions are never

truly local and some small degree of nonlocality exists in
all physical systems. However, the radius of influence ℓ is
typically so small (e.g., equal to the atomic scale) that the
nonlocality can be safely ignored for most practical pur-
poses. In our approach, we relax this condition and allow
V to be off-diagonal on much larger scales. Of course, we
will seek to find V that is as diagonal as possible. How-
ever, we do not expect to eliminate all off-diagonal terms

that are separated by more than one atomic scale, not
to mention that such fine discretization of the medium is
practically impossible. Thus, the non-locality of V that
is utilized in DCTMC is not an intrinsic physical prop-
erty of the material but rather a physically-inspired trick
that is used to facilitate the solution of nonlinear ISPs. In
other words, we simplify the solution process by relaxing
the underlying physical model.
This paper is Part I of a two-part series wherein we fo-

cus our attention on theory. Numerical examples for the
nonlinear inverse diffraction problem are given in Part
II [28]. The remainder of this paper is organized as fol-
lows. In Sec. II we state the general algebraic formu-
lation of the nonlinear ISP that is applicable to many
different physical scenarios. In Sec. III, we introduce
the data-compatible T-matrix, which is a central idea
of the proposed method. In Sec. IV, we define the ba-
sic iterative algorithm of DCTMC. In Sec. V, we intro-
duce ”computational shortcuts”, which combine analyti-
cally several steps of the DCTMC algorithm into a single
step with a reduced computational complexity. DCTMC
algorithm in the linear regime is discussed in Sec. VI.
Here we also discuss convergence and regularization of
the method. Sec. VII contains a brief discussion. Aux-
iliary information is given in several appendices. Sum-
mary of linearizing approximations (first Born, first Ry-
tov and mean-field) is given in Appendix A. Appendix B
contains a derivation that establishes the correspondence
between DCTMC and the conventional methods in the
linear regime. Finally, definitions and properties of sev-
eral functionals used in this paper are summarized in
Appendix C.

II. GENERAL FORMULATION OF THE ISP

Consider a linear operator L and the equation

L u(r) = q(r) , (2)

where u(r) is a physical field and q(r) is the source term.
Note that (2) does not contain time but can depend para-
metrically on frequency. It can be said that we work
in the frequency domain. Moreover, we consider only a
single fixed frequency. Using different working frequen-
cies as additional degrees of freedom for solving an ISP
can be very useful (especially if the contrast is approx-
imately frequency-independent, as is often the case in
seismic imaging) but is outside of the scope of this pa-
per.
Let L = L0−V , where L0 is known and V is the un-

known interaction operator that we seek to reconstruct.
As discussed above, we assume at the outset that V is an
integral operator with the kernel V (r, r′) but, eventually,
the computed image will be obtained as a function of r
only. We also assume that V (r, r′) 6= 0 only if r, r′ ∈ Ω,
where Ω is a spatial region occupied by the sample. Our
goal is to recover V from the measurements of u per-
formed outside of the sample, assuming that it is illumi-
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nated by various external sources. We can not perform
measurements or insert sources inside the sample, which
would have greatly simplified the ISP solution if it was
physically possible.
The inverse of L is the complete Green’s function of

the system, denoted by G = L −1. The formal solution
to (2) is then u = Gq. We know that G exists as long as
the forward problem has a solution. This is usually the
case if V is physically admissible. Likewise, the inverse
of L0 is the unperturbed Green’s function, denoted by
G0 = L

−1
0 . The field uinc = G0q is the incident field,

in other words, it is the field that would have existed
everywhere in space in the case V = 0. Nonzero V gives
rise to a scattered field uscatt, and the total field is a sum
of the incident and scattered components, u = uinc +
uscatt. A straightforward algebraic manipulation yields
the following result:

uscatt = (G−G0)q = G0(I − V G0)
−1V G0q , (3)

where I is the identity operator.
A single data point Φ(rd, rs) is obtained by illuminat-

ing the medium with a localized source of unit strength,
q(r) = δ(r − rs), and measuring the scattered field by a
detector at the location rd [29]. By scanning rd and rs
on the measurement surfaces Σd and Σs outside of the
sample, we measure a function of two variables Φ(rd, rd),
which is coupled to V (r, r′) by the equation

G0(I − V G0)
−1V G0 = Φ . (4)

All product and inversion operations in (4) should be un-
derstood in the operator sense. The ISP can now be for-
mulated as follows: Given a measured function Φ(rd, rs),
where rd ∈ Σd and rs ∈ Σs, find an “approximately diag-
onal” kernel V (r, r′), where r, r′ ∈ Ω. We do not need to
define “approximate diagonality” precisely at this point,
but in the case of matrices that are inevitably used in
all computations, this requirement implies a sufficiently
small ratio of the off-diagonal and diagonal norms.
It is important to note that G0 in (4) is the same oper-

ator in all instances where it appears, but for the purpose
of computing the operator products and inverses, its ker-
nel G0(r, r

′) is differently restricted. This is illustrated
graphically in Fig. 1. Thus, for the first term G0 in the
left-hand side of (4), r = rd ∈ Σd and r′ = r′1 ∈ Ω.
For the second term (inside the brackets) r = r1 ∈ Ω
and r′ = r2 ∈ Ω. For the last term, r = r′2 ∈ Ω and
r′ = rs ∈ Σs. We emphasize that the imaging geometry
shown in Fig. 1 is representative but not very general. In
particular, the measurement surfaces Σd and Σs can be
larger or smaller than the face of the cube, or curve, or
even be regions of space of finite volume rather than sur-
faces [30]. The sample volume Ω does not have to be cu-
bic and, in an extreme case, it can be a two-dimensional
surface. All this has no bearing on the method of this
paper. The only requirement that we impose, which is
physical rather than mathematical, is that Σd and Σs do
not overlap with Ω. However, Σd can overlap with Σs.

Further, in all practical implementations, the data
are sampled rather than measured continuously and the
medium is voxelized. An example of such discretization is
given in [28]. At this point we proceed under the assump-
tion that (4) can be suitably discretized and converted
to a matrix equation. In this case, it is logical to use
different notations for the matrices that are obtained by
different restriction and sampling of the kernel G0(r, r

′).
Indeed, the matrices obtained in this manner are differ-
ent and can even be of different size. We will denote the
matrices obtained by sampling the first, the second, and
the last terms G0 in (4) by A, Γ and B, respectively.
These notations are also illustrated in Fig. 1. Then the
discretized version of (4) takes the following form:

A(I − V Γ )−1V B = Φ . (5)

In (5), A, B and Γ are known theoretically, Φ is mea-
sured, and we seek to find the unknown V .
Eq. (5) is the main nonlinear equation that is dis-

cussed in this paper. It is, in fact, very general and
encompasses many different problems of imaging and
tomography. The underlying physical model is encoded
in the operator G0 and in the matrices A, B and Γ that
are obtained by sampling this operator. The following
three important remarks about this equation can be
made:

Remark 1: Noninvertibility of A and B. If
matrices A and B were invertible in the ordinary sense,
the nonlinear ISP would be solvable exactly by three
operations of matrix inversion. Unfortunately, A and B
are almost never invertible. To construct A and B of suf-
ficiently high rank, one needs to perform measurements
inside the medium. As was noted above, this is usually
impossible. The typical sizes of all matrices involved
will be discussed below (see Fig. 2 and its discussion).

