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Abstract

Explicit symplectic integrators have been important tools for accurate and efficient approxima-

tions of mechanical systems with separable Hamiltonians. For the first time, the article proposes

for arbitrary Hamiltonians similar integrators, which are explicit, of any even order, symplectic in

an extended phase space, and with pleasant long time properties. They are based on a mechanical

restraint that binds two copies of phase space together. Using backward error analysis, KAM

theory, and additional multiscale analysis, an error bound of O(Tδlω) is established for integrable

systems, where T , δ, l and ω are respectively the (long) simulation time, step size, integrator order,

and some binding constant. For non-integrable systems with positive Lyapunov exponents, such

an error bound is generally impossible, but satisfactory statistical behaviors were observed in a

numerical experiment with a nonlinear Schrödinger equation.
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I. INTRODUCTION AND THE ALGORITHM

Symplectic integrators preserve the phase space volume dq∧dp like the exact Hamiltonian

flow, and thus are the preferred approach for long-time simulations of mechanical systems

[1–5]. Explicit symplectic integration has been extensively studied for separable Hamiltonian

(i.e. H(q, p) = K(p) + V (q); see [1–3, 5–11]), but much less so for nonseparable systems.

However, nonseparable Hamiltonians model important problems, such as a finite-dimensional

representation of nonlinear Schrödinger equation [12], nearly integrable systems in action-

angle coordinates (see [13–16] for astrophysical examples), charged particle dynamics [17–

19], mechanical systems in a rotating frame [20], molecular dynamics with thermostats

[21, 22], time regularized mechanical systems [23], classical systems with post-Newtonian

correction that approximates general relativity effects [24, 25], rigid body dynamics [26],

pendula dynamics [27], and the scattering of electromagnetic waves by attenuating materials

[28].

A common misunderstanding is that a symplectic integration has to be implicit (and hence

computationally expensive) when the Hamiltonian is nonseparable. In fact, explicit symplec-

tic integrations have been made possible for several subclasses of nonseparable Hamiltonians

[17, 19, 22, 29–33]. Notably, a first step toward explicit approximation of arbitrary H was

recently made in [34] by considering a larger system in an extended phase space; although

the method integrator proposed there is only accurate for a short time, the idea of extended

phase space is a building block of this research.

We approximate the flow of an arbitrary nonseparable H(Q,P ). For the first time, a

generic, high-order, explicit and symplectic integrator is proposed with a provable pleasant

long time performance. This is achieved by considering an augmented Hamiltonian

H̄(q, p, x, y) := HA +HB + ωHC

in an extended phase space with symplectic 2-form dq ∧ dp+ dx ∧ dy, where HA := H(q, y)

and HB := H(x, p) correspond to two copies of the original system with mixed-up positions

and momenta, HC := ‖q − x‖22/2 + ‖p− y‖22/2 is an artificial restraint, and ω is a constant

that controls the binding of the two copies.
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First of all, note the initial value problems











Q̇ = ∂PH(Q,P ), Q(0) = Q0

Ṗ = −∂QH(Q,P ), P (0) = P0

and







































q̇ = ∂pH̄(q, p, x, y), q(0) = Q0

ṗ = −∂qH̄(q, p, x, y), p(0) = P0

ẋ = ∂yH̄(q, p, x, y), x(0) = Q0

ẏ = −∂xH̄(q, p, x, y), y(0) = P0

have the same exact solution in the sense that q(t) = x(t) = Q(t), p(t) = y(t) = P (t). This

is because the form of H̄ turns the second system into






































q̇ = ∂pH(x, p) + ω(p− y)

ṗ = −∂qH(q, y)− ω(q − x)

ẋ = ∂yH(q, y) + ω(y − p)

ẏ = −∂xH(x, p)− ω(x− q)

,

which upon the substitution q(t) = x(t) = Q(t), p(t) = y(t) = P (t) becomes the first system.

Uniqueness of ODE solution rules out the possibility of disagreed other solutions.

Second, it is possible to construct high-order symplectic integrators for H̄ with explicit

updates. Denote respectively by φδ
HA

, φδ
HB

, φδ
ωHC

the time-δ flow of HA, HB, ωHC. Exact

expressions of these flows can be explicitly obtained as:
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φδ
ωHC
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, where R(δ) :=





cos(2ωδ)I sin(2ωδ)I

− sin(2ωδ)I cos(2ωδ)I



 .

(1)

Then we construct a numerical integrator that approximates H̄ by composing these maps:

it is well known that

φδ
2 := φ

δ/2
HA

◦ φδ/2
HB

◦ φδ
ωHC

◦ φδ/2
HB

◦ φδ/2
HA

, (2)

3



commonly named as Strang splitting, has a 3rd-order local error (thus a 2nd-order method),

and is a symmetric method. Arbitrary high (even) order integrator can also be obtained.

