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Abstract

The main objective of this work is to perform a detailed comparison of the lattice Boltzmann

equation (LBE) and the recently developed discrete unified gas-kinetic scheme (DUGKS) methods

for direct numerical simulation (DNS) of the decaying homogeneous isotropic turbulence (DHIT)

and the Kida vortex flow in a periodic box . The flow fields and key statistical quantities computed

by both methods are compared with those from pseudo-spectral (PS) method at both low and

moderate Reynolds numbers. The results show that the LBE is more accurate and efficient than

the DUGKS, but the latter has a superior numerical stability, particularly for high Reynolds number

flows. In addition, we conclude that the DUGKS can adequately resolve the flow when the minimum

spatial resolution parameter kmaxη > 3, where kmax is the maximum resolved wavenumber and η

is the flow Kolmogorov length. This resolution requirement can be contrasted to the requirements

of kmaxη > 1 for the pseudo-spectral method and kmaxη > 2 for LBE. It should be emphasized

that although more validations should be conducted before the DUGKS can be called a viable tool

for DNS of turbulent flows, the present work contributes to the overall assessment of the DUGKS,

and provides a basis for further applications of DUGKS in studying the physics of turbulent flows.
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I. INTRODUCTION

In the study of turbulent flows, the ultimate objective is to obtain accurate coarse-grained

quantitative theories or models. However, experience over more than a century has shown

it to be notoriously difficult [1]. Fortunately, the ever-increasing power of computers makes

it possible to calculate relevant properties of turbulent flows by direct numerical simulation

(DNS). Significant insight into turbulence physics has been gained from the DNS of some

idealized flows that cannot be easily obtained in the laboratory [2–4]. The conventional DNS

is based on the Navier-Stokes equations (NSEs), which are a set of second-order nonlinear

partial-differential equations (PDE). However it is usually involute and computationally ex-

pensive to deal with the nonlinear and non-local convection term and pressure-gradient term

in the NSEs [1]. Therefore, it is desirable to find an alternative numerical method for DNS

which not only can accurately capture all the scales of turbulence, but is simpler and more

efficient. Recently, Boltzmann equation based kinetic schemes have received particular at-

tentions as alternative solvers to the NSEs due to some distinctive features. Different from

the NSEs, the Boltzmann equation is a first-order linear PDE, and the nonlinearity locally

resides in its collision term; both make such schemes to be easily realized and parallelized to

have a high computational efficiency. It has been argued that the kinetic equation with lo-

cal nonlinearity is more feasible to handle the discontinuities or unresolved flow regions [5].

Furthermore, the Boltzmann equation provides a theoretical foundation for the hydrody-

namic description from the underlying microscopic physics, and describes the phenomenon

of fluid flows in the statistical mechanics framework. This physical mechanism is inherently

consistent with the physical process of the turbulent flows which are characterized by its

statistical behavior [6]. Therefore, the kinetic schemes based on the Boltzmann equation

have a great potential for DNS of turbulent flows [7].

In recent years, some kinetic schemes have been utilized to simulate turbulent flows, such

as the lattice Boltzmann equation (LBE) methods [8–22] and the gas kinetic schemes [23–

27]. Particularly, the LBE methods have been successfully applied to complex and multiscale

flows due to its simplicity in formulation and versatility [28–31]. The potential of the LBE

methods for DNS of the turbulent flows has been demonstrated shortly after its emergence

by comparing with pseudo-spectral (PS) simulations of the decaying homogeneous isotropic

turbulence (DHIT) [8, 9] and turbulence shear flows [10, 11]. An appealing feature of

the LBE methods in turbulence simulations, as a scheme of second-order spatial accuracy,
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is that it has very low numerical dissipation compared to the second-order conventional

Computational Fluids Dynamics (CFD) methods [32]. It has been demonstrated that the

larger numerical dissipation in second-order accurate conventional CFD translates into the

greater resolution requirements [3].

Recently, starting from the Boltzmann equation, a discrete unified gas-kinetic scheme

(DUGKS) has been proposed for flows in all Knudsen regimes [33, 34]. Although sharing

a common kinetic origin, there are some distinctive differences between DUGKS and LBE

methods. In the standard LBE, the phase space and time step are coupled due to the

particle motion from one node to another one within a time step [31], but the DUGKS has

no such a restriction and the time step is independently determined by Courant-Friedrichs-

Lewy (CFL) condition [33]. In addition, the streaming process in LBE makes it difficult

to be extended to non-uniform mesh, while the DUGKS can use arbitrary meshes [35].

Although some efforts have been made to release the close coupling between the mesh and

discrete velocities [36–42], the decoupling also destroys the nice features of the standard

LBE. For example, many of the existing finite volume (FV) LBE methods suffer from large

numerical dissipation and poor numerical stability [40, 41]. More importantly, there are

modeling difference in LBE and DUGKS in the treatment of particle evolution. In the

LBE, the particle streaming and collision processes are splitted. But, these two processes

are fully coupled in DUGKS. It has been demonstrated that such a strategy ensures a low

numerical dissipation feature [43, 44]. It should be noted that although in some cases a

finite-volume scheme can be identical to a finite-difference scheme, the DUGKS does not

reduce to the standard LBE method generally, because the shift (streaming) operation in

the LBE cannot be realized for some discrete populations in the FV framework (e.g., the

diagonal populations in the D2Q9 model). Furthermore, in DUGKS the flux is evaluated

by solving the evolution equation rather than interpolation. Therefore, the DUGKS would

not be identical to the LBE. Consequently, these dynamic differences between the LBE and

DUGKS methods determine the quality of solution in flow simulations. A comparative study

of the LBE and DUGKS methods for laminar flows in the nearly incompressible limit has

been made recently [45], which demonstrates that the DUGKS has the same accuracy as the

LBE, but exhibits a superior numerical stability. The superiority of the DUGKS compared

to the LBE methods for laminar flows motivates us to make a further comparative study of

DUGKS and LBE methods for turbulent flows.

Our long term goal concentrates on providing some insights into the physics of complex
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turbulent flows by using DUGKS as a DNS tool. At a first step, the validation of the DUGKS

for simulating simple turbulent flows must be undertaken. The DHIT is one of such basic

flows in turbulence study, and also a canonical case to validate a numerical scheme for DNS

of turbulent flows. The objective of this work is to make a detailed comparison of the LBE

and DUGKS methods by simulating the DHIT in a periodic box. To date, the pseudo-

spectral (PS) method is well-established as the most accurate numerical tool for DNS of

the DHIT. Therefore the DUGKS numerical results will be validated against those from the

pseudo-spectral (PS) method. In addition, we use the LBE with the multiple relaxation

time (MRT-LBE) collision model in this work due to its superiority to the single relaxation

collision model [45]. The comparative study covers the following aspects of the simulated

flows: (i) the instantaneous velocity and vorticity fields; (ii) the evolutions of kinetic energy,

dissipation rate and enstrophy; (iii) the energy and the dissipation rate spectra; (iv) the

evolutions of the Kolmogorov length scale and the Taylor micro-scale length; and (v) the

evolutions of the averaged velocity-derivative skewness and flatness. Furthermore, DNS of

the Kida flow is also performed by the LBE and DUGKS methods, and some comparisons

are performed in terms of the vorticity, evolutions of the total kinetic energy, dissipation

rate, enstrophy and Kolmogorov length scale, the longitudinal and transverse correlations,

and the pressure-velocity correlations.

