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Abstract

Effective classical dynamics provide a potentially powerful avenue for modeling large-scale dy-

namical quantum systems. We have examined the accuracy of a Hamiltonian-based approach that

employs effective momentum-dependent potentials (MDPs) within a molecular-dynamics frame-

work through studies of atomic ground states, excited states, ionization energies and scattering

properties of continuum states. Working exclusively with the Kirschbaum-Wilets (KW) formula-

tion with empirical MDPs [C. L. Kirschbaum and L. Wilets, PRA 21, 834 (1980)], optimization

leads to very accurate ground-state energies for several elements (e.g., N, F, Ne, Al, S, Ar and Ca)

relative to Hartree-Fock values. The KW MDP parameters obtained are found to be correlated,

thereby revealing some degree of transferability in the empirically determined parameters. We

have studied excited-state orbits of electron-ion pair to analyze the consequences of the MDP on

the classical Coulomb catastrophe. From the optimized ground-state energies, we find that the

experimental first- and second-ionization energies are fairly well predicted. Finally, electron-ion

scattering was examined by comparing the predicted momentum transfer cross section to a semi-

classical phase-shift calculation; optimizing the MDP parameters for the scattering process yielded

rather poor results, suggesting a limitation of the use of the KW MDPs for plasmas.
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I. INTRODUCTION

Large-scale simulations are needed to model non-equilibrium electronic dynamics in a

wide variety of scenarios, including stopping power experiments in dense plasmas [1, 2],

multi-species mixing under extreme conditions [3, 4], non-equilibrium x-ray Thomson scat-

tering (XRTS) [5, 6], laser-matter experiments (e.g., core ionization in x-ray free electron

laser experiments [7, 8]), and ultracold neutral plasmas [9]. The need for such modeling

stems from the emergence of recent large-scale experimental facilities, such as the Z machine

[10, 11], National Ignition Facility [12, 13], Linac Coherent Light Source [14, 15], Deutsches

Elektronen-Synchrotron (DESY) [16, 17], to name a few. Further, diagnostic capabilities

such as imaging XRTS [18, 19] will provide unprecedented information about the dynamical

evolution of electronic states in these experiments. Coupled with recent advances in com-

putational power that allows molecular dynamics simulations to span unprecedented length

(multi-trillion particles) and time scales (pico to micro-seconds) [20–25], a detailed knowl-

edge of the non-equilibrium dynamics of such systems is, in principle, obtainable; however,

it is currently not possible to perform such large scale simulations for electronic dynamics

because of the computational overhead in modeling quantum systems.

Most computational approaches to electronic structure fall into three broad categories.

Historically, the Car-Parinello (CP) [26] method provided an avenue for coupling an elec-

tronic structure calculation to ion dynamics, albeit with a fictitious electron dynamics. Sim-

ilarly, Born-Oppenheimer Molecular Dynamics (BOMD) [27, 28], a limiting case of the CP

method for massless electrons, forces the electronic evolution to track the (potentially non-

equilibrium) ion dynamical scales. BOMD can also be approximately extended to some elec-

tronic dynamical quantities, such as the AC electrical conductivity in the Kubo-Greenwood

formulation [29, 30], through the use of the Kohn-Sham orbitals and energy eigenvalues. In

all three cases, the true electronic dynamics is not modeled.

Conversely, more direct approaches to dynamical evolution employ Time-Dependent

Hartree-Fock (TDHF) [31, 32] or Time-Dependent Density Functional Theory (TDDFT) [33,

34]. TDDFT has been employed for calculating excitation spectra of atoms and molecules

[35, 36] and the dynamic structure factor of warm dense matter [37]. Conventionally, for

a N particle system, TDDFT has an unfavorable O(N3) scaling that results in a few sec-

onds per propagation step on a multi-core implementation (∼ 8000 cores) for a system of
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a few thousand atoms [38]; thus, TDDFT is currently quite limited to small-scale systems

over short times. Moreover, incorporating finite temperature states in TDDFT remains a

challenge despite recent progress in this area [39, 40].

The complete dynamics of the non-equilibrium electrons is described by a 6N -dimensional

partial differential equation (PDE) (the complex, time-dependent Schrödinger equation

(TDSE) in 3 spatial dimensions). Simpler alternative approaches that balance physics fi-

delity with lower computational cost have also been proposed. The general idea is based

on mapping the quantum problem onto a framework computable in terms of a classical

approach. Mapping to classical-like dynamics offers the advantage of using classical MD

techniques with O(N) or O(N logN) scaling [41] that enable large-scale simulations of inter-

est [42, 43]. There are several avenues for constructing a classical framework [44] for solving

the time-dependent quantum problem. For example, Remacle and Levine [45] construct

a classical-like framework based on ordinary differential equations for the occupancies and

phases. Similarly, the Gaussian-based time-dependent variational principle [46, 47] yields

classical-like equations of motion. Alternatively, Schiff and Poirier [48] build an effective La-

grangian method that contains higher-order derivatives, which in turn yields classical-looking

equations with extra degrees of freedom [49]. Quantum Statistical Potentials (QSPs) [50–

52] and empirical potentials for molecular systems [53] are purely classical in their form,

with effective potentials; many of these methods have been reviewed elsewhere [54]. How-

ever, the WPMD method has several undesirable properties [47], whereas the QSP method

suffers from a reliance on statistical properties (e.g., temperature [52]) not well suited for

describing non-equilibrium phenomena.

