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Abstract

The Spatial Markov model is a Lagrangian random walk model, widely and successfully used for

upscaling transport in heterogeneous flows across a broad range of problems. It is particularly

useful at early or pre-asymptotic times when many other conventional upscaling approaches may

not be valid. However, as with all upscaled models, it must have its limits. In particular, the

question of what the smallest scale at which it can be legitimately applied, without violating

implicit assumptions, remains. Here we address this issue by considering one of the most classical

transport upscaling problems: Taylor dispersion in a bounded shear flow. We demonstrate that

the smallest scale for the Spatial Markov model depends on the transverse width of the domain,

the variability of the flow field as quantified by a coefficient of variation, and the competition of

longitudinal and transverse diffusion coefficients. We show that this scale is a factor of the Peclet

number smaller than the classical Taylor dispersion scale, meaning that for advection-dominated

systems where Peclet numbers are large, this model can be applied at much smaller scales than

classical Taylor-Aris dispersion theories.
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I. INTRODUCTION

Upscaling of transport in heterogeneous velocity fields is a long-standing discipline that

aims to describe transport at some scale with a model that does not explicitly resolve all of

the small-scale features of the flow that influence transport, but rather captures their influ-

ence in an effective manner. One of the most seminal examples is the early work of Taylor

and Aris [1, 2], who showed that given sufficient time, transport of a solute flowing through a

circular tube can be adequately described by a one-dimensional advection-dispersion equa-

tion with an effective dispersion coefficient that depends on the structure of the velocity

field and magnitude of the molecular diffusion coefficient. Their ideas hold for any shear

flow in a bounded domain. Other approaches, including the method of moments [3], volume

averaging [4], and homogenization [5] generalize these ideas to more complex flow config-

urations. While these ideas are significant, it is important to recognize that in all these

approaches, the use of a constant effective dispersion coefficient is only valid at asymptotic

times. This asymptotic Taylor timescale is set by the amount of time it takes for a solute to

sample the full range of velocities in the flow by diffusion; i.e. these approaches are valid for

t > τD = L2/D, where L is a characteristic length scale of the system and D is the diffusion

coefficient.

Prior to this asymptotic time, transport often displays anomalous behavior (i.e., a scaling

of the second centered moment of a plume which is nonlinear in time). Depending on the

application of interest, one may wish to make predictions of transport at times before this

asymptotic time scale and consequently many of the aforementioned approaches have been

further generalized to capture pre-asymptotic effects and effectively describe transport at

times before the asymptotic Taylor timescale [6].

One model that has emerged recently and appears capable of capturing anomalous and

pre-asymptotic transport in non-uniform flows is the Spatial Markov model, which was

originally proposed by [7] to upscale transport in flows through highly heterogeneous porous

media, building on a rich history of anomalous transport models [8–12]. The model falls

into the category of random walk models, where a plume is discretized into a large number

of particles which transition through space and time, following probabilistic rules that aim

to reproduce the influence of small scale flow heterogeneity. In all of the applications of the

Spatial Markov model to date [7, 13–21] the spatial jumps that particles make are fixed in
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size and the time steps between jumps are random. What distinguishes this model from

previous ones is that the successive temporal jumps are not independent, but rather are

correlated. This enables the model to predict earlier pre-asymptotic transport behaviors

than other approaches, which neglect such correlations.

As already noted, the model in its first application was used to upscale transport in a

variety of highly heterogeneous permeability fields, including multigaussian, connected and

stratified fields [7, 13]. Since then it has been successfully applied to a variety of other setups,

including fractured media [14], synthetic [15, 16] and realistic [17] pore scale systems, steady

and unsteady flows through porous media where inertial effects dominate [18, 19], reactive

transport [20], and recently its first application to field-scale data, from a fractured aquifer

[21]. While these successes demonstrate the great potential for this model, as with any

upscaled model, it must have restrictions on its applicability; in particular, there must be a

minimum scale in time and/or space above which it can be reliably used, but below which

it does not hold. As noted above, classical Taylor dispersion models are only valid for times

greater than the characteristic diffusion time. While we have abundant evidence that the

Spatial Markov model is not as restricted, here we ask what its restrictions are; that is, at

what spatiotemporal scales is it valid to use the Spatial Markov upscaling approach? This

is the primary focus of this note.