The remainder of this paper is organized as follows: in Sec. II, we provide a brief introduc-

tion of the DUGKS and MRT-LBE methods; Sec. III introduces the DHIT and Kida vortex

flow, and the quantities to be computed; Sec. IV presents the numerical results followed by

a summary of conclusions.

II. NUMERICAL METHODS

In this section, the essentials of DUGKS and MRT-LBE will be introduced briefly first.

A more detailed description can be found in the references [13, 33].

A. The DUGKS method

The DUGKS is based on the BGK collision model [46], which begins with the model

Boltzmann equation,
∂f

∂t
+ ξ · ∇xf = Ω ≡ f eq − f

τ
, (1)
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where f = f(x, ξ, t) is the particle distribution function with particle velocity ξ at position

x and time t, and f eq is the Maxiwellian equilibrium distribution function,

f eq =
ρ

(2πRT )D/2
exp

(
−(ξ − u)2

2RT

)
, (2)

where R is the gas constant, D is the spatial dimension, ρ is the density, u is the fluid

velocity, and T is the temperature. It should be noted that the dimensions of f and f eq

are both kg/
[
mD · (m/s)D

]
. For incompressible flow (i.e., when the Mach number Ma is

small), the Maxwellian distribution can be approximated by its Taylor expansion around

zero particle velocity. As a result, the expanded equilibrium distribution function becomes

f eq =
ρ

(2πRT )D/2
exp

(
−| ξ |2
2RT

)[
1 +

ξ · u
RT

+
(ξ · u)2
2(RT )2

− | u |2
2RT

]
. (3)

In order to obtain the correct NSEs in the limit of low Mach number, the discrete velocity set

should be chosen so that the following quadratures of the expanded equilibrium distribution

function hold exactly

∫
ξkf eqdξ =

∑

i

ωiξ
k
i f

eq(ξi), 0 ≤ k ≤ 3 (4)

where ωi and ξi are the weights and points of the numerical quadrature rule. Based

on the formulation of Eq. (3), it is natural to choose a Guassian quadrature with ωi =

Wi(2πRT )D/2exp
(

|ξi|2

2RT

)
, in which Wi is the weight coefficient corresponding to the particle

velocity ξi.

In the present study, we use the nineteen velocities in three dimensions, i.e., the D3Q19

model, for both the DUGKS and LBE, where

ξi =






(0, 0) i = 0

(±1, 0, 0) c, (0,±1, 0) c, (0, 0,±1) c i = 1− 6,

(±1,±1, 0) c, (±1, 0,±1) c, (0,±1,±1) c i = 7− 18,

(5)

where c =
√
3RT , and the corresponding weight coefficients are W0 = 1/3, W1,...,6 = 1/18

and W7,...,18 = 1/36.

Once the quadrature rule is chosen, we can define a discrete distribution function,

fi(x, t) = ωif(x, ξi, t), which satisfies the following equation

∂fi
∂t

+ ξi · ∇xfi = Ωi ≡
f eq
i − fi
τ

. (6)
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where f eq
i = ωif

eq(ξi) is the discrete expanded equilibrium distribution function that can be

written as

f eq
i = Wi

[
δρ+ ρ0

(
ξi · u
RT

+
(ξi · u)2
2(RT )2

− | u |2
2RT

)]
, (7)

where the density has been expressed as ρ = δρ+ρ0, in which δρ is the density fluctuation, ρ0

is the constant mean density of the fluid which is usually set to be 1. It should be emphasized

that with the discrete velocity set, the dimensions of fi and f eq
i are both kg/mD. Then, the

fluid density and velocity can be obtained from the discrete distribution function,

ρ = ρ0 + δρ, δρ =
∑

i

fi, ρ0u =
∑

i

ξifi (8)

The DUGKS is a finite-volume scheme in which the computational domain is divided

into a set of control volumes. Then integrating Eq. (6) over a control volume Vj centered at

xj from tn to tn+1 (the time step ∆t = tn+1 − tn is assumed to be a constant in the present

work), and using the midpoint rule for the integration of the flux term at the cell boundary

and trapezoidal rule for the collision term inside each cell [33], we can get the evolution

equation of DUGKS

f̃n+1
i,j = f̃+,n

i,j − ∆t

|Vj|
F

n+1/2
i , (9)

where

F
n+1/2
i =

∫

∂Vj

(ξi · n) fi
(
x, tn+1/2

)
dS, (10)

is the flux across the cell interface, and

f̃i = fi −
∆t

2
Ωi, f̃+

i = fi +
∆t

2
Ωi. (11)

Based on the compatibility condition and the relationship between fi and f̃i, the density ρ

and velocity u can be computed by

ρ = ρ0 + δρ, δρ =
∑

i

f̃i, ρ0u =
∑

i

ξif̃i. (12)

The key ingredient in updating f̃i is to evaluate the interface flux F
n+1/2
i , which is solely

determined by the distribution function fi(x, tn+1/2) there. In DUGKS, after integrating

Eq. (6) along a particle path within a half time step (h = ∆t/2), the evaluation of the

distribution function fi(x, tn+1/2) at the cell interface can be traced back to the interior of

neighboring cells,

f̄i(xb, tn + h) = f̄+
i (xb, tn)− hξi · σb, (13)
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where

f̄i = fi −
h

2
Ωi, f̄+

i = fi +
h

2
Ωi, (14)

f̄i
+
(xb, tn) and the gradient σb = ∇f̄i

+
(xb, tn) can be approximated by linear interpolation.

For example, in the one dimensional case, the reconstructions become

f̄i
+
(xj+1/2, tn) = f̄i

+
(xj , tn) + σj+1/2(xj+1/2 − xj), (15)

where

σj+1/2 =
f̄i

+
(xj+1, tn)− f̄i

+
(xj , tn)

xj+1 − xj

. (16)

Note that the particle collision effect from tn to tn+1 is included in the above reconstruction

of the interface distribution function. This is the key for the success of the DUGKS. Owing to

the coupled treatment of the particle collision and transport process in the reconstruction of

the distribution function at cell interfaces, DUGKS is a self-adaptive scheme for different flow

regimes. It has been shown in Ref. [33] that the reconstructed distribution function reduces

to the Chapman-Enskog one approximation at the Navier-Stokes level in the continuum

limit, and to the free-transport approximation in the free-molecular limit.

Based on the compatibility condition and the relationship between fi and f̄i, the density

ρ and velocity u at the cell interface can be obtained,

ρ = ρ0 + δρ, δρ =
∑

i

f̄i, ρ0u =
∑

i

ξif̄i (17)

from which the equilibrium distribution function f eq
i (xb, t

n + h) at the cell interface can

be obtained. Therefore, based on Eq. (14) and the obtained equilibrium state, the real

distribution function at the cell interface can be determined from f̄i as,

fi(xb, tn + h) =
2τ

2τ + h
f̄i (xb, tn + h) +

h

2τ + h
f eq
i (xb, tn + h) , (18)

from which the interface flux term can be evaluated.