Remark 2: Linearization. One may seek a lin-
earization of the ISP by approximating the left-hand side
in (5) with various expressions that allow an analytical
linearizing transformation. The three main approaches
to achieve this end are first Born, first Rytov and mean-
field approximations, and they are briefly summarized
in Appendix A. In the mathematical formulation of the
ISP, the three approximations differ only by the trans-
formation that is applied to the data matrix Φ, while the
general form of the linearized equation is in all cases

AV B = Ψ [Φ] , (6)

where Ψ [Φ] is the appropriate transformation of the data
matrix; in the simplest case of first Born approximation,
Ψ [Φ] = Φ.

Remark 3: Matrix unrolling for the linearized
problem. The linearization approaches described in Ap-
pendix A do not require or enforce by design the diag-
onality of V . However, in the conventional treatments
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FIG. 1. (color online) Illustration of the imaging geometry. The symbols A, B, Γ and V in the rectangular frames denote the
matrices obtained by restricting and sampling the kernels G0(r, r

′) and V (r, r′). The scattering diagram corresponds to the
second order term G0V G0V G0 in the formal power-series expansion of the left-hand side in (4). Note that in the local limit
V (r, r′) = D(r)δ(r− r′), the two arrows contract to two vertexes at r1 = r′1 and r2 = r′2.

of the problem, it is typical to assume that V is strictly
diagonal and to operate with the vector |υ〉 composed of
the diagonal elements of V . Accordingly, the matrix Ψ is
unrolled into a vector |ψ〉 by the matrix operation known
as vec, that is, by stacking the columns of Ψ into one
column-vector. The resultant equation has the form

K|υ〉 = |ψ〉 , (7)

whereK is a matrix obtained by multiplying the elements
of A and B according to the rule K(mn),j = AmjBjn and
(mn) is a composite index. The important point here is
that the conventional methods often treat K in (7) as a
matrix of the most general form. In contrast, DCTMC
algorithm takes account of the special algebraic structure
of K and, therefore, can be used advantageously even in
the linear regime. This is discussed in more detail in
Appendix B.

III. T-MATRIX AND ITS REPRESENTATIONS;
“EXPERIMENTAL” T-MATRIX

The basic definition of the T-matrix (which is, actu-
ally, an operator) is through the relation between the

complete and the unperturbed Green’s functions: G =
G0 + G0TG0. By direct comparison with (3) we find
that

T = (I − V G0)
−1V . (8)

We will not use different notations for the operator T and
its discretized version, which is truly a matrix. Conse-
quently, Eq. (5) can be rewritten as

ATB = Φ , (9)

where

T = T [V ] ≡ (I − V Γ )−1V = V (I − ΓV )−1 . (10)

Here we have defined the nonlinear functional T [·], which
contains Γ as a parameter.
We can view (10) as a matrix formulation of the for-

ward problem. If V is known, we can use (10) to com-
pute T , and once this is accomplished, we can predict
the result of a measurement by any detector due to any
source by matrix multiplication according to (9). There-
fore, computation of T yields the most general solution
to the forward problem. The forward solution is usually
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FIG. 2. (color online) Block diagram of Eq. (9) with sizes of
all matrices indicated. Here Nd and Ns are the numbers of
detectors and sources and Nv is the number of voxels.

known to exist if V is physically admissible. In the iter-
ative process of DCTMC, we can ensure physical admis-
sibility of V every time before the transformation T [V ]
is used. We can view this procedure as a particular type
of regularization by imposition of physical constraints. If
this type of regularization is used, one can be sure that
the matrix inversion involved in computing T [V ] is al-
ways well-defined.
We can also formally invert T and write

V = T −1[T ] ≡ (I + TΓ )−1T = T (I + ΓT )−1 . (11)

Much less is known about the existence of the inverse
in (11). In other words, we do not know the conditions
of physical admissibility of T apart from the general but
not very useful symmetry property Tij = Tji. Certainly,
T −1[T ] does not exist for all arguments T . In DCTMC,
one of the possible approaches is to update V iteratively
by using (11). In this case, existence of the inverse is
required. While we do not possess a general proof, nu-
merical simulations for the inverse diffraction problem
have encountered no singularities in (11). More impor-
tantly, the problem of invertibility of T does not arise
at all if Computational Shortcut 2 is used (see Sec. VB
below).
A block diagram of Eq. (9) with all matrix sizes indi-

cated is shown in Fig. 2. Here Nd and Ns are the num-
bers of detectors and sources used (not necessarily equal)
and Nv is the number of volume voxels. For a practical
estimate of these numbers, refer to Fig. 1. Let the mea-
surement surfaces Σd and Σs be identical squares located
on the opposite sides of a cubic sample. Let the detectors
and sources be scanned on an L×L square grids and let
the sample be discretized on a L×L×L cubic grid with
the same pitch. Then Nd = Ns = L2, Nv = L3. These
estimates are typical but, admittedly, not very general.
Still, in many practical cases we can expect that

Nd, Ns ≪ Nv ≪ NdNs . (12)

The first inequality in (12) illustrates Remark 1 of Sec. II
because the matrices A and B are in this case clearly
not invertible. The second inequality is important if we
wish to compare DCTMC to some of the traditional ap-
proaches. For example, the conventional formulation of
the linearized ISP starts from equation (7). As is ex-
plained in Remark 3, is is commonly assumed that K in

(7) is a general matrix of the size NdNs ×Nv (L4 ×L3).
However, the sizes of A and B are Nd×Nv (L2×L3) and
Nv ×Ns (L

3×L2), respectively. Computing numerically
the pseudoinverse of K (if we do not account for its spe-
cial algebraic structure as is described in Appendix B) is
a much more computationally-intensive task than com-
puting the pseudoinverses of A and B. Therefore, the
relaxation of the strict requirement of diagonality of V
allows one to work with two much smaller “weight ma-
trices” A and B instead of one large “weight matrix” K.
We now turn to the central idea of DCTMC, namely,

to the concept of data-compatibility of the T-matrix. To
formulate the constraints that equation (9) places on T in
a computationally-tractable form, consider the singular
value decompositions of A and B:

A =

Nd
∑

µ=1

σA
µ

∣

∣fA
µ

〉 〈

gAµ
∣

∣ , B =

Ns
∑

µ=1

σB
µ

∣

∣fB
µ

〉 〈

gBµ
∣

∣ . (13)

Here σA
µ ,

∣

∣fA
µ

〉

and
∣

∣gAµ
〉

are the singular values and right
and left singular vectors of A, and similarly for B. Note
that

∣

∣fA
µ

〉

and
∣

∣gBµ
〉

are vectors of length Nd and Ns,

respectively, while
∣

∣gAµ
〉

and
∣

∣fB
µ

〉

are both of length Nv,
and we have assumed in (13) that Nd, Ns ≤ Nv. Using
the orthogonality of singular vectors, we obtain from (9)
and (13)

σA
µ σ

B
ν T̃µν = Φ̃µν , 1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns , (14)

where

T̃µν ≡
〈

gAµ |T |f
B
ν

〉

, 1 ≤ µ, ν ≤ Nv ; (15a)

Φ̃µν ≡
〈

fA
µ |Φ|gBν

〉

, 1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns . (15b)

By T̃ we denote the T-matrix in singular-vector represen-
tation while T that was used previously is the T-matrix
in real-space representation. The two representations are
related to each other by the transformation

