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Coupled, dynamical spin—lattice models provide a unique test ground for simulations investigating
the finite-temperature magnetic properties of materials under the direct influence of the lattice vi-
brations. These models are constructed by combining a coordinate-dependent interatomic potential
with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates

and spins as explicit phase variables.

Using a model parameterized for bcc iron, we study the

magnetic phase transition in these complex systems via the recently introduced, massively parallel
replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from
rigid lattice (spin only) simulations show that the transition temperature as well as the amplitude
of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the
results were found to be sensitive to the particular choice of the interatomic potential.

I. INTRODUCTION

With the continuing developments in materials sci-
ence and engineering, a renewed interest has emerged
in understanding the temperature-dependent magnetic
properties pertaining to real materials. This demands
sophisticated and improved magnetic models that are ca-
pable of providing a more realistic depiction of the mate-
rial than that is possible with conventional spin models.
A novel class of such improved models that continues
to gain widespread attention are atomistic models that
treat the dynamics of the translational (atomic) degrees
of freedom on an equal footing with the spin (magnetic)
degrees of freedom [1-4]. We will refer to such models as
(coupled, dynamical) spin—lattice models. The motiva-
tion for these hybrid models is the substantial amount of
experimental and theoretical evidence that suggest the
strong phonon—magnon coupling in magnetic crystals,
particularly in transition metals and alloys [5, 6]. A pa-
rameterized spin—lattice model for bce iron developed by
Ma et al. [1] has been subjected to a number of sub-
sequent studies targeted towards understanding the dy-
namical behavior, including vacancy formation and mi-
gration [7, 8], and phonon—magnon interactions [9, 10].

Previous work on coupled spin-lattice systems was al-
most exclusively performed using the combined molecu-
lar and spin dynamics technique [1, 10], in which the cou-
pled equations of motion for all degrees of freedom are
simultaneously solved to obtain phase-space trajectories
in real time. A single study has been reported where par-
allel tempering Monte Carlo (MC) method was applied to
relatively small system sizes to investigate the magnetic
phase transition in iron [4]. In addition to the obvious
inflation of the phase space due to the inclusion of the ex-
tra spatial degrees of freedom, the coupling between the
spin and lattice subsystems may also pose a significant
challenge for the sampling due to the emergence of novel
excitations such as coupled phonon—magnon modes [9].

Thus, the study of reasonably large systems without com-
promising the accuracy and efficiency requires state-of-
the-art MC methods that effectively utilize modern com-
puting resources.

Among numerous MC methods introduced in the past
few decades, Wang-Landau sampling [11-13] stands out
as a powerful, yet a simple technique with only a few
adjustable parameters. Unlike canonical MC methods in
which the goal is to generate a sequence of microstates
from the canonical ensemble at a given temperature T,
the Wang—Landau method strives to deliver an estimate
of the density of states g(F), where E is the energy, as
the end product. In essence, this is accomplished by,
ideally, performing a random walk in energy space while
iteratively adjusting the density of states. The estimated
density of states can then be used to extract thermo-
dynamic properties for the entire temperature range of
interest. An inherent advantage of Wang—Landau sam-
pling is its ability to easily overcome free energy barriers.
Thus the method has been frequently applied for systems
with rough free energy landscapes such as spin glasses,
liquid crystals, polymers and proteins etc. [14-17].

The recently introduced replica-exchange Wang—
Landau (REWL) framework [18-22] further pushes the
limits of Wang-Landau sampling by directly exploiting
the power of the modern parallel computing systems. In
this approach, the total energy range is divided into a
set of overlapping windows that are concurrently sam-
pled by independent random walkers. Adopting the
concept of conformational swapping from parallel tem-
pering [23, 24|, occasional configurational (replica) ex-
changes between overlapping windows are allowed, facil-
itating each replica to traverse through the entire energy
range.

In this paper, we explore the feasibility and the effi-
cacy of using the REWL method for coupled spin—lattice
systems that are specifically parameterized for bce iron.
In Sec. II, we describe the system Hamiltonian and the
parameterization that we adopt, and provide a detailed



description of the REWL method. In Sec. III, we present
our results and analysis, with emphasis on exploring the
impact of the phonons on the magnetic phase transition,
as well as the sensitivity of the results to different inter-
atomic potentials.

II. MODEL AND METHODS

A. Coupled spin—lattice Hamiltonian for bcc iron

Let us consider a classical system of IV magnetic atoms
of mass m, described by their positions {r;} and the ori-
entations {e;} of the atomic spins. The corresponding
Hamiltonian can be written as

H=U({ri}) - Z Jij({rr})e: - ey, (1)

i<j

where U({r;}) represents the spin-independent (non-
magnetic) scalar interaction between the atoms, and
the Heisenberg-like interaction with the coordinate-
dependent exchange parameter J;; ({ry}) specifies the ex-
change coupling between the spins.