To address this issue we return to a problem similar to Taylor’s original one, which has

received and continues to receive [22, 23] a great deal of attention. We focus on upscaling

transport in shear flows in bounded domains, the asymptotic behavior of which is established

and well understood. In particular, we aim to demonstrate limitations of the Spatial Markov

model and define scales after which it may be reliably applied. We focus on these simple

cases, because it makes the problem more tractable and elucidates certain critical points

that are missed in more complex flows. Specifically we ask, how does one choose the size of

the fixed spatial jump that particles take in the random walk sequence? More specifically,

how small can it be, thus setting a scale below which the model may not hold.
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II. SYSTEMS UNDER CONSIDERATION

A. Flow

The work considered here is restricted to purely shear flows that are physically bounded.

Specifically, we consider solute transport in steady flow between two parallel plates posi-

tioned respectively at y = 0 and y = L with average velocity u between these two plates.

To begin, we consider two steady classical flows, that is, linear Couette (uc) and parabolic

Poiseuille flow (up) [24], defined by

uc(y) =
2u

L
y (1)

and

up(y) =
6u

L2
y(L− y). (2)

Both these setups only have flow in the longitudinal (x) direction and the velocity is zero in

the transverse (y) direction.

B. Transport

We consider transport of a conservative solute in these systems. The concentration of

the solute (C) is governed by the advection diffusion equation,

∂C

∂t
+ u(y)

∂C

∂x
= DL

∂2C

∂x2
+DT

∂2C

∂y2
, (3)

where u(y) is the velocity in the longitudinal direction defined above and DL and DT are con-

stant diffusion coefficients in the longitudinal and transverse directions, respectively. While

diffusion is generally considered to be isotropic (DL = DT ), it is convenient to distinguish

between the two in the derivations below, because it turns out that they can compete with

one another. Furthermore, while in classical flows like this it is unlikely that they will differ,

in systems where one level of upscaling has already occurred DL and DT may represent

anisotropic dispersion coefficients [25]. Throughout this study we will always consider an in-

finite domain in the longitudinal direction and a unit mass pulse initial condition. Boundary

conditions at the vertical boundaries are no-flux.
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We model Eq. 3 at this small scale using an equivalent random walk model [26]. The

mass of the solute is split into a large number of discrete particles of equal mass whose

motion is governed by the Langevin equation,

xn+1 = xn + u(yn)∆t+
√

2DL∆tξn

yn+1 = yn +
√

2DT∆tηn n = 0, 1, 2, ...
(4)

where {ξn} and {ηn} are independent samples from a standard Gaussian distribution (with

mean zero and unit variance) and ∆t is a fixed time step. The initial condition is imposed by

placing all particles initially at x = 0 and distributing them across 0 < y < L such that the

number of particles at each y location is proportional to the velocity at that location. The

no flux conditions on the vertical boundaries are imposed by reflecting particles elastically

off the boundaries.

C. Transport Behavior

1. Second Centered Spatial Moment

One of the most common metrics used to study transport behavior and to test the success

of an upscaled model against is the temporal evolution of the second centered spatial moment

in the longitudinal direction of the solute plume, σ2(t). This is a measure of longitudinal

spreading, and is defined by,

σ2(t) =

∫ ∞
−∞

x2Cdx−
(∫ ∞

−∞
xCdx

)2

, (5)

or in terms of discrete particles used in the random walk simulations

σ2(t) =
1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2

. (6)

An example of the evolution of the second centered moment over time is shown in Fig.