Here, we wish to replace the original TDSE with a smaller computational problem using

6N ordinary differential equations. We will employ a Hamiltonian formulation that retains

the classical phase space variables, but introduces a momentum-dependent potential (MDP)

that contains a non-separable term to account for quantum commutator and Pauli properties.

The MDP method represents the full problem in terms of a well chosen model and empirical

parameters. A “well chosen” model is one that satisfies as many constraints as possible;

here, the Hamiltonian formulation was specifically chosen because of its natural classical

limit and its conservation properties (as discussed in Section II). The empirical parameters

to this model must be used to train the model to match a finite (and usually small) set

of known properties, preferably from accurate experimental data. For these properties,
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the MDP model can be considered to be exact. Unfortunately, very few exact dynamical

properties for quantum systems are known, and limited training of the MDP parameters

is possible. Given that set of parameters, the most important issue is then transferability:

do the parameters chosen to match some “exactly known” property also describe those

properties for which we have no prior knowledge? In fact, this strategy is similar to other

approaches, such as the wavepacket approach of [55] and the machine learning approach of

[56].

MDPs have been quite successful in atomic [57–60], molecular [61] and nuclear physics

[62–65]; however, little work has been done for bulk (plasma-like) systems [66]. In such

finite-temperature electronic systems electrons undergo excitation, deexcitation, ionization

and recombination. Therefore, the MDP approach for plasma-like systems needs to be

established because the identity of an electron in a non-equilibrium system varies from (1)

being in the ground state, (2) being in an excited state, (3) ionizing into the continuum

and (4) performing free-free scattering important to transport processes. Our goal here is

to establish the efficacy of the MDP approach for modeling large-scale plasma-like system

through a careful examination of these four properties. For simplicity, we utilize the best

known MDP, the Kirshbaum-Wilets (KW) MDP [57, 58, 66–76], which has proven very

successful for bound states.

This paper is organized as follows. A general formulation of the Hamiltonian approach

is presented for arbitrary pair MDPs in Section II to establish a precise definition of an

MDP model and its basic properties. We then examine four basic MDP properties, moving

from ground state energies to excited state properties to ionization energies and, finally,

free electron scattering properties. Optimization of ground state energies is discussed in

Section III, and transferrability of the parameters to atomic systems not in the training set

is tested. Next, we turn to the examination of excited state properties in Section IV. The

transferability of parameters among the properties is examined by using optimized ground

state properties to predict first and second ionization energies; this is discussed in Section

V. Free-electron properties are then examined in terms of electron-ion scattering in Section

VI.
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II. EFFECTIVE MANY-BODY HAMILTONIAN FORMULATION

In this section we present the Hamiltonian formulation for a non-separable MDP of the

form V (r,p) that is otherwise arbitrary, including a discussion of the implied constants of

motion that serve as constraints. We assume that the equations of motion derived from this

Hamiltonian retain their familiar classical form.

Consider an effective Hamiltonian for a system of Ne electrons and Ni ions of the form

H = HC +HQ , (1)

where HC is the purely classical contribution, given by

HC =
N∑
i=1

p2
i

2mi

+
N∑
i<j

ZiZje
2

|ri − rj|
, (2)

and HQ incorporates quantum corrections through interactions of the form

HQ =

N∑
i<j

[
V H
ij (ri − rj ,pi − pj) + δsisj V

P
ij (ri − rj ,pi − pj)

]
, (3)

where N = Ne +Ni is the total number of particles, i and j are particle indices referring to

particles of electron (e) or ion (I) subsystems. Ze = −1 for electron and ZI is the nuclear

charge. V H is a general Heisenberg MDP between all particles and V P is a general Pauli

MDP between identical particles (selected by δsisj in Eq. 3 where si and sj are spins of

particles i and j, respectively). V P prevents two identical particles from occupying the

same regions of phase space. It is important to note that the V H and V P terms do not

correspond to purely kinetic or potential energies, consistent with the usual commutator

properties of quantum operators. The form for HQ is not arbitrary, but should be chosen

for stability reasons (mitigating the Coulomb catastrophe) and to have empirical flexibility

that allows its parameters to be tuned to experimental values. All forms in use have these

two properties.

The Hamilton equations for particle i are given by

dri
dt

=
∂H

∂pi
=

pi
mi

+
N∑
j 6=i

∂
[
V H
ij (ri − rj,pi − pj) + δsisjV

P
ij (ri − rj,pi − pj)

]
∂pi

, (4)

dpi
dt

= −∂H
∂ri

= −
N∑
j 6=i

∂

∂ri

[
ZiZje

2

|ri − rj|

]
−

N∑
j 6=i

∂
[
V H
ij (ri − rj,pi − pj) + δsisjV

P
ij (ri − rj,pi − pj)

]
∂ri

.