The l-th order version will have an update map φδ
l given by, for instance, ‘the triple jump’

[8, 10, 35, 36]:

φδ
l := φγlδ

l−2 ◦ φ
(1−2γl)δ
l−2 ◦ φγlδ

l−2, where γl =
1

2− 21/(l+1)
. (3)

Each update φδ
l constitutes one of our proposed integrators, which are symplectic because

each flow is symplectic. Each one produces a discrete trajectory
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:=
(

φδ
l

)N















Q(0)

P (0)

Q(0)

P (0)















,

where qN , pN (and xN , yN too) approximate the exact solution Q(Nδ), P (Nδ).

This approximation needs justification, because although the exact solutions of H and

H̄ agree, truncation errors in the numerical solution of H̄ may lead to large global error

after O(1) time. We’ll see this won’t be the case if the system is integrable. To discuss

the idea, note [34] considered the Hamiltonian HA +HB without the binding, i.e. H̄ with

ω = 0. The resulting integrator did produce (q, p) and (x, y) that well approximate Q,P

till O(1) time, but then they quickly diverge. A fix was suggested in [34] based on an extra

phase space mixing substep for inducing a coupling between (q, p) and (x, y); unfortunately,

symplecticity is lost due to this substep. We replace this substep using ωHC. This is because,

under reasonable assumptions, the near conservation of H̄ by its symplectic integration

(established by backward error analysis; see [3]) will imply the boundedness of ωHC, and

thus that q − x, p− y are at most O(1/
√
ω), which prevents the undesired divergence.

One may worry whether large ω requires small δ, which would undermine the compu-

tational efficiency gained by an explicit integrator. Also, will a finite ω introduce another

source of error besides truncation error? In addition, one is interested in whether q−Q, p−P

are small, but not q − x and p − y. Section II will, for integrable H̄ , bound ‖q − Q‖ and

‖p − P‖ till large time. Section III will show if H is not integrable, although long time

accuracy of trajectory should not be expected, it is still possible to numerically capture

statistical behaviors of the system, at least in a nonlinear Schrödinger equation example.

The difference between integrabilities of H and H̄ is discussed in section IV, which further
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explains why ω should be larger than a threshold.

II. INTEGRABLE PROBLEMS: LINEAR GROWTH OF LONG TIME APPROX-

IMATION ERROR

Provided that H̄ corresponds to an integrable system (which will be the case if, roughly

speaking, H is integrable and ω ≥ ω0 for some constant ω0; see section IV), we will demon-

strate that the proposed lth-order integrator (eqn. 3) has a numerical error of

O(Tδlω)

till at least T = O(min(δ−lω−1, ω1/2)). Numerical results consistent with this bound for

even larger T values will then be shown.

For long time simulation, this linear growth with T is advantageous to non-symplectic

integrators, whose errors can grow exponentially, e.g., O(eCT δlωl) [37]. It also improves the

pioneering symplectic integrator in [34], which becomes inaccurate after T = O(1). One can

see ω & ω0 is sufficient for accuracy, and the extra error introduced by a finite ω vanishes

as δ → 0. Interestingly, an ω too large is actually discouraged by this error bound. In

addition, δ ≪ ω−1/l is sufficient, and although there is still a trade-off between accuracy

and efficiency, a larger l allows δ to be much larger than o(1/ω), i.e. no need to resolve the

oscillation induced by ωHC. Accuracy and efficiency are thus simultaneously improved.

The main idea for establishing this bound is to view the numerical solution as discrete

samples of the exact solution of some near-by Hamiltonian H̃ (i.e. backward error analysis),

and characterize the distance between H̃ and H̄ as a small parameter ǫ. An application

of KAM theory [38–43] then bounds the differences between action and angle variables in

H̃ and H̄. Such bounds will specify how these two systems deviate in q, p coordinates and

hence quantify the numerical error, because the flows of H̄ and H̃ respectively correspond to

the exact solution of H and the numerical solution. Similar techniques have been established

(see Chap X of [3] for a review), and the main novelty of our derivation is a refined estimation

of ǫ combined with these techniques. Specifically,

1. Denote by t := ωT and h := ωδ new time variable and step; in the new time, the

Hamiltonian H̄ becomes 1
ω
HA + 1

ω
HB +HC . Since Lie bracket of Hamiltonian vector
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fields corresponds to Poisson bracket of Hamiltonians [44], repeated applications of