T̃ = R∗
ATRB ≡ R[T ] , T = RAT̃R

∗
B ≡ R−1[T̃ ] , (16)

where RA is the unitary matrix whose columns are the
singular vectors

∣

∣gAµ
〉

while RB is the unitary matrix

whose columns are the singular vectors
∣

∣fB
µ

〉

. Equation
(16) defines the pseudo-rotation functional R[·]. We note
that R[·] is linear and invertible even though it is not
equivalent to a conventional rotation because RA 6= RB.
It is useful to keep in mind that Φ̃ 6= R[Φ]. As can be

seen from the definition (15), Φ̃ is related to Φ by a sim-
ilar transformation but with different unitary matrices.
We now can write the solution to (14) as follows:

T̃µν =







1

σA
µ σ

B
ν

Φ̃µν , if σA
µ σ

B
ν > ǫ2 ;

unknown , otherwise .
(17)

Here ǫ is a small positive constant. If computations could
be performed with infinite precision, we could have set
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FIG. 3. (color online) Left panel: Elements of T̃ inside the
shaded block can be computed from the data by using (17).
Elements outside of the shaded block are not known and can
not be in any way inferred from the data. Right panel: The
initial guess for the T-matrix, Texp. In this initial guess, we set
the unknown elements of T̃ (in singular-vector representation)
to zero.

ǫ = 0. In practice, we should take ǫ to be small but at
least larger than the smallest positive floating-point con-
stant for which a particular implementation of numeri-
cal arithmetic adheres to the IEEE standard. We note
that under the assumptions stated above, the condition
σA
µ σ

B
ν > ǫ2 can be satisfied only for 1 ≤ µ ≤ Nd and

1 ≤ ν ≤ Ns. Singular values σA
µ and σB

ν with indexes
outside of these ranges are identically zero.
Eq. (17) summarizes our knowledge about the system

that is contained in the data. There are few matrix el-
ements of T̃ that are known with certainty. These ma-
trix elements can be computed by the first expression
in (17). The other matrix elements can not be deter-
mined from equation (9). We can vary these unknown
elements arbitrarily and the error of (9) will not notice-

ably change. The number of known elements of T̃ can
not exceed NdNs but can, in principle, be smaller, e.g.,
if the rank of A is less than Nd or the rank of B is less
than Ns, although this situation is not typical even for
severely ill-posed ISPs. In any event, NdNs is usually
much smaller than the total number of the matrix ele-
ments of T̃ , which is equal to N2

v . Using the previously
introduced estimates, NdNs/N

2
v ∼ 1/L2. Therefore, only

a small fraction of the elements of T̃ are known. In what
follows, we assume that the singular values of A and B
are arranged in the descending order and that the known
elements of T̃ can be collected into the upper-left rect-
angular block of the size MA ×MB (see Fig. 3), where
MA ≤ Nd and MB ≤ Ns. We emphasize again that, in
many practically-important cases, equalities will hold in
the above expressions. However, it is possible to arrange
the sources in such a way that the rank of B is less than
Ns (and similarly for detectors and A), at least up to the
numerical precision of the computer [31]. Moreover, the
region of known matrix elements can be of a more general
shape than a rectangle, as is shown in Fig. 4. It is not
conceptually difficult to account for this fact. However,
we will proceed under the assumption that the region is
rectangular in order to shorten the discussion. Besides,
in the numerical simulations of [28], this region was, in
fact, rectangular.
Even though we can not gain any knowledge about the

matrix elements of T̃ outside of the shaded area shown in
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FIG. 4. (color online) Assuming that the singular values σA
µ

and σB
µ are arranged in the descending order, this sketch

shows an example of a more general shape (compared to

Fig. 3) of the region in which the elements of T̃ are known.
The numbers above the thick line satisfy σA

µ σB
ν > ǫ2. In the

general case, the boundary line can only go from left to right
and from bottom to top if followed from the left-most bound-
ary of the matrix.

Fig. 3 by using equation (9) alone, we can make an initial

guess for T̃ , which we denote by T̃exp (the ”experimental”
T-matrix). We define Texp (in real-space representation)
as the matrix that satisfies (9) in the minimum norm
sense and has the smallest entry-wise norm ‖T ‖2. This
matrix is uniquely defined by the equation

Texp = A+ΦB+ , (18)

where “+” denotes Moore-Penrose pseudoinverse. If A
and B are rank-deficient or invertible, (9) is satisfied by
Texp exactly so that ‖ATexpB − Φ‖2 = 0. The experi-
mental T-matrix in singular-vector representation is ob-
tained from (18) by the transformation (16). In fact, the
experimental T-matrix is more easily characterizable in
singular-vector representation. Indeed, all the elements
of T̃exp in the unshaded area of the diagram in Fig. 3
(right panel) are equal to zero. This is expressed mathe-
matically by writing

(

T̃exp

)

µν
=







1

σA
µ σ

B
ν

Φ̃µν , if σA
µ σ

B
ν > ǫ2 ;

0 , otherwise .
(19)

This expression is equivalent to (18).
We conclude this section with two important observa-

tions about the experimental T-matrix:

Remark 4: Lack of sparsity of Texp. The matrix

T̃exp is sparse but the same is not true for Texp.

Remark 5: Lack of symmetry of T̃exp. It is known
theoretically that the correct T-matrix is symmetric in
real-space representation. However, this is not generally
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true for Texp. Indeed, Texp = R−1[T̃exp], and in T̃exp a
large fraction of the elements are replaced by zeros. The
resultant Texp is not likely to be symmetric.

IV. BASIC ITERATION CYCLE

In this section we describe a computational algorithm
in which the matrices T and V are continuously updated
so that T is kept data-compatible and V becomes in-
creasingly diagonally-dominated. Our goal is to fill the
unknown elements of T̃ (the white areas in the left panel
of Fig. 3) in such a way that the corresponding interaction
matrix V , computed according to (11), is approximately
diagonal. This is a general formulation of the problem of
matrix completion, although the constraint that we ap-
ply to T̃ is not the same as in the conventional statement
of the problem.
Before proceeding, we need to introduce several ad-

ditional operators. First, define the masking operators
M[·] and N [·]:

(

M[T̃ ]
)

µν
≡

{

0 , σA
µ σ

B
ν > ǫ2 ;

T̃µν , otherwise .
(20a)

(

N [T̃ ]
)

µν
≡

{

T̃µν , σ
A
µ σ

B
ν > ǫ2 ;

0 , otherwise .
(20b)

We note that M[T̃ ] + N [T̃ ] = T̃ . Then the operator

of enforcing data-compatibility of T̃ (in singular-vector
representation) O[·] can be defined as follows:

O[T̃ ] ≡ M[T̃ ] + T̃exp = T̃ −N [T̃ ] + T̃exp . (21)

It can be seen that the action of O[T̃ ] is to overwrite

(hence the notation O) the elements of T̃ in the shaded

area of Fig. 3 with the elements of T̃exp and to leave all
other elements unchanged. The operator O[·] is defined
for any Nv × Nv matrix but in the iterations discussed
below we always apply this operator to the T-matrix in
singular-vector representation.
Next, we will need to define a diagonal approxima-

tion to V . To this end, we define an entry-wise “force-
diagonalization” operator D[·], where

(D[V ])ij ≡ δij
∑

k

Vikρ(ℓki) . (22)