(5)
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We would like to point out that ṙi 6= pi; that is, the velocity is not proportional to the

canonical momentum because of the addition of the non-separable MDP.

An important note is that this framework naturally captures finite temperature aspects

through the initial conditions for the phase space coordinates; therefore, this formulation

does not suffer from the same issues as TDDFT [39], which neglects natural thermal fluctu-

ations [37].

A. Constants of motion

Due to the non-separable terms in the Hamilton equations (Eqs. 4 and 5) as a result of

the MDPs, it becomes necessary to check if the fundamental constants of motion like total

energy and total angular momentum are conserved. The equation of motion of any function

of phase space coordinates A(r1,p1, r2,p2, ..., rN ,pN) for a N particle system is given by

dA

dt
= {A,H}+

∂A

∂t
, (6)

where H is the Hamiltonian of the system as given by Eq. 3 and {A,B} denotes the Poisson

bracket defined as

{A,B} =
N∑
i=1

(
∂A

∂ri

∂B

∂pi
− ∂A

∂pi

∂B

∂ri

)
. (7)

When the function A is the Hamiltonian itself, then the equation of motion is given by

dH
dt

= ∂H
∂t

, since {H,H} = 0. If the Hamiltonian is time-independent, ∂H
∂t

= 0 resulting in

dH
dt

= 0, that is, a time-independent Hamiltonian even with MDPs is a constant of motion.

Therefore, the Hamiltonian with MDPs acts as a conserved energy, making it a useful the-

oretical concept and also an important tool in numerical implementations.

Now, let’s consider function A to be the total angular momentum of the system given by

LT =
N∑
i=1

Li =
N∑
i=1

∑
ν

Liν ν̂ , (8)

where Liν is the νth component of particle i’s angular momentum Li = ri × pi with ν =

(x, y, z). Since the total angular momentum is a time-independent quantity, its equation of

motion is given by

dLT

dt
= {LT , H} =

∑
ν

{
N∑
i=1

Liν , H}ν̂ . (9)
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If the potential is spherically symmetric in position and momentum space, expanding the

Poisson bracket of the x-component of the total angular momentum and Hamiltonian gives

{
N∑
i=1

Lix, H} =
N∑
i=1

{Lix, H} ,

=
N∑
i=1

(
pyipzi
pi

∂H

∂pi
+
ziyi
ri

∂H

∂ri
− ziyi

ri

∂H

∂ri
− pyipzi

pi

∂H

∂pi

)

+
N∑
i=1

∑
j 6=i

[
pzi(pyi − pyj)

pij

∂H

∂pij
+
zi(yi − yj)

rij

∂H

∂rij
− pyi(pzi − pzj)

pij

∂H

∂pij
− yi(zi − zj)

rij

∂H

∂rij

]
.

(10)

There are some obvious cancellations due to terms of equal and opposite sign resulting in

{
N∑
i=1

Lix, H} =
N∑
i=1

∑
j 6=i

1

pij

∂H

∂pij
(pzjpyi)+

N∑
i=1

∑
j 6=i

1

pij

∂H

∂pij
(−pzipyj)+

N∑
i=1

∑
j 6=i

1

rij

∂H

∂rij
(zjyi)+

N∑
i=1

∑
j 6=i

1

rij

∂H

∂rij
(−ziyj) .

(11)

Since pij = pji, 1st and 2nd terms cancel each other. Similarly, rij = rji results in 3rd and

4th terms canceling each other. Therefore,

{
N∑
i=1

Lix, H} = 0 . (12)

Similar steps lead to {∑N
i=1 Liy, H} = 0 and {∑N

i=1 Liz, H} = 0, resulting in

dLT

dt
= {LT , H} = 0 . (13)

Therefore, the total angular momentum is also a conserved quantity for a Hamiltonian with

MDPs that are spherically symmetric in position and momentum space.

III. GROUND STATE ENERGIES

In the next four sections we will examine ground state, excited state, ionization and

scattering properties of MDPs, beginning in this section with ground state energies. This

requires the choice of a specific MDP and we have chosen the KW MDP because ground
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FIG. 1. Plots of r2
[
V (r, p) = ε2

4αr2
eα[1−(rp/ε)4]

]
(in atomic units) where α = 1 and ε = 1 (a) and

α = 1 and ε = 2 (b) show that for rp � ε, the potential becomes very repulsive. Since V H and

V P have similar functional forms, common notations are used to denote the potentials and their

corresponding variables: V (r, p) denotes V H or V P , α denotes αH or αP , ε denotes εH or εP , r

denotes ri or rij and p denotes pi or pij . Therefore, the highly repulsive behavior of V (r, p) as

rp� ε enforces the Heisenberg and Pauli principles within the classical framework.

states of many-electron atoms have been modeled with KW MDP [57] (therefore, we drop

the KW designation in what follows). Before we continue it is important to specify more

precisely the strategy. The empirical parameters in this model are used to train the model

to match Hartree-Fock (HF) ground state energies of a subset of the elements [77]. The

trained model is then tested for its transferability to ionization energies and ground state

energies of other elements that were not used in the training.