Baker-Campbell-Hausdorff formula show that the time-rescaled version of (2),

φh
2 := φ

h/2
HA/ω ◦ φh/2

HB/ω ◦ φh
HC

◦ φh/2
HB/ω ◦ φh/2

HA/ω,

corresponds to the symplectic time-h flow of the Hamiltonian H̃ = H̄ +R, where the

perturbative remainder R is defined by

R := − 1

24
h2

{

1

ω
HA,

{

1

ω
HA,

1

ω
HB

}}

− 1

24
h2

{

1

ω
HA,

{

1

ω
HA,HC

}}

+
1

12
h2

{

1

ω
HB,

{

1

ω
HB,

1

ω
HA

}}

− 1

24
h2

{

1

ω
HB,

{

1

ω
HB,HC

}}

+
1

12
h2

{

HC ,

{

HC ,
1

ω
HA

}}

+
1

12
h2

{

HC ,

{

HC ,
1

ω
HB

}}

+
1

12
h2

{

1

ω
HB,

{

HC ,
1

ω
HA

}}

+
1

12
h2

{

HC ,

{

1

ω
HB,

1

ω
HA

}}

+O(h4). (4)

Higher-order methods can be similarly analyzed: it is known that a l-th order integra-

tor based on Hamiltonian splitting samples the exact flow of an O(hl) perturbation of

the exact Hamiltonian, where the perturbation is a sum of terms expressible using at

least l nested Poisson brackets of HA/ω, HB/ω, and HC [3]. Therefore, the magnitude

of R is at most O(hl/ω), because any nonzero nested Poisson bracket has to involve

HA/ω or HB/ω at least once (otherwise, {HC, HC} = 0 leads to a zero result).

2. Assuming q, p, x, y and R are bounded, conservation of H̃ implies boundedness of HC ,

which leads to ‖q − x‖ = O(1/
√
ω) and ‖p − y‖ = O(1/

√
ω). Under a canonical

transformation α = q − x, β = p− y, Q̄ = (q + x)/2, P̄ = (p+ y)/2,

H̃ =
1

ω
H

(

Q̄ +
α

2
, P̄ − β

2

)

+
1

ω
H

(

Q̄− α

2
, P̄ +

β

2

)

+
1

2
‖α‖2 + 1

2
‖β‖2 +R

for some small R(α, β, Q̄, P̄ ). Assuming H(·, ·) is analytic, then H̃ is analytic in

Q̄, P̄ , α, β. Since Q̄, P̄ remain bounded, α(0) = β(0) = 0, and α(t), β(t) = O(1/
√
ω),

a multiscale analysis based on normal form shows that α(t), β(t) = O(1/ω) till at least

t = O(ω3/2) (see appendix V); this corresponds to T = O(
√
ω) in the original time,

which is still a long time.

3. We now refine the perturbation magnitude estimation. Each time HA/ω or HB/ω

appears in a nested Poisson bracket term in (4), that term gets scaled by 1/ω. On the
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other hand, when HC appears, by the definition of Poisson bracket,

{X,HC} =
∂X

∂q
· ∂HC

∂p
− ∂X

∂p
· ∂HC

∂q
+

∂X

∂x
· ∂HC

∂y
− ∂X

∂y
· ∂HC

∂x
.

Since derivatives ofHC are ±(q−x) or ±(p−y), all of them lead to a scaling by O(1/ω)

too. Therefore, any l-nested Poisson bracket term containing l + 1 Hamiltonians is

actually O(hl/ω1+l) till at least t = O(ω3/2).

4. Let ǫ = hl/ωl. Then H̃ − H̄ = R = O(ǫ/ω) till at least t = O(ω3/2), and it is a O(ǫ)

perturbation when compared with H̄ . A KAM type estimate (see [3], Chap X) shows

that under technical conditions (e.g., Diophantine and non-degenerate initial condi-

tion) the solution of H̃ differs from that of H̄ byO(tǫ) for at least t = O(min(ǫ−1, ω3/2))

(minimum of the two because R estimate is only valid till t = O(ω3/2)).

Since H̃ corresponds to the numerical solution, and H̄ corresponds to the exact solu-

tion, the numerical error is thus O(thl/ωl). Converting back to the original time, this

corresponds to a numerical error of O(Tδlω) till at least T = O(min(δ−lω−1, ω1/2)),

where δ is the step size used by the proposed integrator (3) in the original time.

A. A numerical demonstration

We now demonstrate the O(Tδlω) error bound on a 1 degree of freedom system with

H(Q,P ) = (Q2 + 1)(P 2 + 1)/2. This is a system with obtainable exact solution, and thus

long-time numerical errors can be accurately quantified.