Here ρ(ℓki) is a weight function that depends on the phys-
ical distance ℓik between the voxels i and k and not on the
relative position of the lines i and k in the matrix V . The
definition (22) is in agreement with the approximation of
the form (1). We note that a more symmetric definition
involving the factor ρ(ℓki)(Vik +Vki)/2 seems to be more
natural to use but, in fact, this expression is not of the
same form as (1) and we have verified numerically that
it does not produce superior results compared to (22). If

V is symmetric, the two expressions yield identical re-
sults but the iteratively-updated V is not symmetric in
DCTMC, and the physical meaning of the off-diagonal
elements Vik and Vki is generally not the same. In the
simplest case, we can take ρ(ℓki) = δki. This corresponds
to sending all off-diagonal elements of V to zero. This
approach allows for a complete and simple analysis of
DCTMC in the linear regime, as is described in Sec. VI
below. However, the use of more complicated functions
ρ(ℓ) corresponds better to the spirit of DCTMC; it allows
one to take the off-diagonal elements of V that are gener-
ated in the course of iterations. Unlike the operator O[·],
D[·] will always be applied in real-space representation.
We are now ready to describe the iterative process of

DCTMC. The iteration steps will be defined in terms of
the operators R[·] and T [·], D[·] and O[·]. A summary of
all operators used in this paper is given in Appendix C.
We assume that the SVD decompositions of matrices A
and B and the experimental T-matrix T̃exp (19) have
been precomputed. Consider the case when the iterations
start from an initial guess for the T-matrix. We then set
k = 1, T̃1 = T̃exp and run the following iterations:

1: Tk = R−1[T̃k]
This transforms the T-matrix from singular-vector
to real-space representation. Both T̃k and Tk are
data-compatible.

2: Vk = T −1[Tk]
This gives k-th approximation to the interaction
matrix V . Vk is data-compatible but not diagonal.

3: Dk = D[Vk]
Compute the diagonal approximation to Vk, de-
noted here by Dk. Dk is diagonal but not data-
compatible.

4: T ′
k = T [Dk]

Compute the T-matrix that corresponds to the di-
agonal matrix Dk. Unlike Tk, T

′
k is no longer data-

compatible.

5: T̃ ′
k = R[T ′

k]
Transform T ′

k to singular-vector representation.

Here T̃ ′
k is still not data-compatible.

6: T̃k+1 = O[T̃ ′
k]

Advance the iteration index by one and overwrite
the elements of T̃ ′

k that are known from data with

the corresponding elements of T̃exp. This will re-

store data-compatibility of T̃k+1. Then go to Step
1.

The computational complexity of Steps 1,2,4,5 is O(N3
v ).

However, the complexity can be dramatically reduced
with the use of the computational shortcuts that are de-
scribed in the next section, with the only exception of
Step 4. Therefore, Step 4 is the true computational bot-
tleneck of the method. It’s complexity can be reduced
by accounting for sparsity of V . However, if no a priori
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FIG. 5. (color online) Basic flowchart of the DCTMC iteration process for the case when the iterations start with an initial

guess for T̃ . Numbered iteration steps are defined in Sec. IV. Computational shortcuts are described in Sec. V. Matrix
representations are abbreviated by SV (singular-vector) and RS (real-space). Exit condition can be checked at various Steps
of the iterations (see [28] for more detail).

knowledge about sparsity of V is available, then the com-
putational complexity of Step 4 is the limiting factor of
DCTMC, at least to the best of our current understand-
ing.

V. COMPUTATIONAL SHORTCUTS

A. Shortcut 1: Fast pseudo-rotations

Consider iteration Steps 5,6,1 written sequentially:

5 : T̃ ′
k = R[T ′

k] O(N3
v ) = O(L9) ,

6 : T̃k+1 = O[T̃ ′
k] ≤ O(NdNs) = O(L4) ,

1 : Tk+1 = R−1[T̃k+1] O(N3
v ) = O(L9) .

To the right, we have indicated the computational com-
plexity of each step and used the previously introduced
estimates for Nd, Ns and Nv in terms of the grid size
L. The complexity of Step 6 is equal to, at most, NdNs.

Therefore, the complexity of Steps 5 and 1 is dominating.
Now, let us combine the steps by writing

Tk+1 = R−1 [O [R[T ′
k]]]

= R−1
[

R[T ′
k]−N [R[T ′

k]] + T̃exp

]

, (23)

where in the second equality we have used the definition
of O[·] (21). We now use the linearity and invertibility of
R to rewrite (23) as

Tk+1 = T ′
k + Texp −R−1 [N [R[T ′

k]]] . (24)

We are therefore left with the task of numerically evalu-
ating an expression of the type R−1[N [R[T ]]], where we
have dropped all indexes for simplicity. But this can be
accomplished in much less than O(N3

v ) operations due to
the sparsity of N [·]. Indeed, consider first the computa-
tion of N [R[T ]]. This operation is illustrated in Fig. 6.
It can be seen that N [R[T ]] = P ∗

ATPB, where the ma-
trix PA is obtained from RA by overwriting all columns
of RA, except for the first MA columns, with zeros, and
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FIG. 6. (color online) Schematics of computing N [R[T ]].
Matrices PA and PB are obtained from RA and RB by setting
all columns to zero except for the first MA and MB columns,
respectively.

PB is defined analogously. The complexity of computing
P ∗
ATPB is O(min(MA,MB)N

2
v ), which is less than N3

v

by the factor of at least O(L). Quite analogously, we can
show that

R−1[N [R[T ′
k]]] = PA (P ∗

ATPB)P
∗
B . (25)

It should be kept in mind that PAP
∗
A 6= I and PBP

∗
B 6= I

and that premultiplying these matrices is not a compu-
tationally efficient approach. Doing so will result in an
expression of the type Q∗

ATQB, where QA = PAP
∗
A and

QB = PBP
∗
B are not sparse. Instead, one should evaluate

the right-hand side of (25) using the operator precedence
implied by the parentheses. We conclude that the Steps
5,6,1 of the iterative procedure described above can be
combined in the following single computational step:

Tk+1 = T ′
k + Texp − PA (P ∗

AT
′
kPB)P

∗
B . (26)

In this formula, Texp, PA and PB are precomputed and
stored in memory. We finally note that the sparsity of
N can be used efficiently even if the region of ”known”
elements of T̃ is not rectangular. Although matrices PA

and PB can not be easily defined in this case, the use of
appropriate masks in computing expressions of the type
N [R∗

ATRB] will achieve a similar reduction of computa-
tional complexity.