Since the theoretical framework for interaction poten-
tials that specifically exclude magnetic contributions is
not yet available, we construct U({r;}) as

U({r:}) = Usam({r:}) — &0, (2)

where Uganm represents a conventional interatomic po-
tential for bee iron based on the embedded atom model
(EAM), and Ef;?;md = — > i; Jij({rr}) is the energy
contribution from a collinear spin state which we sub-
tract out to eliminate the magnetic interaction energy
implicitly contained in Ugan. With the chosen form of
U({r;}), the Hamiltonian (1) provides the same energy
as Ugawm for the ferromagnetic ground state at 0 K.

For Ugawm, we choose two well-established EAM po-
tentials for bec iron, namely, the Finnis—Sinclair poten-
tial [25, 26], and the Dudarev—Derlet “magnetic” poten-
tial [27, 28]. Introduced in 1984, the Finnis—Sinclair (FS)
model is one of the oldest and most frequently used many-
body potentials for bee iron. The theoretical foundation
of the F'S potential is based on a second-moment approx-
imation to the tight binding density of states. Despite
its simple empirical form and the short cut-off distance,
the F'S potential can reproduce bulk material properties,
such as bulk moduli and elastic constants, reasonably ac-
curately [29]. Hence, it has long been a popular choice
among materials scientists. However, it is not suitable
for modeling highly disordered systems such as intersti-
tial and vacancy configurations since the repulsive part
of the potential is too “soft,” and thus tends to produce
nonphysical results for such systems [30, 31].

Among various empirical potentials derived for bcc
iron, the recently introduced Dudarev—Derlet (DD) po-
tential stands out due to its unique feature of taking the
local magnetic structure into account when determining
the interatomic forces. The DD potential is based upon
the Stoner and the Ginzburg-Landau models and is mo-
tivated by the fact that the presence of magnetism signifi-
cantly contributes to the stability of the crystal structure
in iron-based materials [32, 33]. It was then parameter-
ized using a wide range of material properties, including
bulk cohesive energy, lattice constants, elastic constants,
and vacancy formation energies corresponding to both
bee and fee configurations, as well as magnetic and non-
magnetic phases [27]. The DD potential does not treat
the orientational dynamics of the atomic moments, and
therefore, the treatment of non-collinear spin configura-
tions at finite temperatures is outside its domain of ap-
plicability. To achieve this, one needs to incorporate the
dynamics of the spin orientations explicitly [1].

For modeling the exchange interaction J;;({rx}), we
use a simple pairwise function parameterized by first-
principles calculations [1]

J(rij) = Jo(1 = 1ij [1e)*O(re — 14j), (3)

where r;; = |r; — r;|, Jo = 0.90490177 eV, r, = 3.75 A,
and O(z) is the Heaviside step function.

B. Replica-exchange Wang—Landau Monte Carlo
sampling

The foundation for the Wang—Landau approach is to
recognize that the canonical partition function for a sys-
tem with discrete energy levels can be written as a sum-
mation over all energies in the form

Z=3"g(B)e ", (4)
E

where ¢g(F) is the density of states. If g(E) is known, the
problem is essentially solved since one can directly esti-
mate the ensemble average of any thermodynamic func-
tion of E as

NVT EEQ(E)e_BE ’

The goal of Wang—Landau sampling is to iteratively
improve the estimate of g(FE) in a controlled fashion,
while performing a guided walk in energy space that
eventually leads to the accumulation of a uniform en-
ergy histogram as the estimate of g(F) converges to its
true value.

1. The original Wang-Landau algorithm

At the beginning of the Wang-Landau simulation, the
desired total energy range E € [Emin, Pmax| for which



g(E) should be obtained is determined. For systems with
continuous energy domains, the total energy range is di-
vided into bins with size 0 E appropriately chosen accord-
ing the desired level of resolution in g(E). Since g(E) is
unknown in the beginning of the simulation, an initial
guess of g(F) = 1 is assigned for all energies. Then,
starting from an arbitrary initial state of the system, a
random walk in the configurational space is performed
by sequentially generating trial states. During each MC
step, a new trial state x,, is generated by applying an
MC trial move on the current state x,,. The new state
is accepted according to the probability