To derive the exact solution, note energy level sets in this system are closed curves

symmetric about P = 0 and about Q = 0. Half period of the dynamics is governed by

Q̇ = (1+Q2)

√

2E

1 +Q2
− 1, where P (0) = 0, E = (1+Q(0)2)/2, and Q(0) < 0 is assumed,

and this dynamics is till T > 0 such that Q(T ) = −Q(0). Its exact solution can be obtained

using Jacobi’s elliptic function, namely

Q(t) = Q(0) cn

(

t
√

1 +Q(0)2
∣

∣

∣

Q(0)2

1 +Q(0)2

)

,

and thus T can be obtained using Gauss hypergeometric function

T = π 2F1(0.5, 0.5; 1,−Q(0)2);
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see [45] for more details about these special functions. The exact solution of H is now

available till arbitrary time, because it is 2T -periodic, and its other half period (for time

[(2n+ 1)T , 2nT ], n ∈ Z) is symmetric to the previously obtained half (for time [2nT , (2n+

1)T ], n ∈ Z) about the origin.
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FIG. 1. Comparison between the proposed integrator and a classical nonsympletic method. Timestep

δ = 0.1 for both methods, Q(0) = −3, P (0) = 0, ω = 20, and T = 1000.

Figure 1 compares long time simulations by a 4th-order proposed method and the 4th-

order Runge-Kutta. Errors of the trajectories are investigated in polar coordinates (column

4 and row 2 column 2). Runge-Kutta has an exponentially increasing phase error and a drift-

ing amplitude error corresponding to undesired numerical viscosity, whereas the proposed

method has linearly growing phase error and bounded amplitude error, consistent with the

error bound but extending much beyond O(
√
ω) time.

One also sees that δ can indeed be much larger than what’s needed for resolving O(1/ω)

timescale oscillations. In addition, ω only needs to be larger than H(Q(0), P (0)) in magni-

tude.

Agreements with other aspects of the error bound are illustrated in tables I and II. The

fact that the error is high-order in δ but only 1st-order in ω is another important property,

as it leads to simultaneous accuracy and efficiency when l is large (l = 4 here).

Figure 2 compares the pioneer method recommended in [34] (QP̃Q̃P with optimized P1

mixing and projection; 2nd-order) with the proposed integrator (eq.2; here we chose a low-

order version so that the focus is on the benefit of symplecticity). Important to recall is

the pioneer method is not symplectic because additional mixing and projection steps were
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ω = 20 40 80 160

max amplitude error ≈ 6.2× 10−8 1.2 × 10−7 2.5 × 10−7 5× 10−7

max phase error ≈ 5.6× 10−8 1.1 × 10−7 2.2 × 10−7 4.5× 10−7

TABLE I. φδ
4
error is proportional to ω. T = 100 and δ = 0.001 fixed, Q(0) = −3, P (0) = 0.

δ = 10−1 10−1.5 10−2 10−2.5 10−3

max amplitude error ≈ 0.76 5.8× 10−2 6.1× 10−4 6.2 × 10−6 6.2× 10−8

max phase error ≈ 0.76 5.2× 10−2 5.6× 10−4 5.6 × 10−6 5.6× 10−8

TABLE II. φδ
4
error is proportional to δ4. T = 100 and ω = 20 fixed, Q(0) = −3, P (0) = 0. The δ = 0.1

column anomaly is because Tδlω is too large to be in the asymptotic regime of the error bound.

−3 3

−3

3

q

p

0 10
−0.5

0

0.5

time

en
er

gy
 fl

uc
tu

at
io

n

0 10
−0.2

0

0.2

time

di
ffe

r.
 b

et
w

 c
op

ie
s

 

 

q−x
p−y

0 10
−0.3

0

0.3

time

er
ro

r

 

 

r
θ

Proposed method φ
2

−3 3

−3

3

q

p

0 10
−5

0

5

10

time

en
er

gy
 fl

uc
tu

at
io

n

0 10
−1.5

0

1.5

time

er
ro

r

 

 

r

0 10
−2

0

2

4

time

er
ro

r
 

 

θ

pioneer method

FIG. 2. Comparison between a low order version of the proposed integrator and the pioneer nonsympletic

method recommended in [34]. Timestep δ = 0.1 for both methods, Q(0) = −3, P (0) = 0, ω = 20, and

T = 10.

introduced for improved accuracy (without such steps the accuracy time span will be even

shorter; results not shown), but such steps breaks symplecticity. It is thus not surprising

the pioneer method remains accurate only for a short time. Note however that the pioneer

method is symmetric and exhibits no ‘secular’ energy deviation.
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B. A second numerical example

Consider the Schwarzschild geodesics problem simulated in [34] (with typos in the Hamil-

tonian, initial values, and precession rate estimation corrected). The geodesic can be cast

as the solution of the 3 degrees of freedom (Q = [t, r, φ] and P = [pt, pr, pφ]) Hamiltonian

system governed by

H =
1

2

[

(

1− 2

r

)−1

p2t −
(

1− 2

r

)

p2r −
p2φ
r2

]

.
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FIG. 3. Comparison between the proposed integrators and the pioneer nonsympletic method: Schwarzschild

geodesic and its dissipated version (γ = 10−4). Timestep δ = 0.2 for both methods, ω = 2, T = 50000,

M = 10, m = 1, initial condition Q(0) = [0, 20, 0], P (0) ≈ [0.982, 0,−4.472] corresponds to initial semi-major

axis a(0) = 20, eccentricity e(0) = 0, pr(0) = 0, pφ(0) =
√

r(0), and pt(0) solves H(0) = m2/2. Plotted

were maxima of relative errors up to given times, respectively scaled by dividing over Keplerian period

2π
√

a(0)3/M for t, over a(0)(1 + e(0)) for r, over 2π for φ, and unscaled for H .