B. Shortcut 2: Fast T → D operation.

Here we describe a computational shortcut that can
cut the computational time per one iteration by approx-
imately a factor of ∼ 2. However, we have found em-
pirically [28] that this is not the most efficient approach
since it does not use one of the main features of DCTMC,
that is, accounting for the off-diagonal elements of V at
the intermediate stages of the iterations. In [28], it is
shown that a more efficient approach is based on uti-
lization of the formula (22) (weighted summation to the

diagonal). Here we describe Computational Shortcut 2
for completeness of exposition.
Consider Steps 2 and 3 of the basic iteration cycle:

2 : Vk = T −1[Tk] O(N3
v ) = O(L9) ,

3 : Dk = D[Vk] O(Nv) = O(L3) ,

To the right, we have indicated the computational com-
plexity of each step. The goal of Steps 2 and 3 is to find
a diagonal matrix D that in some sense approximates
the previously-computed T-matrix. More specifically, we
compute V that corresponds to T exactly but is not di-
agonal in Step 2 and then seek a diagonal approximation
to V denoted by D. The last operation is governed by
the “force-diagonalization” operator D[·], which in turn
depends on the weight function ρ(ℓ). As was mentioned
above, the simplest choice of this weight function is such
that ρ(ℓki) = δki (we only need to define ρ(ℓ) for a set
of discrete values of the argument). This choice of the
weight function minimizes the entry-wise norm ‖V −D‖2.
An alternative approach is to seek a diagonal matrix D
that satisfies the equation

T = D +DΓT (27)

in the minimum L2-norm sense (of course, (27) can not be
satisfied exactly by any diagonal matrixD). The above is
a classical minimization problem, which has the following
analytical solution:

Dij = δij
Tii +

[

(ΓT )
∗
T
]

ii

1 +
[

(ΓT )
∗
+ (ΓT ) + (ΓT )

∗
(ΓT )

]

ii

. (28)

It may seem that evaluation of (28) still requires O(N3
v )

operations because it contains the matrix-matrix product
ΓT . However, this is not so. The matrix Λ ≡ ΓT can be
updated iteratively during Computational Shortcut 1 by
using (26) multiplied from the left by Γ , viz,

Λk+1 = Λ′
k + Λexp − (ΓPA) (P

∗
AT

′
kPB)P

∗
B . (29)

Here Λk+1 = ΓTk+1, Λ′
k = ΓT ′

k and Λexp = ΓTexp.
The matrix ΓPA can be precomputed and has exactly
the same sparsity structure as PA itself, that is, all of
its columns except for the first MA columns are zero.
Therefore, computing the last term in (29) is of the
same complexity as Computational Shortcut 1, that is,
O(min(MA,MB)N

2
v ). There remains the question of how

Λ′
k is computed and whether this computation requires

an extra matrix-matrix multiplication. The answer is, it
can be precomputed at Step 4 of the k-th iteration with-
out any additional matrix-matrix multiplications. In-
deed, let us utilize the second formula in the definition
of T [·] (10) and write Step 4 of k-th iteration as follows:

T ′
k = Dk(I − ΓDk)

−1 . (30)

We then multiply from the left both sides of (30) by Γ

and obtain

Λ′
k = ΓDk(I − ΓDk)

−1 = (I − ΓDk)
−1 − I . (31)
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Now we can compute T ′
k and Λ′

k without any additional
complexity by using the following sub-steps:

1: Compute the product ∆k ≡ ΓDk, which is fast
because Dk is diagonal.

2: Compute the inverse Sk ≡ (I − ∆k )
−1, which has

the complexity of N3
v .

3: Compute Λ′
k = Sk − I [as follows from (31)].

4: Compute T ′
k = DkSk [as follows from (30)], which

is again fast because Dk is diagonal.

Thus, in all the computations outlined above only in-
version of I − ∆k has the computational complexity of
N3

v . This is, therefore, the true computational bottleneck
of the algorithm.
The computational shortcut described here allows one

to cut the computational time per one iteration of
DCTMC by approximately the factor of 2. However, we
will show in the second part of this paper series [28] that a
more useful approach is to use an explicit weight function
ρ(ℓ). This is more in line with the main idea of DCTMC,
which is relaxing the requirement that V be a strictly
local interaction. Weighted summation to the diagonal
is a natural approach to account for the nonlocality (off-
diagonality of V ). Indeed, we will see that, although this
approach does not allow one to use the Computational
Shortcut 2, it reduces the number of required iterations
and is more benefitial in the end.

C. Streamlined iteration cycle

The computational shortcuts can be integrated into a
single streamlined iteration algorithm. Doing so requires
careful consideration of the flowchart shown in Fig. 5
and of the associated data dependencies. However,
the resulting algorithm is relatively simple. For ease
of programming, we have broken this algorithm into
elementary computational steps. We describe separately
the cases when Computational Shortcut 2 is and is not
used. In both cases, we start from the initial guess for
the T-matrix, T1 = Texp. Modification in which the
process starts from an initial guess for V is quite obvious
and is numerically implemented in [28].

Initial setup:

1: Permanently store in memory the analytically-
known matrix Γ .

2: Compute the SVD decomposition (13) of A and B.
This will yield a set of singular values σA

µ , σ
B
µ (some

of which are identically zero) and singular vectors
|fA

µ 〉, |fB
µ 〉, |gAµ 〉, |g

B
µ 〉.

3: Use the previous result to construct and perma-
nently store in memory the dense matrices RA and

RB , sparse matrices PA and PB . If Computational
Shortcut 2 is used, compute also QA = ΓPA. Note:
no additional memory allocation for PA and PB is
required.

4: Compute Φ̃µν according to (15b) and T̃exp accord-
ing to (19). Discard the real-space data function,
the singular values and singular vectors, and deal-
locate the associated memory.

5: Compute and store permanently in memory Texp =

RAT̃expR
∗
B = PAT̃expP

∗
B. If computational Short-

cut 2 is used, also compute Λexp = ΓTexp.

6: Initialize iterations by setting T1 = Texp and Λ1 =
Λexp.

The computational cost of the initial setup is comparable
to that of one iteration or less. Step 1 is negligible. Com-
putation of the SVD of A and B in Step 2 has the cost
of O(Nv(N

2
s + N2

d ), which is also relatively small. The
cost of Step 3 is again negligible as it mostly consists of
arranging numerical data in the computer memory. The
cost of Step 4 is O(NsN

2
d+NdN

2
s ). Finally, in Step 5, the

complexity of computing PAT̃expP
∗
B is O(NsN

2
d +NdN

2
s )

or less, depending on the size of nonzero blocks in PA and
PB. The only costly operation is the computation of the
matrix-matrix product ΓTexp in Step 5, with the com-
putational complexity of O(N3

v ). But this step is only
required if the Computational Shortcut 2 is used.
Exit condition can be defined at different stages of

the iterations by using various error measures, as is
described in more detail in [28]. Here no specific exit
conditions are defined.

Main iteration with the use of Computational
Shortcut 2: Starting from k = 1, T1 = Texp and
Λ1 = Λexp, run the following iterations:

1: (Dk)ij = δij
(Tk)ii + (Λ∗

kTk)ii
1 + (Λ∗

k + Λk + Λ∗
kΛk)ii

2: ∆k = ΓDk

3: Sk = (I −∆k)
−1

4: T ′
k = DkSk, Λ′

k = Sk − I

5: Tk+1 = T ′
k + Texp − PA (P ∗

AT
′
kPB)P

∗
B ,

Λk+1 = Λ′
k + Λexp −QA (P ∗

AT
′
kPB)P

∗
B

Operations whose order of execution is insignificant
and which can run independently in parallel threads
are shown in the same numbered step. Note that
computation of the terms (ΛkTk)ii and (Λ∗

kΛk)ii for
i = 1, . . . , Nv has the computational complexity of only
O(N2

v ). Therefore, the true bottleneck of each iteration

is the operation of matrix inversion Sk = (I −∆k)
−1

whose computational complexity is O(N3
v ).
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Main iteration without the use of Computational
Shortcut 2: Starting from k = 1, T1 = Texp, run the
following iterations:

1: Vk = (I + TkΓ )−1Tk

2: Dk = D[Vk]

3: T ′
k = (I −DkΓ )−1Dk

4: Tk+1 = T ′
k + Texp − PA (P ∗

AT
′
kPB)P

∗
B

The computational cost of this iterative scheme is domi-
nated by the Steps 1 and 3, the computational complexity
of each of these steps being O(N3

v ).