In computation, we only need to follow the evolution of f̃i in Eq. (9). The required

variables for its evolution are determined by [33]

f̄i
+
=

2τ − h

2τ +∆t
f̃i +

3h

2τ +∆t
f eq
i , (19)

f̃i
+
=

4

3
f̄i

+ − 1

3
f̃i. (20)
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B. The MRT-LBE method

In this work, we use the LBE with multiple-relaxation time collision model (MRT-LBE)

and the D3Q19 discrete velocity sets. The evolution equation of the MRT-LBE is

f(x + ξi∆t, tn +∆t) = f(x, tn)−M−1S [m(x, t)−meq(x, t)] , (21)

where M is an orthogonal transformation matrix converting the distribution function f from

discrete velocity space to the moment spacem, in which the collision relaxation is performed.

The basic idea of MRT-LBE is that the streaming sub-step is handled in the microscopic

lattice-velocity space but the collision sub-step is performed in the moment space. The

transformation between the microscopic velocity space and the moment space is carried out

by matrix operations as m = M · f , f = M−1 ·m. The diagonal relaxation matrix S specifies

the relaxation rates for the non-conserved moments.

The macroscopic hydrodynamic variables, including the density ρ and momentum, are

obtained from the moments of the mesoscopic distribution function f . In the nearly incom-

pressible formulation [47]

ρ = ρ0 + δρ, ρ0 = 1; δρ =
∑

i

fi, ρ0u = (jx, jy, jz)
T =

∑

i

ξifi. (22)

For the D3Q19 velocity model, the corresponding 19 orthogonal moments

m = (δρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz, mx, my, mz)
T

are defined through the element of the transformation matrix (each subscript runs from 0

to 18) as

M0,α = ||ξα||0, M1,α = 19||ξα||2 − 30, M2,α =
(
21||ξα||4 − 53||ξα||2 + 24

)
/2

M3,α = ξαx, M5,α = ξαy, M7,α = ξαz,

M4,α =
(
5||ξα||2 − 9

)
ξαx, M6,α =

(
5||ξα||2 − 9

)
ξαy, M8,α =

(
5||ξα||2 − 9

)
ξαz,

M9,α = 3ξ2αx − ||ξα||2, M11,α = ξ2αy − ξ2αz,

M13,α = ξαxξαy, M14,α = ξαyξαz, M15,α = ξαxξαz,

M10,α =
(
3||ξα||2 − 5

) (
3ξ2αx − ||ξα||2

)
, M12,α =

(
3||ξα||2 − 5

) (
ξ2αy − ξ2αz

)
,

M16,α =
(
ξ2αy − ξ2αz

)
ξαx, M17,α =

(
ξ2αz − ξ2αx

)
ξαy, M18,α =

(
ξ2αx − ξ2αy

)
ξαz.
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The equilibrium moments are defined as

ρ̃(eq) = ρ̃ = δρ, e(eq) = −11δρ+
19

ρ0

(
j2x + j2y + j2z

)
, ε(eq) = ωεδρ+

ωεj

ρ0

(
j2x + j2y + j2z

)
,

j(eq)x = jx = ρ0ux, j(eq)y = jy = ρ0uy, j(eq)z = jz = ρ0uz,

q(eq)x = −2

3
jx, q(eq)y = −2

3
jy, q(eq)z = −2

3
jz,

p(eq)xx =
1

3ρ0

[
2j2x −

(
j2y + j2z

)]
, p(eq)ww =

1

ρ0

[
j2y − j2z

]
,

p(eq)xy =
1

ρ0
jxjy, p(eq)yz =

1

ρ0
jyjz, p(eq)xz =

1

ρ0
jxjz,

π(eq)
xx = ωxxp

(eq)
xx , π(eq)

ww = ωxxp
(eq)
ww ,

m(eq)
x = m(eq)

y = m(eq)
z = 0,

with the following relaxation parameters

S = diag (0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) .

The kinematic viscosity ν and bulk viscosity ζ are related to the relaxation rates s9 and s1,

respectively, where

ν =
1

3

(
1

s9
− 1

2

)
c∆x, (23)

ζ =
5− 9c2s

9

(
1

s1
− 1

2

)
c∆x, (24)

where c2s = RT is the speed of sound.

It is noted that some of the relaxation parameters do not affect the simulated flow, but

may affect the numerical stability of the code. Specifically, s1 determines the bulk viscosity

which could absorb low-amplitude acoustic oscillations.

III. DECAYING TURBULENT FLOWS

A. Decaying Homogeneous Isotropic Turbulence

The DHIT in a three-dimensional box with periodic boundary conditions in all three

directions is a standard test case to validate numerical scheme for DNS. At the initial time,

a random flow field is introduced with the kinetic energy contained only in the large eddies

( i.e., at low wave numbers). This initial flow is unstable and large eddies will break up,

transferring their energy successively to smaller and smaller eddies with high wave numbers

until the eddy scale is sufficiently small, in which the eddy motions are stable and the
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viscosity is effective in dissipating the kinetic energy. After some time, a realistic DHIT will

develop with some larger eddies supply kinetic energy for smaller eddies and the viscous

action controls the size of the small eddies.

In the present work, the incompressible initial velocity field u0 (∇ · u0 = 0) is specified

by a Gaussian field with a prescribed kinetic energy spectrum [17]:

E0(k) := E(k, t = 0) = Ak4e−0.14k2 , k ∈ [kmin, kmax], (25)

where k is the wavenumber, the magnitude A and the range of the initial energy spectrum

[kmin, kmax] determines the total initial kinetic energy K0 in the simulation. The kinetic

energy K, enstrophy, dissipation rate ǫ are respectively given by

K(t) =

∫
E(k, t)dk, Ω(t) =

∫
k2E(k, t)dk, ǫ(t) = 2νΩ(t), (26)

where ν is the kinematic viscosity, and

E(k, t) =
1

2
û(k, t)û∗(k, t), (27)

where û and û∗ are velocity and its complex conjugate in the spectral space. The DHIT is

typically characterized by the Taylor microscale Reynolds number

Reλ =
u′λ

ν
(28)

where u′ is the root mean squared (rms) value of the turbulent fluctuating velocity u in a

given spatial direction and is defined by

u′ =
1√
3

√
〈u · u〉, (29)

here 〈·〉 designates the volume average; λ is the transverse Taylor microscale length

λ =

√
15ν

ǫ
u′. (30)

The other statistical quantities of interest are as follows:

η = 4

√
ν3/ǫ (31a)

D(k, t) = 2νk2E(k, t), (31b)

S(t) =
〈(∂xu)3〉+ 〈(∂yv)3〉+ 〈(∂zw)3〉

3 [〈(∂xu)2〉3/2 + 〈(∂yv)2〉3/2 + 〈(∂zw)2〉3/2]
(31c)

F (t) =
〈(∂xu)4〉+ 〈(∂yv)4〉+ 〈(∂zw)4〉

3 [〈(∂xu)2〉2 + 〈(∂yv)2〉2 + 〈(∂zw)2〉2]
(31d)

where η is the Kolmogorov length and D(k, t) is the energy dissipation rate spectrum; S(t)

and F (t) are the velocity-derivative skewness and flatness averaged over three directions,

respectively.
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B. Kida vortex flow

The Kida vortex flow is another decaying turbulent flow which has been well studied

by various LBE methods [20–22, 48]. The flow evolves from a simple deterministic and

symmetric initial condition to a state which resembles a fully developed turbulent flow. The

initial conditions for the flow field are given by

u(x, y, z) = U0 sin x (cos 3y cos z − cos y cos 3z ) (32a)

v(x, y, z) = U0 sin y (cos 3z cos x − cos z cos 3x ) (32b)

w(x, y, z) = U0 sin z (cos 3x cos y − cos x cos 3y ) , (32c)

where x, y, z ∈ [0, 2π], U0 is the initial velocity, and the periodic boundary conditions are

imposed in all directions.