1 (a) for Couette flow with L = u = 1 and DL = DT = 10−3. Changing these parameters

changes where transitions in these curves happen, but not general shape or trends. At very

small times, the second centered moment scales linearly in time; then, at intermediate times

it scales faster than linearly in time; and finally, at late times it returns to scaling linearly

in time again. This behavior is well known and understood [27–29]. At the smallest times,
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Figure 1: (a) Second centered spatial moment and (b) autocorrelation between velocities

over the first set of successive time intervals of length δt and space intervals of length δx in

Couette flow with L = u = 1, and DL = DT = 10−3, which demonstrate the transport

behavior of the solute within each of the three transport regimes. The vertical lines mark

the time scales where the system starts to behave ballistically (magenta line) and when the

system returns to behaving diffusively again (green line).

longitudinal diffusion dominates the scaling; at intermediate time the non-uniform nature

of the flow leads to rapid spreading with particles on fast streamlines persisting on fast

streamlines and particles on slow streamlines remaining on slow streamlines; finally after

the Taylor dispersion time when transverse diffusion has enabled all particles to sample

all velocities, the system returns to behaving diffusively, but with a new larger effective

dispersion coefficient, quantified by the Taylor dispersion coefficient. Thus there are two

critical time scales in this process, that is when the system starts to behave ballistically

and when the system returns to behaving diffusively again. These times are qualitatively

illustrated by the vertical lines in Fig. 1.
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2. Velocity Autocorrelations

Here we define another metric, much less commonly used but useful in characterizing the

limitations of the Spatial Markov model, that is the autocorrelation of a particle’s average

effective velocity over a fixed increment in time or space [13, 16, 30]. Full details of the Spatial

Markov model are provided in section IV. Briefly, it is a model that falls into the broader

category of continuous time random walk models (CTRW). As such, understanding the

spatial and temporal increments of a particle’s motion is key to its successful implementation.

This can be considered from the perspective of effective velocities. For each particle we track

with (4), we can define an average effective velocity over a sequence of fixed increments in

time (δt) and/or in space (δx) as,

vti(δt) =
λi
δt
, vxi (δx) =

δx

τi
, (7)

where λi is the distance a particle travels during the ith time step, which is of size δt.

Likewise τi is the amount of time it takes the particle to traverse the ith space step of length

δx. In this definition δt and δx are fixed, while λ and τ are measured from the small scale

simulations. The superscripts in Eq. 7 define which dimension the effective velocities depend

on. It is critical to note that both diffusion and advection in the small scale flow contribute

to the specific values of vti(δt) and vxi (δx), which are not physical velocities, but effective

ones that lump these processes together.

In order to more clearly explain and interpret these effective velocities, a sample particle

trajectory is shown in Fig. 2. At the very top of the figure, the path of a particle (starting

at x = 0, y = 0.5) is shown. This path was generated using the Langevin equation (Eq. 4)

with a small time step ∆t = 10−3 and can be considered a full representation of the path the

particle follows. On the next level we do not resolve the full path of the particle, but rather

look at it from an upscaled perspective and portray snapshots of it at given points in space

and time. On the right hand side we fix the spatial increment δx (in this example δx = 10)

as can be seen by the equidistant vertical black lines. The amount of time it has taken the

particle to get between these points is not constant, which can be seen more clearly on the

lowest tier of the figure where the longitudinal position of the particle against its point in

time is shown. On the left hand side we look at the exact same trajectory, but this time

consider a fixed temporal increment δt (in this example δt = 10). Now the vertical lines are
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Figure 2: A sample particle trajectory in a Couette flow starting at (x = 0, y = 0.5). On

the left hand side we demonstrate how this path can be interpreted in an upscaled manner

by looking at the evolution of the longitudinal position of the particle over fixed snapshots

in time (fixed δt). On the right hand side we interpret the same path, but rather than

taking observations at fixed snapshots in time we take the snapshots at fixed locations in

longitudinal direction (fixed δx). On the bottom row we demonstrate how these different

interpretations define the respective effective velocities in Eq. 7.

not equidistant in x, but the amount of time it has taken to get between them is fixed. The

transitions that occur when the particle is close to the lower boundary are small for a fixed

δt, which is completely in line with the fact that the velocity there is smaller. Similarly,

these locations have been plotted on an x, t plot at the bottom. These figures demonstrate

how we define the effective average velocities defined in Eq. 7.