VI. DCTMC IN THE LINEAR REGIME AND
THE QUESTIONS OF CONVERGENCE AND

REGULARIZATION

In this section we analyze DCTMC in the linear
regime. Most results will be obtained in the case when
the weight function in (22) is given by ρ(ℓki) = δki. How-
ever, generalizations for a more general (and a more prac-
tical) operator D[·] will be mentioned briefly.
Consider the iteration cycle of Sec. VC in the limit

Γ → 0. Omitting intermediate steps, we find that each
iteration is reduced to the following two operations:

1: Dk = D[Tk]

2: Tk+1 = Dk + Texp − (PAP
∗
A)Dk (PBP

∗
B)

where D[·] is defined in (22). These two steps can be
combined in the following simple iteration:

Dk+1 = Dk +Dexp −D [(PAP
∗
A)Dk (PBP

∗
B)] , (32)

where Dexp = D[Texp]. Iteration (32) can be obtained
simply by applying the operator D[·] to the equation in
Step 2 above. Let us now convert (32) to an equation
with respect to the vector |υk〉 that contains the diagonal
elements of Dk. From the linearity of (32) we immedi-
ately find

|υk+1〉 = |υexp〉+ (I −W )|υk〉 , (33)

where |υexp〉 is the vector of diagonal elements of Dexp.
We now specialize to the case when the weight function

in the definition (22) of the operator D[·] is given by
ρ(ℓki) = δki. In this case, the matrixW has the elements

Wij = (PAP
∗
A)ij (PBP

∗
B)ji . (34)

It is easy to see that (33) is Richardson first-order itera-
tion with the fixed point |υ∞〉 = W−1|υexp〉. Therefore,
DCTMC in the linear regime simply provides an iterative
way of solving the equation

W |υ〉 = |υexp〉 . (35)

This equation can be derived independently from
DCTMC and in a more straightforward manner start-
ing from the linearized equation (7). This derivation is
shown in Appendix B and it takes advantage of the al-
gebraic properties of K (see Remark 3). It is important
to realize that, although (35) can be obtained from (7)
by a series of linear transformations, the two equations
are not equivalent in the following sense: if K is not
invertible, then the pseudoinverse solutions of the two
equations can be different. However, if K is invertible,
then the two equations have the same unique solution.
Of course, iteration (33) is only a particular numerical

method of solving (35) and not the most efficient one:
conjugate-gradient descent is expected to provide better
computational performance. However, consideration of
DCTMC in the linear regime is not a vane or trivial ex-
ercise but is useful in several respects. First, it gives us
an insight into the convergence properties of DCTMC.
Second, it gives us an idea of how DCTMC iterations
can be regularized. Convergence and regularization will
be discussed in the remainder of this section.
It is obvious that the iterations converge to the fixed

point provided that |1− wn| < 1 for all n, where wn are
the eigenvalues ofW . SinceW is Hermitian, all its eigen-
values are real and therefore the convergence condition
reads 0 < wn < 2. Under the same condition the inverse
W−1 exists. We will now prove that

0 ≤ wn ≤ 1 . (36)

The fact that W is non-negative definite is obvious from
(34). We will however make an additional step and recall
that the columns of PA are the singular vectors |gAµ 〉 for
µ = 1, . . . ,MA and zeros otherwise while the columns of
PB are the singular vectors |fB

µ 〉 for µ = 1, . . . ,MB and
zeros otherwise. We then obtain in a straightforward
manner:

Wij =

MA
∑

µ=1

MB
∑

ν=1

〈i|gAµ 〉〈g
A
µ |j〉〈j|f

B
ν 〉〈fB

ν |i〉 . (37)

Let |x〉 be an arbitrary nonzero vector of length Nv and
X be an Nv ×Nv matrix with the elements of |x〉 on the
diagonal and zeros elsewhere. Then

〈x|W |x〉 =
MA
∑

µ=1

MB
∑

ν=1

∣

∣〈gAµ |X |fB
ν 〉

∣

∣

2
≥ 0 . (38)

We therefore have proved that wn ≥ 0. Next, we use the
orthonormality of each set of singular vectors to write the
following identities

〈x|x〉 =
Nv
∑

i=1

〈i|X∗X |i〉 =
Nv
∑

µ=1

Nv
∑

ν=1

∣

∣〈gAµ |X |fB
ν 〉

∣

∣

2
. (39)

SinceMa,Mb ≤ Nv, 〈x|W |x〉 ≤ 〈x|x〉 and we have proved
(36). The equality 〈x|W |x〉 = 〈x|x〉 holds only in the
case MA = MB = Nv, in which case W = I and the
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iteration (33) trivially converges to its fixed point right
upon making the initial guess. In this unrealistic case, all
elements of the T-matrix are determined from the data
and no iterations are needed.
We thus conclude that convergence can be slow in the

case W has a small (or zero) eigenvalue. We can define
the characteristic overlap of singular vectors related to
detectors and sources as

ξ = inf
X 6=0

{

∑MA

µ=1

∑MB

ν=1

∣

∣〈gAµ |X |fB
ν 〉

∣

∣

2

∑Nv

µ=1

∑Nv

ν=1

∣

∣〈gAµ |X |fB
ν 〉

∣

∣

2

}

. (40)

The iterations (33) converge at least as fast as the power
series

∑

n(1 − ξ)n. If ξ is close to zero, the convergence
can be slow. This observation gives us an idea of how the
iterations can be regularized. This can be accomplished
by replacing W by W + λ2I, where λ is a regularization
parameter. As is shown in Appendix B, this procedure is
equivalent to Tikhonov regularization of equation (B5),
which can be derived from (7) by several linear opera-
tions. However, the substitution W → W + λ2I is not
equivalent to Tikhonov regularization of (7).
We can now introduce regularization of the general it-

erative algorithm of Sec. VC, which is applicable to the
nonlinear case as well. Namely, for any matrix X , we
replace the linear transformation (PAP

∗
A)X(PBP

∗
B) by

(PAP
∗
A)X(PBP

∗
B) + λ2D[X ]. This entails the following

modification to Step 5 of the streamlined algorithm with
Shortcut 2 or Step 4 of the algorithm without Shortcut
2:

Tk+1 = T ′
k − λ2D [T ′

k] + Texp − PA (P ∗
AT

′
kPB)P

∗
B ,

Λk+1 = Λ′
k − λ2D [Λ′

k] + Λexp −QA (P ∗
AT

′
kPB)P

∗
B .