In addition to one point statistics, we will also compare some two point statistics for the

Kida vortex flow, including the longitudinal correlation function [20, 21]

ρ11(r) =
〈u(x, y, z)u(x+ r, y, z)〉
〈u(x, y, z)u(x, y, z)〉 , (33)

transverse correlation functions

ρ22(r) =
〈v(x, y, z)v(x+ r, y, z)〉
〈v(x, y, z)v(x, y, z)〉 , (34a)

ρ33(r) =
〈w(x, y, z)w(x+ r, y, z)〉
〈w(x, y, z)w(x, y, z)〉 , (34b)

and the pressure-velocity correlation functions [49]

PU(r) = 〈|p(x, y, z)u(x, y, z)− p(x+ r, y, z)u(x+ r, y, z)|〉, (35a)

PV (r) = 〈|p(x, y, z)v(x, y, z)− p(x+ r, y, z)v(x+ r, y, z)|〉, (35b)

PW (r) = 〈|p(x, y, z)w(x, y, z)− p(x+ r, y, z)w(x+ r, y, z)|〉. (35c)

IV. NUMERICAL RESULTS

A. Decaying Homogeneous Isotropic Turbulence

1. Initial conditions

We perform the simulations of DHIT in a periodic box with the domain size L3 using

the LBE, DUGKS and PS methods. The focus is on the comparison of LBE and DUGKS
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results with those from the PS method which is used as a benchmark due to its superior

spatial accuracy. The PS method is same as in Ref. [17]. The units of LBE and DUGKS

are converted back to the spectral units to allow for a direct comparison. The conversion

requires a velocity scale Vs which is the ratio of the fluid velocity magnitude in LBE or

DUGKS units to the velocity magnitude in spectral units.

In the PS simulation, the domain size is set to be L3 = (2π)3; for the initial energy

spectrum E0(k) given by Eq. (25), we set A = 1.7414 × 10−2, kmin = 3 and kmax = 8 such

that the initial kinetic energy is K0 = 0.9241 and the rms velocity is u′
0 = 0.7849.

In the LBE and DUGKS simulations, we set the domain size L3 = N3, where N is the

number of the cells or lattices in each spatial direction. In addition, we must ensure that the

local Mach number (Ma) is small enough so that the flow is nearly incompressible, which can

be met by choosing a suitable Vs. In the simulations, we chose velocity scale Vs = 0.0408

which leads to the initial kinetic energy K0 = 1.5383 × 10−3, the corresponding initial

rms velocity u′
0 = 0.0320 and maximum velocity magnitude ‖u0‖max = 0.1660 so that the

maximum Mach number Ma = ‖u0‖max/cs = 0.2875, here cs =
√
RT ,RT = 1/3. The initial

velocity field and parameters used in the LBE and DUGKS simulations are identical except

the time step size ∆t. In LBE method, the time step size ∆t = ∆x = 1 in LBE units, while

in DUGKS it is solely determined by the CFL condition, i.e., ∆t = γ∆xmin/
√
2c, where

γ is the CFL number and ∆xmin is the minimum grid spacing and
√
2c is the maximum

discrete particle speed in D3Q19. In the DUGKS simulations, we set γ = 0.7071 such

that the time step ∆t = 0.5 for convenient comparison. Moreover, for the MRT-LBE,

the specific parameters are set to be ωε = ωxx = 0, ωεj = −475/63, s2 = s10 = 1.4,

s9 = s13 = ∆t/(3ν + 0.5∆t), s1 = 1.19, s4 = 1.2, and s16 = 1.98 [13].

TABLE I: Parameters used in the LBE, DUGKS and PS simulations.

method L N K0 u′0 ν

PS128 2π 128 0.9241 0.7849 1.4933 × 10−2

LBE128 128 128 1.5383 × 10−3 0.0320 1.2395 × 10−2

DUGKS128 128 128 1.5383 × 10−3 0.0320 1.2395 × 10−2

PS256 2π 256 0.9241 0.7849 1.4933 × 10−2

LBE256 256 256 1.5383 × 10−3 0.0320 2.4790 × 10−2

DUGKS256 256 256 1.5383 × 10−3 0.0320 2.4790 × 10−2
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Table I summarizes the parameters used in the simulations with these three methods.

Two mesh resolutions are considered in the simulations. In order to fix the initial Taylor

microscale Reynolds number Reλ = 26.06, in the PS simulation we set the kinematic viscosity

ν = 1.4933 × 10−2 for both resolutions, while in the LBE and DUGKS simulations, we set

the viscosity ν = 1.2395×10−2 and 2.4790×10−2 for the mesh resolutions of 1283 and 2563,

respectively. It should be noted that the flow is over resolved in the PS simulations as the

minimum spatial resolution parameter kmaxη is larger than 2.07 at 1283 and 4.15 at 2563,

respectively, where kmax is the maximum resolved wave number [50]. This implies that the

results from the PS simulations at the two grid resolutions would be identical. The non-

dimensional time step size, normalized by the turbulence eddy turnover time t0 = K0/ǫ0, is

∆t′ = ∆tǫ0/K0.

With the initial velocity field u0, the initial pressure p0 is obtained by solving the Poisson

equation in the spectral space for the PS method. As for the LBE and DUGKS methods,

besides the pressure p0, herein related to the density fluctuation by equation of the state, a

consistent initial distribution function including the non-equilibrium part should be specified,

which is achieved by using the iterative procedure described in [51].

2. Instantaneous velocity and vorticity fields

We compare the instantaneous velocity and vorticity magnitude obtained by LBE and

DUGKS methods with those from PS simulation on the xy plane at z = L/2. The vorticity

fields for all three methods are first computed in the spectral space, ω̃ = ik × ũ, and then

ω̃ is transferred back to the physical space using inverse fast Fourier translation (FFT).

Figure 1 shows the contours of normalized velocity magnitude ‖u‖/u′
0 and vorticity mag-

nitude ‖ω‖L/u′
0 at different non-dimensional times t′ = 0, 1.21, 6.08 and 12.16 on a mesh

of N3 = 1283. As shown in Figs. 1a and 1b, these three methods have the identical initial

fields with many large eddies; then small scale eddies are produced by vortex stretching as

shown in Figs. 1c and 1d; in the end, as shown in Figs. 1g and 1h, the small scale eddies

are dissipated by viscous actions. As shown in these figures, although the fields predicted by

the LBE and DUGKS methods are similar to each other, and very close to those from the

PS simulation in terms of vortex shapes and locations, the discrepancy between the both

kinetic methods and the PS method is still visible and increases over time.