Accepting these definitions we can now define autocorrelation functions for these velocities

averaged over intervals of length δ as
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R∗(i, j, δ) =
Cov[v∗i (δ), v

∗
j (δ)]√

Cov[v∗i (δ), v
∗
i (δ)] Cov[v∗j (δ), v

∗
j (δ)]

(8)

where Cov[v∗i (δ), v
∗
j (δ)] is the covariance of v∗i (δ) and v∗j (δ), which are defined for δ = δx,

and δ = δt above. R∗(i, j, δ) is a function of i, j, and δ. Recall i and j are the indices of the

steps taken of length δ. We will use the convention R∗(i, j)|δ to refer to the autocorrelation

between v∗i (δ) and v∗j (δ) for a fixed δ, and we will use the convention R∗(δ)|(i,j) to refer to

the autocorrelation between v∗i (δ) and v∗j (δ) for fixed i and j. Of particular interest here is

Rx(δx)|(1,2), which is the autocorrelation between the first two effective velocities averaged

over varying δx, because these are the effective velocities used to create the Spatial Markov

model.

An example of these metrics is shown in Fig. 1 (b) for the same Couette flow configuration

as noted above (i.e. L = u = 1 and DL = DT = 10−3). Again, different choices of parameters

may change the magnitude and transition locations of these curves, but not the overall shape,

which we focus on here. The autocorrelation function shown in Fig. 1 (b) is for velocities

measured over the first two consecutive intervals of varying length δ, where we use δ to

generically refer to either δx or δt, so that i = 1, j = 2 in Eq. 8 above. Over very early

times/small spatial increments, correlation effects are weak. Over this scale, transport is

dominated by longitudinal diffusion (still in the pre-asymptotic Fickian scaling regime for

the second centered moment which is shown in Fig. 1 (a)). The autocorrelation function

(R∗(δ)|(1,2)) is near zero here, because diffusion is inherently an uncorrelated process. Over

intermediate δ, when σ2(t) grows faster than linearly in time (in this case it is ballistic,

σ2(t) ∼ t2), advection has overcome diffusion and R∗(δ)|(1,2) begins to increase - advection

induces correlation [31]. In the absence of diffusion a given particle would always stay on the

same streamline so its effective velocities would be the actual advective velocity, which would

never change and so be perfectly correlated. Throughout this regime, R∗(δ)|(1,2) increases to

a peak. After the peak, the autocorrelation function decreases again (note that the shape

of the curves appears to be close to symmetric in log space). Finally, over large δ, when

the second centered moment transitions back to a linear regime (σ2(t) = 2Defft, where Deff

is a constant dispersion coefficient), R∗(δ)|(1,2) drops back down to near zero, which reflects

the fact that pure Fickian dispersion is an uncorrelated process. This is the asymptotic, or

Taylor, regime, where the solute has had sufficient time to sample the entire velocity field
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and the motions in the longitudinal direction can be fully described by a one dimensional

Fickian advection-dispersion equation.

III. THE PEAK IN THE AUTOCORRELATION FUNCTION

As an initial estimate we postulated that the location of the peak in the autocorrelation

functions defined in Eq. 8 and depicted graphically in Fig. 1 would set the smallest scale

over which the Spatial Markov could be applied. As will become clearer further on, the peak

is not sufficient and underestimates the true scale. Nonetheless it will be useful to consider.

A. Scaling Arguments for the Peak Location of the Autocorrelation Function

In order to find the location of the peaks of the autocorrelation functions, we must first

define the time scales that separate the three transport regimes discussed in II C. These

are the time scales where the autocorrelation function transitions from being near zero to

non-negligible and transitions back again. Transport in the longitudinal direction causes

the increase in the autocorrelation function and transport in the transverse direction causes

the fall in the autocorrelation function. This is clear by closely examining the Langevin

equation (Eq. 4).