Figure 3 left panels estimates accuracies of Schwarzschild geodesic computed by 2nd-

and 4th-order proposed integrators φδ
2 (eq.2) and φδ

4 (eq.3), as well as that by the pioneer

nonsymplectic method recommended in [34] (QP̃ Q̃P with P1 mixing and projection, which

was the optimized choice for this problem). Note accuracy can only be estimated because

no exact solution is available for quantifying the numerical error, and we used the adaptive

MATLAB ode45 with relative and absolute error tolerances both set to 10−20 to generate

a benchmark for error estimation; although the long time fidelity of this benchmark cannot

be guaranteed, throughout the simulation it only produced < 7× 10−15 deviation from the
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conserved energy value. One sees φδ
4 is the most accurate of the three in all aspects, while

φδ
2 is less accurate on r than the optimized pioneer method despite of its better energy

preservation. Worth mentioning is, for this example, the optimized pioneer method allows

larger step sizes than φδ
l (results not shown).

We then evaluate how each method captures the effect of additional non-conservative

forces, by adding a simplest-possible dissipation, i.e. consider q̇ = ∂H/∂p, ṗ = ∂H/∂q − γp.

To add external forces in the proposed and pioneer integrators, we replace the p update in

φδ
HA

and the y update in φδ
HB

(eqn.1) by

p 7→ p+ δ(−∂qH(q, y)− γy), y 7→ y + δ(−∂xH(x, p)− γp).

Integration accuracies are again estimated by comparing to an adaptively integrated fine

benchmark (Figure 3 right panels). With dissipation, long time errors of the symplectic

versions are much smaller than the pioneer method. The intuition is, as the force breaks

time reversibility, the symmetry of the pioneer method is no longer advantageous; symplectic

integrators, however, are known to well approximate changes in phase-space volume [46, 47].

In fact, in a longer simulation (T = 105), the pioneer method became unstable while the

proposed methods remained bounded and relatively accurate (results not shown).

III. NON-INTEGRABLE SYSTEM: A NUMERICAL DEMONSTRATION ON

THE WEAK TURBULENT NONLINEAR SCHRÖDINGER EQUATION

It is known that nonlinear Schrödinger equation is non-integrable in ≥ 2 spatial di-

mensions and exhibits weak turbulence [48]. Conditions under which a finite-dimensional

Hamiltonian system of Fourier coefficients can approximate the nonlinear Schrödinger equa-

tion on 2-torus were rigorously demonstrated in [12], while extensive usages of similar models

preceded this rigorous justification [49–53]. This system has a nonseparable Hamiltonian

that can be written as

H(q, p) =
1

4

N
∑

i=1

(

q2i + p2i
)2 −

N
∑

i=2

(

p2i−1p
2
i + q2i−1q

2
i − q2i−1p

2
i − p2i−1q

2
i + 4pi−1piqi−1qi

)

.

Note an explicit symplectic integrator was proposed in [30] for polynomial Hamiltonians,

which suit this system. That method requires more computations per timestep because it’s

based on splitting the Hamiltonian into mononials, but it is symplectic in the original phase
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space, which is certainly an advantage. Our purpose is not to compare that method with

the more general method proposed here, but only to numerically access whether our method

still has good long time performances for a non-integrable system.

To do so, we focus on first integrals and the statistical behavior of long-time dynamics.

If one denotes by Ii = q2i +p2i the mass of each mode, the total mass I :=
∑

Ii can be shown

as a second first integral of the system in addition to energy conservation. Also, although

mathematically difficult to prove, it is widely believed the system, due its turbulent nature,

is ergodic on first integral foliations. We thus assume an ergodic measure of δ(H(q, p) −
E)δ(

∑

Ii − I) dq dp. It is easy to show this constrained Liouville measure is at least an

invariant measure. Under the ergodicity assumption, long time averages of phase space

observables converge to their spatial averages with respect to the ergodic measure, and

mode relabeling symmetry of H leads to, if N = 2, that

lim
T→∞

〈I1〉(T ) = lim
T→∞

〈I2〉(T ) =
1

2
I, where 〈Ii〉(T ) =

1

T

∫ T

0

Ii(t)dt. (5)

Figure 4 shows that the proposed method better captures total energy and mass con-

servations, as well as the assumed convergence toward equilibrium (5). The standard non-

symplectic Runge-Kutta seems to be less accurate in capturing the assumed equilibration,

which normally happens at a more consistent rate. In this sense, even though the error

analysis in section II doesn’t apply to non-integrable systems, the proposed integrator still

exhibits better long-time performance than its non-symplectic counterpart, at least in this

example.