We also conduct the simulations on a finer mesh of 2563 at Reλ = 26.06. As shown in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 1: Contours of normalized velocity magnitude ‖u‖/u′
0 (left column) and normalized

vorticity magnitude ‖ω‖L/u′
0 (right column) on the xy plane at z = L/2 at time

t′ = 0, 1.21, 6.08 and 12.16 (from top to bottom) with N3 = 1283. The solid red, green and

blue lines denote results of the PS, LBE and DUGKS, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2: Contours of normalized velocity magnitude ‖u‖/u′
0 (left column) and normalized

vorticity magnitude ‖ω‖L/u′
0 (right column) on the xy plane at z = L/2 at time

t′ = 0, 1.21, 6.08 and 12.16 (from top to bottom) with N3 = 2563. The solid red, green and

blue lines denote results of the PS, LBE and DUGKS, respectively.
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Fig. 2, again the velocity magnitude (left column) and vorticity magnitude (right column)

obtained from LBE and DUGKS methods are in good agreement with those from PS method.

It can be seen that both kinetic methods with the fine resolution give much better prediction

than those with the coarse one.

3. Statistical quantities

In this subsection, we compare some key statistical quantities, including both the low and

high order statistical quantities, obtained by the LBE and DUGKS methods with those from

the PS method. The simulations of these three methods are performed on both N3 = 1283

and 2563 mesh resolutions.

10
0

10
1

10
−20

10
−15

10
−10

10
−5

10
0

E
(k

)

k

 

 

t’=0 (PS)
t’=0 (LBE)
t’=0 (DUGKS)
t’=6.08 (PS)
t’=6.08 (LBE)
t’=6.08 (DUGKS)
t’=12.16 (PS)
t’=12.16 (LBE)
t’=12.16 (DUGKS)

(a)

10
0

10
1

10
−20

10
−15

10
−10

10
−5

10
0

E
(k

)

k

 

 

t’=0 (PS)
t’=0 (LBE)
t’=0 (DUGKS)
t’=6.08 (PS)
t’=6.08 (LBE)
t’=6.08 (DUGKS)
t’=12.16 (PS)
t’=12.16 (LBE)
t’=12.16 (DUGKS)

(b)

FIG. 3: The energy spectra E(k, t) with different mesh resolutions of (a) N3 = 1283 and

(b) N3 = 2563 at Reλ = 26.06.

We first compare the energy spectra (E(k)) and dissipation spectra (D(k)) at t′ = 0, 6.08

and 12.16. As shown in Figs. 3a and 4a, the results computed by the LBE and DUGKS

agree well with those from the PS counterparts. It should be noted that although there

are a little deviations in the high wavenumber region for the results of DUGKS on the

mesh of 1283, the values of the both spectra have decreased to the 10−10 magnitude of the

maximum initial value, which will not cause significant deviations on the integral quantities,
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such as the normalized kinetic energy K/K0 and dissipation rate ǫ/ǫ0 shown in Fig. 7a. This

discrepancy may be caused by the numerical dissipation, which is proportional to the mesh

size. Therefore we can refine the mesh resolution to reduce the numerical dissipation. As

expected, as shown in Figs. 3b and 4b, with mesh resolution of 2563 the results of DUGKS

show no visible difference with those from the LBE and PS simulations. We also compute

the difference of the spectra between both kinetic methods and the PS method, which is

defined by

∆S(k, t′) = ‖S(k, t′)− Sp(k, t
′)‖, (36)

where S denotes the results of energy spectra or dissipation rate spectra, and Sp represents

the results from the PS simulations. Figures 5 and 6 respectively show the differences of

energy spectra ∆E(k, t′) and dissipation rate spectra ∆D(k, t′) on both meshes. We observe

that with the mesh of 1283, the results obtained by LBE is slightly better than those from

the DUGKS when compared with the PS results, but there is no visible difference when

both methods used the fine mesh of 2563. These results indicate that the dissipation of the

DUGKS is slightly larger than the LBE method, though both LBE and DUGKS methods

have low numerical dissipation.

Secondly, we compare the evolutions of normalized kinetic energy K(t)/K0 and dissipa-
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FIG. 4: The dissipation rate spectra D(k, t) with different mesh resolutions of (a)

N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.
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FIG. 5: The energy spectra difference ∆E(k, t′) with different mesh resolutions of (a)

N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.
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FIG. 6: The dissipation rate spectra difference ∆D(k, t) with different mesh resolutions of

(a) N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.
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FIG. 7: Evolutions of the normalized total kinetic energy K(t)/K0 and the normalized

dissipation rate ǫ(t)/ǫ0 with different mesh resolutions of (a) N3 = 1283 and (b) N3 = 2563

at Reλ = 26.06.
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FIG. 8: Evolutions of the enstrophy Ω with different mesh resolutions of (a) N3 = 1283

and (b) N3 = 2563 at Reλ = 26.06.
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tion rate ǫ(t)/ǫ0 . As shown in Fig. 7, both K(t)/K0 and ǫ(t)/ǫ0 calculated by LBE and

DUGKS methods are in excellent agreement with those from PS simulation on both meshes.

Quantitatively, we compare the the maximum errors of K(t) and ǫ(t) relative to the PS

results, which is defined by

Rm(s) =

∥∥∥∥
s− sp
sp

∥∥∥∥
max

, (37)

where s = K(t) or ǫ(t), and sp is the corresponding quantity from the PS method. Here

we assume that the flow is regarded as adequately resolved when the relative error of the

dissipation rate R(ǫ) is less than 4%. As shown in Table II, the maximum relative errors

are less than 1% except that of ǫ(t) from the DUGKS with N3 = 1283 which reaches to

3.9% around the peak value, and it decreases to 0.49% in the 2563 simulation. Although

these discrepancy can be seen more clearly from the evolution of the enstrophy shown in

Fig. 8a, the maximum relative difference is less than 4%, which means that the given flow is

adequately resolved by the DUGKS with the minimum spatial resolution parameter kmaxη =

3.12. Moreover, these difference can be reduced by using the finer mesh with the minimum

kmaxη = 6.24 as shown in Fig. 8b, which indicates that the DUGKS is more dissipative than

the LBE method. We also observe that the normalized energy dissipation rate attains a

peak value at t′ = 0.23 due to the energy cascade, before decreasing with increasing time

due to the viscous dissipation.

TABLE II: The maximum errors of K(t)/K0 and ǫ(t)/ǫ0 relative to PS results.

Case LBE128 LBE256 DUGKS128 DUGKS256

Rm(K) 0.42% 0.34% 0.84% 0.49%

Rm(ǫ) 0.83% 0.31% 3.90% 0.49%

Thirdly, we compare the evolutions of the Kolmogorov length λ and the Taylor microscale

length η. The Kolmogorov length is the smallest scale in turbulence flow, at which the viscous

effect dominates and the turbulence kinetic energy is converted irreversibly into heat. The

Taylor micro-scale is the intermediate scale between the largest and the smallest scales

at which fluid viscosity significantly affects the dynamics of turbulent eddies in the flow.

Figures 9 and 10 show the evolutions of the Kolmogorov length scale and Taylor micro-scale

length. It is found that results of both scales from the DUGKS and the LBE methods agree

well with those from the PS method. We also note that there are slightly differences around
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FIG. 9: Evolutions of the Kolmogorov length η with different mesh resolutions of (a)

N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.
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FIG. 10: Evolutions of the Taylor microscale length λ with different mesh resolutions of

(a) N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.
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the minimum of λ obtained by the DUGKS with the mesh resolution of 1283, but as shown

in Table III, the maximum relative errors of λ and η are all less than 2%, and reduce to

0.27% as the resolution increases to 2563.