The MDP interaction between an electron and the nucleus is stabilized by the Heisenberg

MDP

V H(ri, pi) =
ε2
H~2

4αHmer2
i

eαH[1−(ripi/εH~)4] , (14)

where me is mass of electron, ri and pi are the magnitudes of position and momentum of

ith electron relative to the nucleus and εH and αH are parameters. Because V H is more

repulsive, scaling as r−2, than the attractive electron-ion attraction, scaling as −r−1, the

electron resides in a potential at a finite distance from the nucleus. The ion is taken to

be at rest relative to the electron due to the large ion-electron mass ratio. However, the

8



1.0 1.1 1.2 1.3 1.4 1.5 1.6
εH

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
ε P

(a)
∆HF (%)

0.0

6.5

13.0

19.5

26.0

32.5

39.0

45.5

52.0

58.5

1.0 1.1 1.2 1.3 1.4 1.5 1.6
εH

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

ε P

(b)
∆HF (%)

0.0

9.6

19.2

28.8

38.4

48.0

57.6

67.2

76.8

86.4

FIG. 2. Projected surface of ∆HF (%) = 100|(E − EHF )/EHF | in (εH , εP ) plane for Al (a) and

Ca (b) showing the region of minima. (εH ,εP ) points (white dots) corresponding to ∆HF . 4%

follow a curve indicating that there is a correlation between εH and εP values that result in ground

state energies which are in very good agreement with HF values. The correlation between the

parameters reveal some degree of transferability to ground state energies of other elements that

are not tested.

KW prescription only includes a Heisenberg interaction between species and no statistical

interaction between ions by its definition [78]. For a many-electron atom, the Pauli exclusion

principle is incorporated through the Pauli MDP expressed as

V P (rij, pij) =
ε2
P~2

4αPmer2
ij

eαP [1−(rijpij/εP ~)4] , (15)

where rij and pij are the magnitudes of relative position and momentum of ith and jth

electron respectively and εP and αP are parameters. V H tries to impose the condition

ripi ≥ εH~ which is analogous to the Heisenberg uncertainty principle and V P tries to

impose the condition rijpij ≥ εP~ which is analogous to the Pauli exclusion principle. The

region excluded from phase space by Pauli and Heisenberg MDPs is referred to as the ’core’.

εH and εP are parameters that decide the size of the core while αH and αP are parameters

that decide the hardness of exclusion from the core. Note that V H and V P have similar

functional forms. Therefore, they are illustrated in a combined manner as r2V (r, p) in Fig.

1 where V denotes V H or V P , r denotes ri or rij and p denotes pi or pij. From Fig. 1 we can
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FIG. 3. (a) Relative error ∆HF (%) of MDP prediction of ground state energies with respect to

HF values (green circles connected by dashed green line) for N, Ne, Al, Ar and Ca show that the

KW formulation is an excellent model for ground state energies (lines are to guide the eye). (b)

Correlated (εH ,εP ) points (circles in shades of red from light to dark corresponding to increasing

atomic number) extracted from the ∆HF surfaces. Also shown are curve fits (solid curves in

shades of red increasing from light to dark corresponding to increasing atomic number) using

εP = Aε2
H + BεH + C for N, Ne, Al, Ar and Ca. For all the elements considered, the curve fits

match well with the points extracted from the corresponding ∆HF surfaces suggesting a possible

transferability with respect to the atomic number.

infer that for ripi � εH~ and rijpij � εP~ the potentials become very repulsive, thereby

enforcing the Heisenberg and Pauli principles within the classical framework. The properties

of the ground state depend on the values of the core sizes and the hardness parameters. For

simplicity [79], we try to quantify the influence of core sizes on the ground state energies;

therefore, we fix the values of the hardness parameters αH and αP to be 2 and 1, respectively,

as suggested by Beck et al. [80] based on their stopping power studies.

The ground state of a many-electron atom is obtained by minimization of the Hamiltonian

with respect to positions and momenta of the electrons keeping their spins fixed which

requires a simultaneous solution for the set of equations ∂H
∂ri

= 0 and ∂H
∂pi

= 0 for i = 1 to Ne.
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FIG. 4. (a) Coefficients A, B and C of the fit εP = Aε2
H + BεH + C vary as a function of atomic

number (Z). The pattern in the data points of A (green circles), B (black star) and C (red squares)

corresponding to N, Ne, Al, Ar and Ca are captured well by 4th degree polynomial fits for A

(solid green curve), B (dotted black curve) and C (dashed red curve). (b) Correlated (εH ,εP )

curves for F (blue dashed) and S (blue solid) computed with A, B and C interpolated using their

corresponding 4th degree polynomial fits. Ground state energies for F and S from their correlated

(εH ,εP ) are in good agreement with HF values (with a maximum ∆HF of ∼10% and ∼5% for

F and S, respectively). This confirms the transferability of the trained (εH ,εP ) to ground state

energies of elements that were not included in the training.