For completeness, figure 5 also illustrates anO(1) time simulation of the proposed method

for a larger N , where weak turbulent cascade is clearly observed.

IV. ON INTEGRABILITY OF THE EXTENDED SYSTEM

As discussed above, symplectic integrators have desirable long-time performances for inte-

grable systems (see [3–5] for non-stiff problems, and section II for our specific stiff problem).

However, if the system has a positive Lyapunov exponent, symplectic integrator can be as

bad as a generic integrator, because its error can grow exponentially with time as local

truncation error propagates along.

Unfortunately, the system governed by H(q, y) + H(x, p) in extended phase space may

12
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FIG. 4. Long time simulations of NLS with N = 2 by 4th-order Runge-Kutta and a proposed integrator

φδ
4. [q1, p1, q2, p2](0) = [3, 1, 0.01, 0], δ = 0.01, ω = 100. Long time convergence of the trajectory towards

the ergodic limit is quantified in the right column based on 〈I1〉(t)− 〈I2〉(t) (see eq. 5); this observable was

chosen to reduce the interference with the numerical loss of total mass in RK4. Computation done using

win32 MATLAB R2010a on x64 Windows 7 i7-4600U CPU.

not be integrable even if H(Q,P ) is integrable in the original phase space. For instance,

consider the 1 degree of freedom problem studied in section IIA. The original system is

integrable because H is a first integral. Figure 6 illustrates one Poincaré section of the ω = 0

extended system, where large chaotic seas demonstrate non-integrability. This explains why

a symplectic integrator for H̄ with ω = 0, as considered in [34], does not have satisfactory

performances beyond O(1) time.

However, HC is integrable. Thus, as ω increases, a larger proportion of the phase space

for H̄ = HA +HB + ωHC corresponds to regular behaviors (see [38–43]). Indeed, Poincaré

sections in figure 6 show smaller chaotic seas when ω = 0.8, and no evidence of chaotic sea

but only invariant tori when ω = 10. This suggests that the integrability assumption in

section II is reasonable as long as the original system is integrable and ω is larger than a

threshold ω0, with exception initial conditions whose measure vanishes.
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FIG. 5. Short time simulation of NLS with N = 5 by φ4. [q1, p1](0) = [3, 1], [qi, pi](0) = [0.01, 0] for

i 6= 1, δ = 0.001 for a closer examination of details, ω = 100. Error is estimated by comparing to fine RK4

simulation with δ = 10−4.

FIG. 6. Poincaré sections of H̄ with H(Q,P ) = (Q2 + 1)(P 2 + 1)/2 and different ω values at the surface

x = 0 on constant energy shell H̄ = 10. Initial conditions are uniformly sampled in q, p plane. Note curves

do intersect because each q, p pair corresponds to two y values.

V. APPENDIX: REFINED ESTIMATES OF α AND β

This section shows that α, β are not just O(1/
√
ω) but in fact O(1/ω) at least for a long

time. As this is a self-contained section, we set up the problem in the original time, denote

by t the corresponding time variable (as opposed to T in the main text) and by dot the t
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derivative; the Hamiltonian is

Ĥ = H

(

Q̄+
α

2
, P̄ − β

2

)

+H

(

Q̄− α

2
, P̄ +

β

2

)

+
1

2
ω‖α‖2 + 1

2
ω‖β‖2 +R. (6)

We will introduce a near identify transformation to express the governing Hamilton’s equa-

tions in a nonstandard 2nd-order normal form, which we will utilize to refine the estimates

of α, β. To begin, note ωJ is the coefficient matrix associated with the linear dynamical

system generated by H0 =
1
2
ωα2 + 1

2
ωβ2, where J =





0 I

−I 0



, and exp(tωJ) = O(1) for all

real t. We use x ∈ R2d to represent [α, β].

Lemma V.1. Given a 2d-dimensional real symmetric-matrix valued function S(s),

Ω(s) :=
1

2π

∫ 2π

0

e−JτJS(s)eJτ dτ

is a real skew-symmetric matrix valued function. Moreover, its associated fundamental ma-

trix Φ(s), defined as the solution of

Φ′(s) = Ω(s)Φ(s), Φ(0) = I,

satisfies Φ(s) = O(1) and Φ(s)−1 = O(1) for all s.

Proof. Assume S in block form is S =





A B

BT D



 where AT = A,DT = D. Then

Ω =
1

2π

∫ 2π

0





I cos t −I sin t

I sin t I cos t









BT D

−A −B









I cos t I sin t

−I sin t I cos t



 dt

=
1

2





BT −B A+D

−(A+D) B − BT



 ,

and it is real skew-symmetric.