TABLE III: The maximum errors of λ and η relative to PS results.

Case LBE128 LBE256 DUGKS128 DUGKS256

Rm(λ) 0.21% 0.08% 1.00% 0.12%

Rm(η) 0.44% 0.12% 1.84% 0.27%
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FIG. 11: Evolutions of velocity-derivative skewness S with different mesh resolutions of (a)

N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.

The time evolutions of the averaged velocity-derivative skewness and flatness predicted by

these three methods are shown in Figs. 11 and 12, respectively. It can be seen that the results

of LBE with the mesh of 1283 are in good agreement with the PS solutions, while those of

the DUGKS show some high frequency oscillations, although the tendency agrees reasonably

with the results from the PS simulation. The oscillations can be attributed to the acoustic

waves in the system. The remarkable discrepancy between the LBE and DUGKS results may

be caused by the following reasons: firstly, in the MRT-LBE model, the bulk viscosity can
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be adjusted by tuning the relaxation time s1 to absorb the acoustic waves, whereas the BGK

based DUGKS doesn’t have such a dissipation mechanism due to the single relaxation time

in the BGK equation. Actually, the results of MRT-LBE with small bulk viscosity also have

high frequency oscillations shown in Ref. [17], where the bulk viscosity ζ = 0.0273 compared

to ζ = 0.1134 in the present simulation; secondly, since the velocity-derivative skewness and

flatness are the third order and four order moments of ∇u, respectively, it is a significant

challenge for a second-order method to compute such high-order quantities that are governed

by small scales. As demonstrated, both the LBE and DUGKS methods have small numerical

dissipation so that both methods can accurately compute the low-order statistic quantities

that are governed by large scales. But the numerical dissipation of DUGKS is slightly larger

than the LBE method, and yet, the absent acoustic-wave dissipation mechanism enlarges

the discrepancy as the velocity field decays and consequently results in errors in high-order

quantities. The high-order errors, however, seem to have little impact on the kinetic energy

and dissipation rate.

As previous noted, increasing the mesh resolution can reduce the numerical dissipation,

thus better results should be obtained in 2563 simulations. As expected, as shown in Figs. 11b
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FIG. 12: Evolutions of velocity-derivative flatness F with different mesh resolutions of (a)

N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.
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FIG. 13: Evolutions of smoothed velocity-derivative skewness S with different mesh

resolutions of (a) N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.
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FIG. 14: Evolutions of smoothed velocity-derivative flatness F with different mesh

resolutions of (a) N3 = 1283 and (b) N3 = 2563 at Reλ = 26.06.
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and 12b, the results of DUGKS with N3 = 2563 are better than those with the coarse mesh,

and the magnitudes of the oscillations are also reduced.

TABLE IV: The maximum errors of S and F relative to PS results.

Case LBE128 LBE256 DUGKS128 DUGKS256

Rm(S) 3.35% 4.52% 11.97% 4.98%

Rm(F ) 1.30% 0.35% 3.97% 1.11%

For convenient comparison, the results of the DUGKS can be filtered out by simple

smoothing through averaging (using the smooth function in the matlab), as suggested in

Ref. [17]. The smoothed skewness and flatness results are shown in Figs. 13 and 14, re-

spectively. It is found that both LBE and DUGKS results indeed agree well with the PS

results. Quantitatively, as given in Table IV, the maximum relative error of S predicted by

the DUGKS with the mesh of 1283 is 11.97%, while for the LBE, this value is 3.35%. As

the resolution increases to 2563, the maximum relative error of S computed by the DUGKS

reduces to 4.98%.

4. Effects of the Reynolds number

In the above subsections, we have made some detailed comparisons between the LBE

and DUGKS methods with the initial Reλ = 26.06, at which the initial flow fields can be

well-resolved by both methods. In order to further compare the performance of the LBE

and DUGKS methods at higher Reλ, we conduct the DNS of the DHIT at Reλ = 52.12

and 104.24 with a fixed mesh of 1283. Accordingly, in the PS simulation, the minimum

spatial resolution parameters kmaxη are 1.33 for Reλ = 52.12 and 0.83 for Reλ = 104.24,

suggesting that the PS method can adequately resolve the flow field at Reλ = 52.12 [50]. In

addition, values of the minimum kmaxη for LBE and DUGKS with mesh of 1283 are 2 for

Reλ = 52.12 and 1.26 for Reλ = 104.24, respectively, indicating that the flow at Reλ = 52.12

can be adequately resolved by the LBE method [17]. However, it is not clear whether this

resolution is sufficient for the DUGKS method at these Reλ. Herein we compare some key

statistic quantities obtained by both kinetic approaches at these Reλ with those from the

PS simulations.

Figures 15 and 16 show the energy spectra E(k, t) and the dissipation rate spectra D(k, t)
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FIG. 15: The energy spectra E(k, t) at (a) Reλ = 52.12 and (b) Reλ = 104.24.
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FIG. 16: The dissipation rate spectra D(k, t) at (a) Reλ = 52.12 and (b) Reλ = 104.24.

at different times. It is observed that, E(k, t) and D(k, t) obtained by the LBE method are

still in good agreement with those from the PS method, while the results from the DUGKS

clearly deviate from the PS results in the high wavenumber region and the discrepancies

increase with Reλ. The differences of the spectra between both kinetic methods and the PS
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FIG. 17: The energy spectra difference ∆E(k, t′) at (a) Reλ = 52.12 and (b) Reλ = 104.24.

method, as defined by Eq. (36), are shown in Figs. 17 and 18. It can be clearly seen that

the LBE method yields better predictions than the DUGKS.

We also compare the evolutions of the normalized kinetic energy and the dissipation

rate. As shown in Fig. 19, K(t)/K0 obtained by LBE and DUGKS methods are in good

agreements with the PS results. However, the differences are visible around the peak values

of ǫ(t)/ǫ0 computed by both methods, and it can be clearly seen that the LBE method gives a

better prediction than the DUGKS. For example, at Reλ = 52.12, for the LBE the maximum

relative error of ǫ is 1.85%, while for the DUGKS that is 11.6%. This indicates that with

the minimum kmaxη = 2.0 the given flow field is well resolved by the LBE method, but not

the DUGKS. Similar phenomena can also be observed from the evolution of the enstrophy

shown in Fig. 20 for the given Reynolds numbers, especially the discrepancy around the peak

values as shown in the insets. The similar results are also obtained from the evolutions of the

Kolmogorov length η and the Taylor micro-scale length λ, which are shown in Figs. 21 and

22, respectively. We observe that the maximum deviation appears around the minimums of

η or λ, where the adequate spatial resolution in DUGKS and LBE is most likely not met.

It can be clearly found that the LBE is more accurate than the DUGKS in capturing both

scales due to the lower numerical dissipation in LBE.

Finally, in order to figure out the effects of Reynolds number on the flow fields for the
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FIG. 18: The dissipation rate spectra difference ∆D(k, t) at (a) Reλ = 52.12 and (b)

Reλ = 104.24.