The minimized Hamiltonian would result in a frozen configuration for the ground state with

zero electron velocities but non-zero momenta, as mentioned below Eq. 5. Thus, the MDP

model has the desired non-classical behavior. The energy of the minimized Hamiltonian

gives the ground state energy E. The electrons are assigned successive spin values of 1/2 and

−1/2 and are initialized with certain position and momentum values prior to minimization.

Atomic units were used for the calculation. Following [57], minimization was performed

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [81] as implemented in the

MATLAB solver ‘fminunc’. BFGS is an unconstrained optimization method belonging to

the class of quasi-Newton methods. Despite the use of BFGS we cannot be sure that

the optimization results in a global minimum. To identify the core sizes that resulted in

ground state energies in close agreement with HF (Hartree-Fock) values we performed the
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minimization for a range of core sizes for some elements. For an atom with M electrons,

the Hamiltonian is a function of 6M variables, therefore, the cost of minimization increases

as M becomes larger. On a laptop with Intel Core i3 processor (2.53 GHz and 4 GB RAM)

it took about 4 seconds and 5 minutes to obtain the ground states of nitrogen and calcium

respectively. A search in the parameter space requires a number of minimizations, therefore,

we performed the search only for some elements, namely, nitrogen (N), neon (Ne), aluminum

(Al), argon (Ar) and calcium (Ca).

A. Correlated core sizes (εH , εP )

The percentage deviation from HF defined as ∆HF (αH , αP ) = 100|(E −EHF )/EHF | was

traced as a surface for N, Ne, Al, Ar and Ca for εH spanning from about 1 to 2 and εP

spanning from about 1 to 2.5. The space was discretized with a grid spacing of 0.01, therefore

about 15000 minimizations were performed for each element considered. After parallelizing,

minimizations to trace the surface for Ca on a node with about 10 cores took about 2 days.

The search was crucial because the search led us to identify correlated εH and εP values that

resulted in ground state energies in very good agreement with HF values for all the elements

considered. Fig. 2 shows the projected surface of ∆HF for Al and Ca and the correlated

(εH , εP ) points that correspond to ∆HF . 4%. Using the same condition, the correlated

set of (εH , εP ) were extracted from ∆HF surfaces of other elements considered (N, Ne and

Ar) as shown in Fig. 3(b) (points). Relative error with respect to HF values ∆HF (%), are

shown in Fig. 3(a). For each of these elements the ground state energy with minimum ∆HF

are comparable with ground state energy experimentally measured [82].

We observed that the correlated (εH , εP ) follow a pattern with respect to atomic number

(Z), that is, the correlation extends to higher values of εH with increasing atomic number,

as seen in Fig. 3(b). The reason for this pattern is not understood. The correlation between

εH and εP is captured well by a parabolic relation expressed as

εP = A(Z)ε2
H +B(Z)εH + C(Z). (16)

There is no particular reason for expressing εP as a function of εH ; a similar fit would yield

εH as a function of εP . We quantified the pattern with respect to atomic number by fitting

the coefficients A, B and C to fourth degree polynomials as shown in Fig. 4(a). We then
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FIG. 5. (a) Electron trajectory around ion (black dot) corresponding to different initial conditions:

Kepler-like motion from t = 0 to t = 50 a.u. (blue curve), zig-zag motion from t = 0 to t = 50

a.u. (dark green curve), zig-zag motion from t = 50 to t = 231 a.u. (light green curve) and

reciprocating motion from t = 0 to t = 50 a.u. (red curve). Reciprocating motion corresponds

to zero initial angular momentum which would result in an unstable trajectory in the absence of

Heisenberg MDP. (b) Magnitude of position (r) and magnitude of momentum (p) corresponding

to the trajectories in (a) from t = 0 to t = 50 a.u. are superimposed on the Hamiltonian surface.

(c) Region 1 of (b) magnified to show the band-like structure in (r, p) dynamics. (d) Region 2 of

(b) magnified to show a similar band-like structure in (r, p) dynamics.13
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FIG. 6. For N, F, Ne, Al, S, Ar and Ca, first and second ionization energies were computed using

MDPs with the correlated (εH , εP ) optimized to give accurate neutral ground-state energies. MDP

prediction of first ionization energies (red curve) are in good agreement with NIST data (dashed

blue curve); second ionization energies using MDPs (green curve) yield mixed results compared to

NIST data (dashed cyan curve). Therefore, the parameters trained on neutral ground state energies

transfer fairly well to the prediction of first and second ionization energies with some outliers.

interpolated the coefficients for fluorine (F) and sulphur (S) to obtain their correlated (εH ,

εP ) that resulted in ground state energies in good agreement with HF. The maximum ∆HF

was ∼10% and ∼5% for F and S respectively. This is remarkable because it confirms the

transferability of the trained (εH ,εP ) to ground state energies of F and S that were not

included in the training. Fig. 4(b) shows the interpolated (εH , εP ) curves of F and S along

with the parabolic fits of (εH , εP ) for N, Ne, Al, Ar and Ca.