P(X — X,) = min [1,

If the trial state x, is accepted, the density of states
entry for F(x,,) is updated as g(E(xy)) = g(E(x,)) X f,
where f is the “modification factor” which we initially
set to fo = el. If the trial state is rejected, the entry for
the old state is updated as g(E(xm)) = g(E(xpm)) X f.
The random walk is continued until all energy bins
have been visited sufficiently often. Different ways of
checking this condition have been proposed [11, 12, 34,
35]. In the conventional version, one could maintain a
histogram H(FE) of the visited energies. When all the
entries in the histogram are greater than a certain per-
centage of the average histogram value, the histogram is
considered to be “flat”. At this point, the modification
factor is reduced, for example by f — \/f, the histogram
is reset to zero, and another iteration of the random walk
is initiated. This process is repeated until the modifica-
tion factor f reaches a predefined terminal value, say
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2. Replica exchange framework for massively parallel
Wang—Landau sampling

In REWL sampling, the global energy range
[Emin, Pmax] 1s divided into h smaller windows, each of
which overlaps with its nearest neighbors on both sides
with an overlap ratio o (a schematic diagram is shown
in Fig. 1). In each window, m random walkers are
employed. Each walker has its own g¢;(E) and H;(FE),
0 < i < (hxm), which are updated independently. Once
all walkers within an energy window have individually
satisfied the flatness criterion, their estimates for g(FE)
are averaged out and distributed among each other be-
fore simultaneously proceeding to the next iteration. The
simulation is terminated when the modification factors
for all windows have reached the terminal value fgpa;.

During the simulation, after every n MC steps, replica
exchanges between walkers in adjacent energy windows
are proposed. For every walker i, a “swap partner” j is
chosen randomly from one of the adjacent windows. If x
and y are the current configurations of the walkers ¢ and
7, the two configurations are interchanged according to

L~ L]
: |

Emin Emax

FIG. 1. Partitioning the global energy range into seven win-
dows with overlap o = 75%. The arrows indicate the com-
munication pathways between neighboring windows for the
replica-exchange attempts.

the probability

gi(E(x))g; (E(y))

B G (E()g;(Bx)) ]’

RE

= min |1,

(7)

where ¢;(F(x)) is the current estimate for the density of
states of the walker i with energy F(x).

At the end of the simulation, the parallel Wang—
Landau method provides multiple, overlapping fragments
of g(E). These fragments are joined at points where the
slopes of Ing(F) (i.e. dlng(F)/dE, the inverse micro-
canonical temperature) best coincide. This practice re-
duces the introduction of artificial kinks in the combined
g(FE) due to the joining process and minimizes artificial
errors in thermodynamic quantities [19]. Any residual
systematic error is almost always less than the remain-
ing (small) statistical error.

C. Monte Carlo trial moves for coupled
spin—lattice systems

For coupled spin—lattice systems, the configurational
space that one seeks to sample via MC methods con-
sists of 2N phase variables: {x} = {r1,rs, -+ ,ry, €1, €2,

-,en}. For effectively sampling this configurational
space with respect to both the atomic coordinates and
the spins, we employ the following two trial moves.

1. Single atom displacement move
Displace the chosen atom i to a random position r/
within a sphere centered at its original position r;:
r, =r; + R, where |R| < Rpax

2. Single spin rotation move
Assign a new random direction to the spin of the
chosen atom i.

During each MC step, we randomly choose an atom and
perform one of the above trial moves at random with
equal probability. Completion of 2NV such MC steps con-
stitutes a single “MC sweep”.
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FIG. 2. Comparison of the temperature dependence of the
internal energy for coupled spin-lattice systems of size L = 20
using the Dudarev-Derlet [“spin + lattice (DD)”] and Finnis-
Sinclair [“spin + lattice (FS)”] potentials. Error bars are
smaller than the symbols.

III. RESULTS

Our simulations were performed on a cubic cell of size
L = 20 (16000 atoms; 2 atoms per unit cell) with peri-
odic boundary conditions. To explore the sensitivity of
the results to the particular choice of EAM potential, we
performed simulations using both Dudarev—Derlet (DD)
and the Finnis-Sinclair (FS) potentials [25-28]. The
corresponding global energy ranges were chosen to be
[-67200 eV, —63200 eV] and [—67200 eV, —62080 eV],
respectively, for the DD and FS potentials. For both
cases, 189 energy windows with an overlap o = 75% were
used, and a single walker per window (m = 1) was em-
ployed. To discretize the energy space, each window was
divided into 2000 energy bins. Replica exchanges be-
tween neighboring windows were proposed every 60 MC
sweeps. With these simulation parameters, we observed
acceptance rates for the replica exchanges in the range
of 49 — 55%. For checking the convergence of ¢(FE),
an 80% flatness criterion and a final modification fac-
tor of In fana = 1 x 10~® were used. For both poten-
tials, the full convergence of g(E) was achieved in about
1 x 108 MC sweeps, which took less than a week on a
48-core, 128GB-RAM AMD Opteron cluster with Infini-
Band connectivity.