DUGKS, we also compare the vorticity fields predicted by the both methods. Figs. 23 and

24 show the snapshots of the vorticity at Reλ = 52.12 and Reλ = 104.24, respectively. It can

be clearly seen that the DUGKS results deviate from the LBE results at later times, and the

difference is larger for larger Re. It should be noted that although in DUGKS the pressure

fluctuation will increase with the Reynolds number under the given mesh resolution, these

fluctuations do not deteriorate the flow fields, which are still smooth at high Reλ as shown

in Figs. 23 and 24.

Based on the above observations, we can conclude that the LBE gives more accurate

results than the DUGKS at both Reλ with under-resolved meshes. Specifically with the

minimum spatial resolution parameter 2 < kmaxη < 3, the flow fields can be adequately

resolved by the LBE method, but are not adequately resolved by the DUGKS, particularly

in the high wave-number region which represents the small-scales turbulent eddies. This

means that the DUGKS has relatively larger numerical dissipation than the LBE.

It is interesting to figure out the reasoning behind the more dissipative nature of the

DUGKS than the LBE. One of the major reason is that as a finite volume scheme, additional

numerical dissipation is introduced in the DUGKS in the the initial data reconstruction. It

should be noted that although the DUGKS is more dissipative than the LBE method, we
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FIG. 19: Evolutions of the normalized total kinetic energy K(t)/K0 and the normalized

dissipation rate ǫ(t)/ǫ0 at (a) Reλ = 52.12 and (b) Reλ = 104.24.

argue that the coupled collision and transport mechanism in the flux reconstruction can

ensure that the DUGKS still has relatively low numerical dissipation when compared with

the direct unwinding reconstruction of the original distribution function without considering

the collision effects [43, 44]. It should be noted that the CFL number γ in DUGKS we adopt

is 0.7071, which is relatively large for such kinetic scheme. Actually, since the physical

model, rather than interpolation, is directly applied to reconstructed the flux across the

cell interface, the dissipation will decrease with reducing CFL number or increasing the

non-uniformities of the mesh according to the local accuracy requirement, which has been

demonstrated in the previous work [45, 52].

5. Computational efficiency and numerical stability

Finally, we compare the computational efficiency of the LBE and DUGKS methods on

a fixed mesh of 1283. For each iteration, the CPU time costs of the LBE and DUGKS are

0.666s and 0.911s, respectively, where both codes run on 16 cores based on the message

passing interface (MPI) using two dimensional domain decomposition. Therefore, the LBE

method is about 36.8% faster than the DUGKS per time step. But, owing to the different

time-steps used in the two methods, in our simulations two DUGKS time steps are equivalent
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FIG. 20: Evolutions of the enstrophy Ω at (a) Reλ = 52.12 and (b) Reλ = 104.24.
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FIG. 21: Evolutions of the Kolmogorov length η at (a) Reλ = 52.12 and (b) Reλ = 104.24.

to one LBE time step .

In terms of the numerical stability, we compute the maximum stable Taylor microscale

Reynolds number of both LBE and DUGKS codes on a mesh of 1283. In the simulations,
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FIG. 22: Evolutions of the Taylor microscale length λ at (a) Reλ = 52.12 and (b)

Reλ = 104.24.

we set the CFL number to be 0.9 in the DUGKS in order to make a fair comparison with

the LBE in which the CFL number equals 1.0. Without considering the accuracy, the LBE

code blows up when the Taylor microscale Reynolds number reaches Reλ = 26060, while the

DUGKS is still stable at such Reλ. Therefore, the DUGKS is more stable than the LBE

methods, which is consistent with the previous study [45].

B. Kida vortex flow

The above results indicate that the flow can be adequately resolved by the DUGKS with

the minimum spatial resolution parameter kmaxη larger than 3. In order to further validate

this conclusion as well as the accuracy of the DUGKS for DNS of decaying turbulent, in this

subsection the Kida vortex flow is simulated by the DUGKS, and compared with the well

resolved LBE results.

1. Initial condition

The Reynolds number for the Kida vortex flow is defined by Re = LU0/ν, where L is the

domain size and ν is the kinematic viscosity. The initial pressure field as well as a consistent
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(a) (b)

(c) (d)

FIG. 23: Contours of normalized vorticity magnitude ‖ω‖L/u′
0 on the xy plane at z = L/2

at time (a) t′ = 0, (b) t′ = 0.12, (c) t′ = 0.6 and (d) t′ = 3 for Reλ = 52.12. The solid red

and blue lines denote results of the LBE and DUGKS, respectively.

initial distribution are obtained by an iterative procedure with the given initial velocity field

(Eq. 32) [51].

In the simulation, we set the domain size L = N , where N is the grid size in each

direction. The velocity and time presented in the results are normalized by U0 and L/U0,

respectively. It should be noted that the previous results have clearly demonstrated that

the accuracy of the standard LBE method is comparable to the PS method and the LBE

can give the well-resolved result when the minimum spatial resolution parameter kmaxη is

larger than 2.0 [17], thus for the Kida vortex flow simulation, the LBE results are adopted
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(a) (b)

(c) (d)

FIG. 24: Contours of normalized vorticity magnitude ‖ω‖L/u′
0 on the xy plane at z = L/2

at time (a) t′ = 0, (b) t′ = 0.1, (c) t′ = 0.5 and (d) t′ = 1.5 for Reλ = 104.24. The solid red

and blue lines denote results of the LBE and DUGKS, respectively.

as benchmark data to validate the accuracy of the DUGKS.

The simulation is performed for a relative low Reynolds number Re = 2000, which is

sufficient for comparison. We set the computational domain size L3 = 2563 with mesh of

N3 = 2563, and the corresponding minimum kmaxη is 3.29, which guarantees that the results

obtained by LBE are adequately resolved. The velocity U0 is set to be 0.05 such that the

flow is nearly incompressible, and the CFL number is again set to be γ = 0.7071 so that the

time step ∆t in DUGKS is equal to 0.5.
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(a) (b)

(c) (d)

FIG. 25: Contours of the normalized vorticity magnitude ‖ω‖L/u′
0 on the xy plane at

z = L/2 at time (a) t′ = 0, (b) t′ = 0.9765, (c) t′ = 1.9531 and (d) t′ = 2.9297 for

Re = 2000 with the mesh of 2563. The solid blue and red lines denote results of the LBE

and DUGKS, respectively.

2. Instantaneous vorticity fields

Figure. 25 shows the normalized vorticity ‖ω‖L/U0 on the xy plane of z = L/2 at different

normalized times t = 0, 0.9765, 1.9531 and 2.9297. As shown in Fig. 25a, both the LBE and

DUGKS methods have identical initial fields containing only large eddies. These large eddies

are unstable, and produce small eddies by vortex stretching as shown in Figs. 25b and 25c.

In the end, as shown in Fig. 25d, the small eddies are dissipated by the viscous actions. In
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addition, it is found that although vorticity snapshots predicted by the LBE and DUGKS

methods are very similar to each other in terms of the vortex shapes and locations at the

initial stage, the discrepancy between the two methods is still visible and increases over

time. All these results are similar with those of the DNS of DHIT.
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FIG. 26: Evolutions of (a) the normalized total kinetic energy K, dissipation rate ǫ and

(b) enstrophy Ω.