IV. EXCITED STATE ORBITS

In this section we turn to excited state properties, defined as ṙ 6= 0, ṗ 6= 0, and H < 0.

Again, we make use of the MDP, but for an electron-ion pair with the simpler Hamilton
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equations given by

dr

dt
=

p

me

+
∂Veff(r, p)

∂p
,

dp

dt
= −∂Veff(r, p)

∂r
, (17)

where Veff(r, p) contains both the attractive Coulomb potential and the (repulsive) Heisen-

berg MDP.

In contrast with the minimization procedure used in the previous section, we now examine

several initial value problems for (17). The Hamilton equations (17) with ionic charge

Z = 1, αH = 5, and εH = 0.9535 were numerically integrated (after conversion to atomic

units) using MATLAB’s RK45 integrator. We considered the following initial conditions: (i)

r = 1x̂, p = 1ŷ, (ii) r = 1x̂, p = 1√
2
x̂ + 1√

2
ŷ, (iii) r = 1x̂, p = 1x̂; these choices yield quite

different behaviors. As shown in Fig. 5(a), the trajectory is Kepler-like (blue curve) for

initial condition (i), is of zig-zag nature (green curve) for (ii) and is a reciprocating pattern

(red curve) for (iii). Note that condition (iii) corresponds to zero initial angular momentum,

which is an important test of any MDP; zero initial angular momentum would result in a

Coulomb catastrophe in the absence of the proper MDP. The stabilizing nature is due to

the dominant 1/r2 contribution in the MDP in the limit of p = 0 or rp = εH , compared to

the (infinitely deep) attractive Coulomb potential −1/r. We found the energy and angular

momentum to be conserved for all three trajectories as expected from Section II.

One way of interpreting the trajectories’ nature is by superimposing their (r, p) dynamics

on the total energy contour as shown in Fig. 5(b). Depending on the initial condition, the

electron executes a trajectory that confines its energy to a contour marked by its initial

energy. This implies that the minimum of the confining potential Veff(r, p) changes with the

electron’s momentum in accordance with energy conservation. Further, though Fig. 5(b)

gives the impression that (r, p) dynamics for the three different trajectories overlap with

each other, Figs. 5(c) and 5(d) showing the magnified regions 1 and 2 of Fig. 5(b) reveal a

kind of band structure in their (r, p) dynamics that do not exactly overlap with each other.

V. FIRST AND SECOND IONIZATION ENERGIES

The identity (being bound or free) of an electron in a finite-temperature plasma is con-

tinuously changing. Moreover, in processes such as charged-particle stopping, much of the
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energy loss can be due to ionization [83]. Therefore, in addition to atomic properties, MDPs

must accurately capture transitions between bound and free states. In this subsection we ex-

amine these properties through comparisons of predicted first and second ionization energies

with experimental values. We do this in a manner that allows us to assess the transferable

properties of the MDPs by using parameters previously trained on ground-state properties.

The nth ionization energy is given by

In = En − E0 , (18)

where En is the energy of an ion with n electrons removed and E0 is the (ground state)

energy of the neutral atom. En for n =1, 2 were obtained by minimizing the corresponding

Hamiltonian using the same minimization algorithm employed above for every correlated

εH and εP pair trained on the ground state energy of the corresponding neutral atom. The

corresponding set of first and second ionization energies were then computed. From this set,

we chose those that minimized the combined error defined as

∆EGS,1,2 = (EGS − EHF)2 + (I1 − I1,expt.)
2

+ (I2 − I2,expt.)
2 , (19)

where I1,expt. and I2,expt. are experimentally measured first and second ionization energies

given by NIST data [82]. As shown in Fig. 6, first ionization energies are in good agreement

with the NIST data, while the second ionization energies yield mixed results. Therefore, the

parameters εH and εP trained to give very accurate neutral ground state energies transfer

well to the prediction of first and second ionization energies, with some outliers.

VI. SCATTERING PROPERTIES OF FREE ELECTRON STATES

In this section we examine our fourth criteria for plasma behavior: scattering properties

of continuum states. We quantify the MDP’s ability to accurately describe continuum prop-

erties through tests based on the momentum transfer cross section (MTCS), an important

quantity related to stopping power [84–86] and other transport properties [87]. As in pre-

vious sections, we reduce the many-body Hamiltonian to a simpler system of an electron
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FIG. 7. Comparison of the classical and quantum MTCS for Z = 1, κB = 1, and E = 10 to 100 a.u.

The classical MTCS using semi-analytic method (blue dashed) and the trajectory method (cyan

dashed) are in very good agreement. They also match with the asymptotic limit of the classical

MTCS (red dashed) given by Eq. 27. The quantum MTCS (black dashed) differ significantly from

the classical result. Also shown is the asymptotic limit of the quantum MTCS (pink dashed) given

by Eq. 28 with the difference from the numerical quantum MTCS decreasing as energy increases.

scattered by a screened ion. The Hamiltonian in the reference frame of the ion is given by

HC=
p2

2me

+ V Y (r) , (20)

V Y (r)= −Ze
2

r
e−r/λ (21)

where Z is the ionic charge and λ is the screening length, which is chosen appropriate to a

plasma; for example, for dense plasmas, λ is typically a finite temperature Thomas-Fermi

screening length [88]. For the rest of this section atomic units have been used and λ is

expressed through an inverse screening parameter κB = aB/λ where aB is the Bohr radius.