Finally, we mention briefly which modifications can be
expected if we use a more general weight function ρ(ℓki)
in the definition (22) of the operator D. The first obvious
result is that the matrixW is modified in this case so that
its elements are given by

Wij =
∑

k

(PAP
∗
A)ij(PBP

∗
B)jkρ(ℓki)

= (PAP
∗
A)ij(PBP

∗
BH)ji , (41)

where Hij = ρ(ℓij). This matrix is no longer non-
negative definite. Moreover, its eigenvalues can be com-
plex and we can not prove easily that they are con-
strained to the disk |1 − wn| < 1 (in fact, this may
be not so). However, numerical evidence shows that
using weight functions ρ(ℓ) that are non-zero for finite
ℓ improves the convergence rate of the DCTMC itera-
tions [28]. We view this as an indication that the eigen-
values wn are pushed away from the origin in the com-
plex plane while staying within the disk |1 − wn| < 1.
The free term of the equation (35) is also affected by
the choice of the weight function ρ(ℓ). Indeed, we
can write 〈i|υexp = (TexpH)ii. The resultant equation
W |υ〉 = |υexp〉 is still derivable from (7). In AppendixB,

the derivation is shown for the simple case ρ(ℓki) = δki
or H = I, but the more general case can be easily con-
sidered and the resultant transformation between K and
W is given in the end of the Appendix.

VII. DISCUSSION

This paper describes a novel method for solving non-
linear inverse scattering problems (ISPs). The method is
based on iterative completion of the unknown entries of
the T-matrix and we refer to it as to the data-compatible
T-matrix completion (DCTMC) method. It should be
emphasized that the constraint that we apply to the T-
matrix (namely, that it corresponds to a nearly diago-
nal interaction matrix V ) is not the same as in the con-
ventional formulation of the matrix completion problem.
The method developed in this paper is well suited for
overdetermined ISPs in which the number of volume vox-
els is not too large (e.g., . 104) or the target is sparse.
The size of the data set in not a limiting factor for this
method, unlike in many traditional approaches to the
same problem.
In the case of ill-posed ISPs, regularization plays the

key role. One should not expect to recover a reasonable
image without some form of regularization. DCTMC
allows for two types of regularization: (i) by imposing
physical constraints and (ii) by regularizing the matrix
Wij = (PAP

∗
A)ij(PBP

∗
B)ji. In the linear regime, the ap-

proach (ii) corresponds to Tikhonov regularization of the
linearized equation ΘUK|υ〉 = ΘU |φ〉, which is obtained
from Eq. (7) by multiplying the latter by ΘU from the
left; the unitary matrix U and the matrix of diagonal
scaling Θ are defined in Appendix B. In the nonlinear
regime, the approach (ii) is somewhat ad hoc and its ap-
plicability requires additional research.
A potential advantage of DCTMC is its computa-

tional efficiency in solving strongly overdetermined in-
verse problems with large data sets. This advance is ob-
tained by exploiting the algebraic structure of the ISP
rather than stating it in the conventional generic form
F [υ] = 0 (or Kυ = 0 in the linear approximation) where
F [·] is a general nonlinear functional, K is its linear ap-
proximation and υ is the vector consisting of the diagonal
elements of V . In our previous work, we have shown that
strongly overdetermined data sets are required to obtain
the optimal image resolution [32, 33]. Specifically, the
fundamental limit of lateral resolution of diffuse optical
tomography (DOT) in the slab geometry is equal to the
step h of the mesh of sources and detectors on each face
of the slab, provided that the imaging windows are signif-
icantly larger than the field of view of the reconstruction.
Thus, to reconstruct a lateral central cross section of the
slab on a 100× 100 mesh of step h, one needs about 3002

sources on one side and the same number of detectors on
the other side of the slab. This translates into ∼ 1010

data points. This result is not specific to DOT but also
holds for diffraction tomography that we consider numer-
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ically in [28]. However, the fundamental resolution limit
is not always achievable. If the inverse problem is ill-
posed or noise is present in the data, the theoretical limit
of resolution can not be achieved and smaller data sets
can suffice to obtain the optimal image quality. There-
fore, the optimal size of the data set is determined by
a complex interplay between the ill-posedness of the in-
verse problem and the statistical properties of the noise.
Experimental DOT reconstruction with large data sets
was demonstrated in [34], experimental determination of
the optimal size of the data set was in [34, 35] and further
insights on selection of useful data points in the presence
of strong nonlinearity were provided in [36]. However,
all references just quoted used linearized image recon-
struction. DCTMC allows one to overcome this limita-
tion and obtain nonlinear reconstructions with very large
data sets.

Although the main goal of DCTMC is to solve nonlin-
ear problems, the methods developed above can be use-
ful for solving linearized problems with large data sets
as well. This development is conceptually similar to the
image reconstruction methods of [33, 37–39] that were
developed for solving linear ISPs. The similarity lies in
exploring the algebraic structure of the matrix K, which
is obtained as a product of two unperturbed Green’s func-
tions. In [33, 37–39] the special structure of K that fol-
lows from the translational invariance of an infinite ho-
mogeneous slab was exploited. In this work, we do not
use or assume translational invariance of the medium and
do not work in the infinite slab geometry. Instead, we ob-
tain an expression of the form AV B, where V is the un-
known potential (in the linear regime, V = T ). This
replaces the traditional approach in which one writes
AV B = Kυ, where υ is the vector of diagonal elements
of V .

In the full nonlinear regime, DCTMC also bears

some similarity to the methods of [11, 13, 15] where the
notion of the fundamental unknown is also expanded
to include the internal fields or the complete Green’s
function G or the T-matrix T . For example, in the work
of Chaumet et al., the dipole moments dn of voxels are
iteratively updated. In our terminology, dnα = (Tq)nα,
where α = x, y, z labels Cartesian components of
three-dimensional vectors and q is the incident field (see
Sec. II). The intermediate dipole results are directly
updated by a step in the Polak-Ribiere conjugate
gradient direction. Then, once an acceptable result
has been obtained, the relationship between the dipoles
and the voxel polarizabilities is used to obtain the final
reconstruction. DCTMC is different in several respects.
It searches in a different direction, which is determined
at each iteration by the experimental T-matrix. Also,
the voxel polarizabilities are updated at each iteration
(here we imply a unique one-to-one correspondence
between the voxel polarizabilities and the T-matrix).
Therefore, our treatment of the unknowns is similar to
that in Refs. [11, 13, 15] but the method for updating
the unknown is different.
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Appendix A: Linearizing approximations

In this Appendix we state the linearizing approxima-
tions without derivation or analysis as this is outside of
the scope of this paper. We only note that first Born ap-
proximation is obtained by retaining the first-order term
in the power-series expansion of the complete Green’s
function G; first Rytov approximation is obtained by re-
taining the first-order term in the cumulant expansion
of log(G) and the mean-field approximation is obtained

by using the first-order approximant in the continued-
fraction expansion of G. More details are given in [33].
Only first Born approximation can be stated in abstract
form while the other two approximations involve entry-
wise expressions. Correspondingly, the accuracy of these
two approximations depends on the matrix representa-
tion while the accuracy of first Born approximation is
representation-independent.
(i) First Born approximation. The simplest ap-

proach to linearization is the first Born approximation,
according to which

A(I − V Γ )−1V B ≈ AV B .