3. Statistical quantities

We firstly study of the one point statistics of the Kida vortex flow. Fig. 26a shows

the evolution of the normalized kinetic energy K and dissipation rate ǫ obtained from the

LBE and DUGKS methods. As shown, the results of K and ǫ calculated by the DUGKS

agree well with the LBE results. Particularly, the maximum relative error of dissipation rate

compared to LBE results is less than 4%, which shows that the flow is adequately resolved by

DUGKS with the minimum spatial resolution parameter kmaxη = 3.29. Similar results are

also obtained from the evolution of the enstrophy as shown in Fig. 26b, where the maximum

relative error of the enstrophy is also less than 4%.

In order to further measure the capability of DUGKS in capturing the small scale, the

evolution of Kolmogorov length scale is sketched in Fig. 27a, and the results obtained by

LBE with the mesh of 2563 are also included for comparison. As shown, the turbulent scale,
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FIG. 27: Evolutions of (a) Kolmogorov length scale η and (b) the relative difference R(η)

between the results of DUGKS and LBE on the mesh of 1283.
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FIG. 28: Comparisons of (a) the two-point longitudinal correlation(ρ11), transversal

correlations(ρ22, ρ33), and (b) the pressure-velocity correlations (PU, PV and PW) at

t = 1.95.
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from the large scale in the beginning to the smallest scale at about t = 0.3, can be described

accurately, and the maximum relative error to LBE results, as shown in Fig. 27b, is less than

1.5%. It indicates that the flow is adequately resolved by the DUGKS with the minimum

kmaxη = 3.29. It is also found from Fig. 27a that owning to the viscous action, the small

eddies are dissipated, and the scale of the eddies becomes larger as time evolves.

Figure. 28a shows the longitudinal and transverse correlation functions obtained from the

LBE and DUGKS methods at t = 1.95. It can be seen that for both correlation functions,

the LBE and DUGKS results agree well with each other, and the two transverse correlation

functions, ρ22 and ρ33, are identical due to the isotropic property of the Kida vortex flow.

Figure. 28b shows the pressure-velocity correlations predicted by the LBE and DUGKS

methods at t = 1.95. Since the Kida vortex flow considered here is incompressible, thus,

theoretically the pressure-velocity correlations defined by Eq. (35) are equal to 0 . As

shown in Fig. 28b, although the values predicted by DUGKS are larger than those from the

LBE method, the magnitude of the pressure velocity correlations given by both methods

are on the order of 10−6, which indicates that the DUGKS can accurately reproduce the

incompressibility behavior.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we present a comparative study of two kinetic approaches, the LBE and

DUGKS methods, for direct numerical simulation of the decaying turbulent flows, including

the decaying homogeneous isotropic turbulence (DHIT) and the Kida vortex flow. Although

the DNS of DHIT and Kida vortex flow are easily achievable, it is the first and essential step

to validate the DUGKS method before it is used to simulate more complex turbulent flows.

In our study, we first perform the DNS of DHIT using LBE, DUGKS and PS methods at

two mesh resolutions (1283 and 2563) at Reλ = 26.06, where the minimum spatial resolution

parameters kmaxη are about 3.12 for the LBE and DUGKS methods and 2.07 for the PS

method. In terms of accuracy, we first compare the instantaneous flow fields. It is found that

the instantaneous velocity and vorticity fields predicted by both LBE and DUGKS methods

are very similar to each other and agree reasonably well with the PS results. In addition,

we compare some key statistic quantities, and find that both methods perform an accurate

prediction on all the quantities of interest due to their low numerical dissipation. We also

note that the DUGKS with a coarse mesh of 1283 underestimates the energy and dissipation
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rate spectra in the high wavenumber region, and yet, these discrepancies vanish with the fine

mesh of 2563. This indicates that the DUGKS has a relatively large numerical dissipation

compared with the LBE method, which can be attributed to the finite volume formulation

of the DUGKS and the central difference employed in DUGKS to approximate the gradient

at the cell interface. Furthermore, since the numerical viscosity (0.5cs
2∆t) in LBE method

has been explicitly subtracted, so it is not surprising that the LBE method has relatively

small numerical dissipation. However, as the numerical results shown, this feature has little

impact on the low order statistic quantities, and the flow can be adequately resolved by the

DUGKS method with the minimum kmaxη > 3. Moreover, we observe that the results of

skewness and flatness obtained by the DUGKS have high frequency oscillations due to the

acoustic waves in the system.

The performance of the two methods at higher Reynolds numbers are also compared.

Some key statistic quantities obtained by LBE and DUGKS methods are compared with

those from the PS method. The results show that good agreements are achieved between

the LBE and the PS methods at both Reλ, but there are noticeable discrepancies between

the results of DUGKS and PS methods due to the insufficient mesh resolution, which also

indicates that the DUGKS is more dissipative than the LBE method.

In order to further evaluate the accuracy of the DUGKS, the direct numerical simulation

of the Kida vortex flow is also performed with a relatively low Reynolds number, and the

results are validated by those from LBE method. The simulations are conducted with the

minimum kmaxη = 3.29, which guarantees that the results from the LBE method are ade-

quately resolved. The results show that although DUGKS is slightly more dissipative than

the LBE method, it can accurately predict the low order statistics, such as the total energy

and its dissipation rate, enstrophy, the longitudinal and transversal velocity correlations, and

capture the smallest Kolmogorov length scale in turbulent flow. The results of the pressure-

velocity correlation also show that the DUGKS can well reproduce the incompressibility

behavior of the flow.

In terms of the computational efficiency, the LBE method is about 36.8% faster than the

DUGKS per time step. It should be noted that although the DUGKS is less efficient than

the LBE method on the same uniform mesh, as a finite volume method, the DUGKS can

use non-uniform meshes without additional efforts for wall-bounded turbulence flows, such

as a channel flow and pipe flow. For such flows, the mesh can be clustered near the walls

where large flow gradients exist, and the computational efficiency can be largely improved,
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which will be presented in our subsequent work. We also assess the numerical stability

of the LBE and DUGKS methods by computing the maximum stable Taylor micro-scale

Reynolds number on a fixed mesh without considering the accuracy. The results show that

the DUGKS has a better numerical stability than the LBE method, which is consistent with

the previous results of laminar flows [45].

In conclusion, the LBE is less dissipative and thus more accurate than the DUGKS, but

they have similar accuracy for DNS of the decaying turbulent flows when the mesh resolution

is sufficient to resolve the flow field; in addition, the DUGKS is less efficient than the LBE

method with the same regular uniform mesh, but superior to the LBE method in terms of

the numerical stability; furthermore, it is found that the DUGKS can adequately resolve

the flow when the minimum spatial resolution parameter kmaxη is about 3, which is a more

strict requirement when compared to kmaxη > 2 for LBE [17] and kmaxη > 1 for the pseudo-

spectral method [50]. It must be emphasized that this work is the first step to validate

the DUGKS for DNS of turbulent flows, and further tests are needed before regarding it as

a viable kinetic method for DNS of turbulent flows. The main advantage of the DUGKS

compared with the LBE method is that it can be implemented on non-uniform meshes easily,

which we shall demonstrate in the subsequent study of wall-bounded turbulent flows.
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