We begin by comparing the quantum and classical MTCS to identify the conditions where

they differ appreciably. The quantum MTCS is given by

σQMtr =
4π

k2

∞∑
l=0

(l + 1) sin2(δl − δl+1) , (22)

where k is the magnitude of the wavevector of a free electron and δl is the phase shift for
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FIG. 8. Scattering angle θ vs. impact parameter b corresponding to Z = 1, κB = 1 and E = 10 a.u.

for the purely classical case (black dashed curve) and with Heisenberg MDP (blue curve: αH =

1, εH = 0.125; green curve: αH = 1, εH = 0.25; red curve: αH = 1, εH = 0.5). Scattering at low

impact parameters is highly influenced by the MDP resulting in a structure in the scattering angles

with the angle decreasing to zero and then increasing as impact parameter increases. Scattering

angles of all the curves overlap with each other for large impact parameters.

angular momentum quantum number l. For simplicity, we chose the WKB approximation

for δl [84, 87] which is given by

δl =

∫
dr

√
k2 − (l + 1/2)2

r2
− 2V Y (r)−

∫
dr

√
k2 − (l + 1/2)2

r2
. (23)

The classical MTCS [87] is given by

σCLtr =

∫ ∞
0

db (1− cos θ(b)) b , (24)

where θ(b) is the scattering angle for an impact parameter b. For a Hamiltonian without an MDP

the scattering angle is given by the semi-analytic formula

θ(b) = π − 2b

∫ ∞
rm

dr

r2

1√
1− b2/r2 − V Y (r)/E

, (25)

where rm is the classical turning point given by the largest root of the equation

1− b2

r2
m

− V Y (rm)

E
= 0 . (26)
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FIG. 9. (a) Scattering angle vs. impact parameter obtained using MDP with αH = 1, εH = 0.125

for Z = 1, κB = 1 and E = 10 a.u. There is a structure in the scattering angles with the angles

becoming nearly zero for an impact parameter of b = 0.028 a.u. (b) Electron trajectory for b =

0.028 a.u. (red curve) reveals that though there is a strong interaction between the electron and

the screened ion (black dot), the interaction is such that the scattering angle is nearly zero in the

asymptotic limit of the trajectory. Electron trajectories for b = 0.026 a.u. (blue curve) and b =

0.03 a.u. (green curve) indicated by the vertical lines in (a) show that though the corresponding

scattering angles are similar in magnitude, the nature of the trajectories are different with the

electron scattered upward for b = 0.026 a.u. while the electron is scattered downward for b = 0.03

a.u.

Now, for a Hamiltonian with an MDP, Eq. 25 cannot be applied; therefore, we computed the

scattering angle from the electron’s trajectory which was obtained by numerically integrating its

Hamilton equations until the electron-ion interaction became negligible. We refer to this as the

trajectory method for MTCS. For the purely classical case with Z = 1, κB = 1 and energy range

E = 10 to 100 a.u., we compared the MTCS from trajectories with the semi-analytic MTCS (Eq.

25). They are in good agreement as shown in Fig. 7, thereby validating our implementation. For

the same conditions, the quantum MTCS differ appreciably from the classical MTCS as shown in

Fig. 7. Also shown in Fig. 7 are asymptotic limits of the classical and quantum MTCS values

(denoted by σCMtr,asym. and σQMtr,asym. respectively) derived in [89] that have analytic expressions given

by
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FIG. 10. (a) For Z = 1, κB = 1, and E = 10 to 100 a.u. the classical MTCS (blue curve) and

the quantum MTCS (green curve) are compared with the MTCS using MDP (red dots) optimized

with respect to its free parameters αH and εH to minimize the squared difference between the

quantum MTCS and the MTCS using MDP. (b) Filled contour of MTCS using MDP for a range

of αH and εH for Z = 1, κB = 1, and E = 25 a.u. The lowest value on the MTCS contour is

0.016 a.u. which is still large compared to the corresponding quantum MTCS value of 0.0122 a.u.

Though the MDP significantly influences the electron-ion scattering for small impact parameters,

its MTCS predictions are close to the classical MTCS suggesting the MDP’s limitation for modeling

electron-ion scattering in dense plasmas.

σCMtr,asym. = 4π

(
Z

2E

)2 [
ln

(
4E

Z
λ

)
− γ − 1

2

]
, (27)

σQMtr,asym. = 4π

(
Z

2E

)2 [
ln
(

2
√

2E λ
)
− 1

2

]
, (28)

where γ = 0.577 [89]. These expressions reveal that in the asymptotic limit, the quantum MTCS

qualitatively differs from the classical MTCS due to a lower limit set by the deBroglie wavelength

on the distance of closest approach for quantum scattering. Therefore, the test for MDP is if it

can include the necessary quantum effects to bridge the gap between classical and quantum MTCS

values.