To bound Φ(s), note (ΦTΦ)′ = (ΩΦ)TΦ+ ΦT (ΩΦ) = 0 and thus ‖Φ(s)‖ = ‖Φ(0)‖ = 1.

Φ(s)−1 can be similarly bounded since it is easy to verify that dΦ−1/ds = −Φ−1Ω.

Theorem V.2. Consider in R2d an ODE

ẋ = ωJx+ F0(t) + F1(t)x+

2d
∑

i=1

xTF2i(t)xei +O(x3),
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where solutions are assumed to exist and x satisfies x = O(1/
√
ω), x(0) = 0, ei’s are

standard basis of R2d, F0, F1, F2i have bounded derivatives, and F1(t) = JS(t) for some

symmetric-matrix-valued S(t). Then

x(t) = O(1/ω), till at least t = O(
√
ω).

Proof. Let y(t) = exp(−ωJt)x(t), then

ẏ = e−ωJtF0(t) + e−ωJtF1(t)e
ωJty + e−ωJt

2d
∑

i=1

yTe−ωJtF2i(t)e
ωJtyei +O(ω−3/2).

Let ǫ = 1/ω, introduce a dummy slow variable s = t and a fast variable τ = ωt (which

corresponds to the angle associated with the rotation in α, β), and use prime to denote

d/dτ , then the governing equation rewrites as a slow/fast system

y′ = ǫe−JτF0(s) + ǫe−JτF1(s)e
Jτy + ǫe−ωJt

2d
∑

i=1

yTe−JτF2i(s)e
Jτyei +O(ǫ5/2) (7)

s′ = ǫ

τ ′ = 1

We look for a near-identity transformation in the form of

y = z + ǫu1(z, s, τ) + ǫ2u2(z, s, τ) +O(ǫ5/2),

where u1, u2 are 2π-periodic in τ , such that

z′ = ǫf1(z, s) + ǫ2f2(z, s) + ǫS +O(ǫ5/2)

S := e−ωJt
2d
∑

i=1

zT e−JτF2i(s)e
Jτzei

for some f1, f2 independent of the fast variable τ .

Under this transformation, the right hand side of (7) becomes

ǫe−JτF0(s) + ǫe−JτF1(s)e
Jτz + ǫ2e−JτF1(s)e

Jτu1 + ǫe−ωJt
2d
∑

i=1

zT e−JτF2i(s)e
Jτzei

+ ǫ2e−ωJt
2d
∑

i=1

(zT e−JτF2i(s)e
Jτu1 + uT

1 e
−JτF2i(s)e

Jτz)ei +O(ǫ5/2)

= ǫe−JτF0(s) + ǫe−JτF1(s)e
Jτz + ǫ2e−JτF1(s)e

Jτu1 + ǫS +O(ǫ5/2),
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where the last equality is due to z = y +O(ǫ) = O(1)x+O(ǫ) = O(ǫ1/2).

The left hand side of (7), on the other hand, becomes

z′ + ǫ
∂u1

∂z
z′ + ǫ

∂u1

∂s
s′ + ǫ

∂u1

∂τ
τ ′ + ǫ2

∂u2

∂z
z′ + ǫ2

∂u2

∂s
s′ + ǫ2

∂u2

∂τ
τ ′ +O(ǫ5/2)

= ǫf1 + ǫ2f2 + ǫS + ǫ
∂u1

∂z
ǫf1 + ǫ

∂u1

∂z
ǫS + ǫ2

∂u1

∂s
+ ǫ

∂u1

∂τ
+ ǫ2

∂u2

∂τ
+O(ǫ5/2)

= ǫf1 + ǫ2f2 + ǫS + ǫ2
∂u1

∂z
f1 + ǫ2

∂u1

∂s
+ ǫ

∂u1

∂τ
+ ǫ2

∂u2

∂τ
+O(ǫ5/2),

where the last equality is due to that S = O(z2) = O(ǫ−1).

Matching O(ǫ) and O(ǫ2) terms respectively, we obtain the following requirements on

u1, u2, f1, f2:

f1 +
∂u1

∂τ
= e−JτF0(s) + e−JτF1(s)e

Jτz, (8)

f2 +
∂u1

∂z
f1 +

∂u1

∂s
+

∂u2

∂τ
= e−JτF1(s)e

Jτu1. (9)

In order for a solution u1 periodic in τ to exist, f1 has to satisfy a solvability condition

2πf1(z, s) =

∫ 2π

0

(

e−JτF0(s) + e−JτF1(s)e
Jτz

)

dτ,

which is obtained after integrating both sides of (8) over τ . The first term of the integrand

vanishes after integration, and lemma V.1 then leads to

f1(z, s) = Ω(s)z

for some real skew-symmetric Ω. Integration then gives

u1 = e−JτJF0(s) + g(τ, s)z

for some g(τ, s) periodic in τ .