To reduce statistical fluctuations in the estimated ther-
modynamic quantities, we averaged over the results of 15
independent runs for the DD potential, and 11 runs for
the FS potential. Fig. 2 shows the comparison of the
temperature dependence of the internal energy per atom
obtained for the two potentials. For the whole tempera-
ture range considered, the internal energy per atom ob-
tained for the F'S potential is approximately 0.03-0.04 eV
higher than that for the DD potential. Fig. 3 shows the
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FIG. 3. Specific heat as a function of temperature for L = 20
with [“spin + lattice (DD)” and “spin + lattice (FS)”] and
without [“spin only”] the influence of the lattice vibrations;
(a) expanded temperature range [500 K, 1200 K] including the
experimental results for Cp obtained from Ref. [36] and the
corresponding C'y values calculated from the Cp data; (b)
a close-up view in the vicinity of the peak positions. The
vertical arrows in both (a) and (b) mark the Curie tempera-
ture T ~ 1043 K as predicted by the peak position of the
experimental C'p curve.

specific heat curves for the two potentials, along with the
results obtained from rigid lattice (spin only) simulations
in which the atoms were held fixed at perfect bee lattice
positions [22]. Also shown in the subset (a) are the ex-
perimental results for the constant-pressure heat capacity
Cp, and the corresponding C'y values calculated from the
Cp data [36] using the relation Cy = Cp — VT'a? /B,
where o and B are the thermal expansion coefficient
and the isothermal compressibility, respectively. Due to
the lack of thermal expansion coefficient data, Cy values
above 1000 K are not given [36]. For a fair comparison
with the experimental results, we have added %k B to the
DD and FS results to include the contribution of the ki-
netic energy based on the equipartition theorem. For the
rigid lattice results, 3kp was added to include the contri-
bution of both the kinetic energy and the lattice potential



energy. The vertical arrows in both (a) and (b) mark the
Curie temperature 7. ~ 1043K as predicted by the
peak position of the experimental Cp curve. The differ-
ence between the results for the two different embedded
atom potentials is clearly larger than the respective error
bars, but both sets of results differ markedly from the
estimated values of Cy extracted from experiment. The
peak in the specific heat corresponding to the rigid lattice
simulations is approximately 30 K higher than the ex-
perimental Curie temperature. The introduction of lat-
tice vibrations further pushes the peak position to higher
temperatures by several degrees. Moreover, lattice vibra-
tions reduces the amplitude of the peak, an effect which
is more pronounced for the case of the DD potential.
Specific heat data for the simple cubic Heisenberg ferro-
magnet [37] has shown that the location of the specific
heat peak increases as ~ 0.7L~ /%7, Hence, extrapola-
tion of our data to infinite size would change the result
very little, as also indicated by exemplary simulations at
other system sizes.

IV. SUMMARY

In conclusion, we have performed highly parallel
replica-exchange Wang-Landau simulations to investi-
gate the magnetic phase transition in a coupled spin—
lattice model parameterized for bee iron. The high level
of precision achieved in our simulations has allowed us to
make careful comparisons between the results obtained
for two different interatomic potentials (FS and DD),
and simulations performed on rigid lattices. Such a com-
prehensive analysis was only possible due to the signifi-
cant speedup rendered by the parallel, replica-exchange
scheme, without any loss of accuracy or precision. While
the complete analysis presented in this paper would take
of the order of 100 years for the serial Wang-Landau
method performed on a single core processor, we obtained
all the results within a few months using the parallel

scheme.

Our results indicate that the presence of lattice vibra-
tions only marginally effects the transition temperature
and the amplitude of the peak in the specific heat curve.
This suggests that the classical Heisenberg model already
provides a reasonable depiction of the magnetic phase
transition in bee iron. We also find that the results are
sensitive to the particular choice of the interatomic po-
tential, particularly at temperatures further away from
the critical temperature T,.. As the temperature increases
beyond T, the specific heat obtained using the F'S poten-
tial gradually deviates from that of the rigid lattice sim-
ulations, whereas below T, a reasonable agreement with
the rigid lattice results can be observed. In contrast, the
specific heat obtained using the DD potential is higher
than that of the rigid lattice simulations up to about
T = 800 K, then remains smaller in comparison to the
rigid lattice results until about T" = 1100 K, and there-
after starts to gradually converge with the rigid lattice
results. The differences in the results for the two EAM
potentials can be attributed to the subtle differences in
the ways which the anharmonic effects are captured in
these potentials which, in turn, effect the magnetic prop-
erties of the system via spin-lattice coupling.
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