Since the interaction is between an electron and a screened ion, Heisenberg MDP is added to

HC (Eq. 20). Using the trajectory method, we computed scattering angles for a range of impact
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parameters for αH = 1 and εH = 0.125, 0.25, and 0.5, as shown in Fig. 8. We found a structure

in the scattering angles for low impact parameters which is due to the MDP’s influence on the

electron-ion interaction as evident in the electron trajectories for b = 0.026, 0.028, and 0.03, as

shown in Fig. 9(b). Those trajectories correspond to the impact parameter range where the

scattering angle decreases to zero and then increases (as marked by the vertical dotted lines in Fig.

9(a)). We performed an optimization with respect to the free parameters, αH and εH , to minimize

the squared difference between the quantum MTCS and the MTCS using MDP. The optimized

MTCS using MDP are close to the purely classical values, as shown in Fig. 10(a), implying that

the MDP doesn’t incorporate the required quantum effects despite having a strong effect on the

electron-ion scattering for small impact parameters. Fig. 10(b) shows the filled contour of MTCS

for a range of αH and εH for Z = 1, κB = 1 and E = 25 a.u. The lowest MTCS value on the MTCS

contour is about 0.016 a.u. which is larger than the corresponding quantum MTCS value of 0.0122

a.u. Similar observations were made from MTCS contours for energies in the range of 10 to 100 a.u.

for Z = 1 and κB = 1. Therefore, though MDP serves as a good model for ground state energies

and first ionization energies of many-electron atoms, it is unable to incorporate the quantum effects

in scattering of a free electron by a stationary screened ion, suggesting its limitation for plasmas.

VII. SUMMARY AND CONCLUSION

In summary, we have examined a time-dependent, quantum-mechanical method for large-scale

simulations of non-equilibrium systems as an alternative to more expensive methods such as TD-

DFT, TD-HF etc. and which relaxes most limitations associated with the relatively fast WPMD [47]

and QSP [51] methods. In particular, our focus has been on the use of a classical-like, Hamiltonian-

based framework based on effective momentum-dependent interactions [62] that has desirable con-

servation properties and the computational scaling of standard classical molecular dynamics. For

simplicity, we employed the KW MDP form [62] since they have been quite successful for many

atomic properties [58, 61, 66–70, 72, 73, 75, 76]. We examined their strengths and weaknesses for

use in non-equilibrium dense plasma simulations using four criteria.

We first trained the parameters based on HF calculations to give accurate ground state energies

for neutral atoms with atomic number less than 20; the excellent agreement with HF calculations

is shown in Fig. 3(a). We found a correlation between the parameters and fitted the correlation to
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a parabolic relation as shown in Fig. 3(b), revealing a level of transferability of these parameters

to previously untrained systems.

Next, we computed the properties of excited state orbits of electron-ion pair and found disparate

properties of the trajectories depending on the initial angular momentum, including unusual re-

ciprocating patterns. An important feature of the KW MDP is the stabilization of the Coulomb

catastrophe for the special case of zero initial angular momentum (see reciprocating motion case

in Fig. 5(a)).

Because plasma electrons persistently undergo ionization and recobination events, we then

turned to the ionization process itelf, with the ionization energy as our quality metric for the

MDP. From the fixed, previously-determined ground state parameters we predicted the first- and

second-ionization energies and found first ionization ionization energies to be in good agreement

with experimental values, again suggesting good transferability. However, the second ionization

energies were mixed, with half accurate and half with an error as large as a factor of two, as shown

in Fig. 6. The reason for this behavior in the second ionization energy is currently unknown.

Finally, we examined continuum states responsible for electronic transport processes, such as

stopping power [84] and electrical and thermal conductivity [87]. We chose to examine the ability

of the KW MDP to reproduce the MTCS versus energy for electron-ion collisions. A screened

interaction was chosen because it more realistically represents the dense plasma environment and

because the Rutherford MTCS has pathological properties (i.e., a large impact parameter diver-

gence) in this context. Using a WKB approach [87], we computed the classical and quantum MTCS

and compared with predictions from KW MDP trajectories. As we showed in Fig. 10, KW MDP

cannot yield the correct MTCS despite training the parameters, suggesting that the functional form

itself is responsible. Thus, although KW MDPs were successful for ground state properties, they

cannot capture scattering properties important for plasma simulations.

The results presented here were for isolated atoms and ions. To quantify the implications of

our findings on many-body properties of a plasma, large-scale molecular dynamics simulation are

needed; this is beyond the scope of the present work and will be explored in a future work. However,

our results have suggested several areas of improvement. First, the KW forms did not include a

Heisenberg interaction between electrons, which is unphysical. Second, the functional form of the

KW appears to have emerged to recover a Bohr picture of the ground state, which yields poor

properties for scattering states. Third, alternate training methods should be explored, including
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optimizing on several properties (e.g., ground state energy and cross sections) simultaneously. Such

explorations are underway and will be the subject of a future work.
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