The next order equation (9) leads to a solvability condition

2πf2(z, s) =

∫ 2π

0

(

e−JτF1(s)e
Jτu1 −

∂u1

∂s
− ∂u1

∂z
f1

)

dτ,

and thus f2 = −〈∂g
∂s
〉z − 〈g〉Ωz, where 〈·〉 indicates time average with respect to τ .

Consequently, z satisfies

z′ = ǫΩ(s)z + ǫe−ωJt
2d
∑

i=1

zT e−JτF2i(s)e
Jτzei − ǫ2〈∂g

∂s
〉z − ǫ2〈g〉Ωz +O(ǫ5/2).
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Rescale back to the original time so that the right hand side gets divided by ǫ. Let Z(t) =

Φ(t)−1z(t), where Φ is the fundamental matrix associated with Ω. Then

Ż = Φ(t)−1e−ωJt

2d
∑

i=1

(Φ(t)Z(t))T e−JτF2i(s)e
Jτ (Φ(t)Z(t))ei−ǫΦ(t)−1(〈∂g

∂s
〉+〈g〉Ω)Φ(t)Z(t)+O(ǫ3/2)

Note Φ and Φ−1 are bounded according to lemma V.1. Rewrite this in integral form, and

bounding one of the two Z’s in the first (quadratic) term by Z = O(z) = O(ǫ1/2), we have

‖Z(t)‖ ≤
∫ t

0

(

ǫ1/2C1‖Z(t̂)‖+ ǫC2‖Z(t̂)‖+ ǫ3/2C3

)

dt̂

for some C1, C2, C3 > 0 independent of ǫ. Gronwall’s lemma leads to

‖Z(t)‖ ≤ ǫ3/2tC3 exp((ǫ
1/2C1 + ǫC2)t),

which means Z(t) = O(ǫ) till at least t = O(ǫ−1/2). Since Z, z, y, x are at the same order

due to boundedness of Φ and exp(ωJt), x(t) = O(ǫ) = O(1/ω) till at least t = O(ǫ−1/2) =

O(
√
ω).

Theorem V.3. Consider the dynamics generated by Ĥ (eqn. 6), where R is given by a

sum of nested Poisson brackets (see step 1 in section II). If H(·, ·) is analytic, ω is large

enough, α(0) = β(0) = 0, α(t), β(t) = O(ω−1/2) till at least t = O(
√
ω), and Q̄(t), P̄ (t)

remain bounded independent of ω till at least the same time, then α(t), β(t) = O(ω−1) till

at least the same time.

Proof. Let x = [α, β], then

ẋ = J
∂H

∂x
.

Since H and α2 + β2 are analytic, R is also analytic because it is a sum of their nested

canonical Poisson brackets. Therefore, Ĥ can be locally written as

Ĥ = H0(Q̄, P̄ ) +H1(Q̄, P̄ )x+
1

2
x′H2(Q̄, P̄ )x+

∞
∑

n=3

Hn(Q̄, P̄ )[x⊗],

where H1(Q̄, P̄ ) is a vector, H2(Q̄, P̄ ) is a symmetric matrix, and Hn(Q̄, P̄ )[x⊗n] stands for

a homogeneous polynomial of degree n in x, with coefficients being analytic functions of

Q̄, P̄ .

Therefore, the α, β dynamics can be locally written as

ẋ = ωJx+ F0(Q̄, P̄ ) + F1(Q̄, P̄ )x+
2d
∑

i=1

xTF2i(Q̄, P̄ )xei +
∞
∑

n=3

Fn(Q̄, P̄ )(x⊗n),
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for some F1, F2i, and Fn. In particular, F1(Q̄, P̄ ) = JH2(Q̄, P̄ ) for symmetric H2.

Since Q̄, P̄ are functions of t and bounded (independent of ω) till at least t = O(ω1/2),

˙̄Q, ˙̄P , which are given by Hamilton’s equations as functions of Q̄, P̄ , α, β, are also bounded.

Consequently, Fn(Q̄, P̄ ) are implicitly functions of time (i.e. Fn(t)) with bounded 1st time

derivatives.

Therefore, Theorem V.2 applies, and thus x = O(ω−1) till at least t = O(ω1/2).

Note we worked at the level of equations but not Hamiltonians; i.e. we did not express (6)

as a nearly integrable system by transforming α, β into action and angle. This is because

we are interested in the special initial condition α(0) = β(0) = 0, which corresponds a

singularity of the transformation, and it will break the analyticity of Ĥ and render classical

approaches like KAM or Nekhoroshev’s method difficult to apply.
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