Obviously, the first Born approximation is valid if
‖V Γ‖2 ≪ 1. By substituting the above approximation
into the left-hand side of (5), we obtain (6) in which
Ψ = Φ. Therefore, the data transformation in the case
of first Born approximation is trivial.
(ii) First Rytov approximation. The first Rytov

approximation can be stated as

[

A(I − V Γ )−1V B
]

ij
≈ Cij

{

exp

[

(AV B)ij
Cij

]

− 1

}

,

where Cij = G0(ri, rj) and ri ∈ Σd, rj ∈ Σs. Thus
we have encountered yet another restriction of G0(r, r

′).
Obviously, with this restriction used, G0(r, r

′) is the di-
rect (unscattered) field that would have been produced
by a source located at r and measured by a detector at
r′ in the case V = 0. If we substitute the above approx-
imation into the left-hand side of (5) and introduce the
data transformation

Ψij = Cij log (1 + Φij /Cij) ,

we would arrive again at (6). Therefore, the equation
above defines the data transformation of first Rytov ap-
proximation.
(iii) Mean-field approximation. The mean-field

approximation is

[

A(I − V Γ )−1V B
]

ij
≈

(AV B)ij
1− (AV B)ij/Cij

.

The data transformation of the mean-field approximation
has the form of element-wise harmonic average and reads

Ψij =
1

1/Φij + 1/Cij

.

Appendix B: Derivation of the equation W |υ〉 = |υexp〉
[Eq. (35)] from Eq. (7).

In this Appendix, we derive Eq. (35)] from Eq. (7) for
the special case of the weight function ρ(ℓki) = δki. The
more general case can be considered without difficulty,
and the relevant result is adduced in the end of this ap-
pendix.
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Consider the linearized equation (7) in the first Born
approximation, that is, with the trivial data transforma-
tion Ψ = Φ or equivalently |ψ〉 = |φ〉. We recall that
K(mn),j = AmjBjn and use (13) for Amj and Bjn to
obtain the following result for the elements of K:

K(mn),j =

Nd
∑

µ=1

Ns
∑

ν=1

σA
µ σ

B
ν 〈m|fA

µ 〉〈gAµ |j〉〈j|f
B
ν 〉〈gBν |n〉 .

Now define the unitary matrix U with the elements

U(µν),(mn) = 〈fA
µ |m〉〈n|gBν 〉 , (B1)

1 ≤ µ,m ≤ Nd , 1 ≤ ν, n ≤ Ns

and multiply (7) by U from the left:

(UK)|υ〉 = U |φ〉 . (B2)

We emphasize that multiplication of any linear equa-
tion by a unitary matrix does not change its Tikhonov-
regularized pseudoinverse solution. This follows imme-
diately from (UK)∗(UK) = K∗K and (UK)∗U = K∗.
Now we use the equalities

(UK)(µν),j = σA
µ σ

B
ν 〈gAµ |j〉〈j|f

B
ν 〉 , 〈(µν)|U |φ〉 = Φ̃µν

to re-write (B2) as

σA
µ σ

B
ν

Nv
∑

j=1

〈gAµ |j〉〈j|f
B
ν 〉〈j|υ〉 = Φ̃µν ,

1 ≤ µ ≤ Nd , 1 ≤ ν ≤ Ns .

Next we observe that the above set may contain some
equations in which all coefficients are zero or very small.
These equations can be safely discarded and this oper-
ation still does not affect the pseudo-inverse. Therefore
we obtain

σA
µ σ

B
ν

Nv
∑

j=1

〈gAµ |j〉〈j|f
B
ν 〉〈j|υ〉 = Φ̃µν , (B3)

1 ≤ µ ≤MA , 1 ≤ ν ≤MB ,

whereMA andMB are the dimensions of the shaded rect-
angle in Fig. 3, which is the region where the inequality
σA
µ σ

B
ν > ǫ2 holds and ǫ is the small positive constant in-

troduced in (17). Note that (B3) is in all respects equiv-
alent to (7).
At this point however, we make a transformation that

will, in fact, change the equation. Namely, we divide (B3)
by the factor σA

µ σ
B
ν , which is larger than ǫ2 for all equa-

tions included in (B3). In computational linear algebra,
this operation is known as preconditioning by diagonal
scaling. We thus obtain

Nv
∑

j=1

〈gAµ |j〉〈j|f
B
ν 〉〈j|υ〉 =

(

T̃exp

)

µν
, (B4)

1 ≤ µ ≤MA , 1 ≤ ν ≤MB ,

where we have used the definition (19) of T̃exp. The diag-
onal scaling that was applied to obtain (B4) is invertible.
Therefore, if (7) has a solution in the ordinary sense, then
(B4) has the same solution. However, if (7) is not invert-
ible, then the two equations have different pseudoinverse
solutions that can not be related to each other by a sim-
ple transformation. In this sense, the two equations (7)
and (B4) are no longer equivalent.
To obtain (35), we observe that (B4) can be written as

Q|υ〉 = |τ〉 , (B5)

where Q(µν),j = 〈gAµ |j〉〈j|f
B
ν 〉 and 〈(µν)|τ〉 =

(

T̃exp

)

µν
.

We then multiply (B3) by Q∗ from the left and obtain

(Q∗Q)ij =

MA
∑

µ=1

MB
∑

ν=1

〈fB
ν |i〉〈i|gAµ 〉〈g

A
µ |j〉〈j|f

B
ν 〉 =Wij ,

where W = Q∗Q is the same matrix as in (34) (compare
the above equation to (37)). In a similar manner, we
obtain

〈i|Q∗|τ〉 =
MA
∑

µ1

MB
∑

ν=1

Q∗
i,(µν)

(

T̃exp

)

µν

= (PAT̃expP
∗
B)ii = (Texp)ii = 〈i|υexp〉 .

Therefore, Q∗|τ〉 = |vexp〉. We thus conclude that (35) is
obtained from (B5) by multiplying both sides with Q∗.
Moreover, the substitution W → W + λ2I is equivalent
to Tikhonov-regularization of (B5).
Finally, we can state the formal relation between K

and W in the following form:

W = (ΘUK)∗(ΘUK) = K∗U−1Θ2UK ,

where U is the unitary matrix defined in (B1) and Θ is
the diagonal conditioning matrix containing the quanti-
ties 1/(σA

µ σ
B
ν ) for 1 ≤ µ ≤ MA and 1 ≤ ν ≤ MB and

zeros otherwise.
Above consideration applied to the case ρ(ℓki) = δki

or, equivalently, H = I, where Hki = ρ(ℓki). If H 6= I,
the matrix W is given by

W = (ΘUK)∗F (ΘUK) .

The matrix F appears in this expression as an additional
filter. The free term of the equation is modified so that
〈i|υexp〉 = (TexpF )ii.

Appendix C: Definitions and properties of several
functionals used in this paper

A summary of definitions and mathematical properties
of the several functionals used in this paper is given in
Table I. In this table, F refers to any of the functionals
T , R, D, M and N and O.
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F Entry-wise? Y = F [X] Invertible? X = F−1[Y ]

T No Y = (I −XΓ )−1X Sometimes X = (I + Y Γ )−1Y

R No Y = R∗
AXRB Yes X = RAY R∗

B

D Yes Yij = δij
∑

k Xikρ(ℓki) No N/A

M Yes Ỹµν =

{

0 , σA
µ σB

ν > ǫ2

X̃µν , otherwise
No N/A

N Yes Ỹµν =

{

X̃µν , σA
µ σB

ν > ǫ2

0 , otherwise
No N/A

O Yes Ỹ = M[X̃ ] + T̃exp No N/A

= X̃ −N [X̃ ] + T̃exp

TABLE I. Definitions and properties of the various functional used in this paper. The weight function ρ(ℓ) must be defined
separately and is expected to go to zero for large values of ℓ; ℓki is the physical distance between voxels k and i.