In the longitudinal direction, transport is due to both advection and diffusion,

xn+1 = xn + u∆t︸︷︷︸
advective length

+
√

2DL∆tξn︸ ︷︷ ︸
diffusive length

n = 0, 1, 2, ... (9)

For very small ∆t, the diffusive length tends to be larger than the advective length (because
√

∆t � ∆t). This leads to an essentially uncorrelated process because the random noise

(diffusion) dominates the deterministic step (advection). If we set the typical advective step

to be u∆t and the typical noise due to the diffusive step to be
√

2DL∆t, then we can expect

that the onset of the rise of the autocorrelation function will occur at the time when these

step sizes become equal. Let us denote this as the rising time τr,

uτr =
√

2DLτr

=⇒ τr =
2DL

u2 .
(10)
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In the transverse direction, transport is due to diffusion alone,

yn+1 = yn +
√

2DT∆tηn n = 0, 1, 2, ... (11)

For very large time steps, the solute has had time to sample the entire velocity field due

to transverse diffusion. This is the timescale where the typical noise due to the transverse

diffusive step reaches the distance over which the velocity field varies (l). This the Taylor

timescale, or diffusive timescale, which we will call τD,

l =
√

2DT τD

=⇒ τD =
l2

2DT

.
(12)

Fig. 1 (b) shows an example of where these timescales fall on the velocity autocorrelation

function. It does indeed appear that the autocorrelation function begins to rise at around

τr and has fallen again to near zero at around τD. If we assume that this is the case and

that the autocorrelation function is symmetric in log space, then we can find the scaling of

the peak location of the autocorrelation function in time, δ̂t,

log δ̂t− log τr = log τD − log δ̂t

=⇒ δ̂t
2
∼ τrτD

∼ l2DL

u2DT

.

(13)

δ̂t is the geometric mean of τr and τD. This result also shows the need to differentiate

between longitudinal and transverse diffusion. When the two are equal, this time is simply

the characteristic advection time l/u, but when they differ it changes. Now we can relate

the peak in space (δ̂x) to the peak in time (δ̂t) as

δ̂x ∼ uδ̂t ∼ l

√
DL

DT

. (14)

B. Validation

To ensure that the peak location scaling arguments presented in the prior subsection are

valid, we tested them by running a series of numerical simulations. In each simulation, we

track 105 particles whose initial condition is flux weighted along the line x = 0 and whose

subsequent motion follows the Langevin equation (Eq. 4). We fix the baseline parameters
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to l = u = 1 and DL = DT = 10−3 and then vary each of them over a range of values.

We measure the autocorrelation functions in space and time as well as the locations of their

peaks. The peaks in space and time are referred to as δ̂x and δ̂t respectively. Subscripts

are used to show which velocity field was used: a subscript of c is used for Couette flow

simulations and a subscript of p is used for Poiseuille flow simulations.

The results of this scaling analysis are shown in Fig. 3. The first parameter we consider

is the distance over which the velocity field varies, l. As l increases, the distance a particle

must travel to sample all of the velocities in the system increases, so the peak location will

shift right, meaning the peak location will scale as some positive power of l, which, as we

argue from Eqs. 13 and 14, should be 1. For Couette flow, l = L, the distance between

the plates. For Poiseuille flow, the velocity field is symmetric, so it only varies over half of

the domain length, l = L
2
. Fig. 3 (a) shows that indeed, the location of the peak in the

autocorrelation function scales linearly with l.

Next, we consider average velocity. For this case, the scaling of the peak location with

regard to u depends on whether the autocorrelation function is defined in space or in time.

Eq. 13 suggests it scales inversely with average velocity in time, while Eq. 14 suggests

that it is independent of mean velocity in space, which is again completely in line with our

observations from simulations shown in Fig. 3 (b). If the average velocity is zero, then the

system is diffusion dominated and the autocorrelation function will be near zero. On the

other hand, as the average velocity increases, the system becomes more deterministic and

highly correlated.

Finally, we consider diffusion. In the longitudinal direction, the existence of diffusion

is the very reason the rise toward a peak in the autocorrelation function exists; thus as we

increase diffusion in the longitudinal direction, DL, we anticipate the location of the peak will

also shift in the positive direction. From Eq. 13 we argue that the peak location should scale

with the square root of DL. Fig. 3 (c) shows that this is indeed the case. Transverse diffusion

is the process that allows particles to sample the full variability of velocities in the system.

Thus one can anticipate that an increase in the transverse diffusion coefficient will lead the

location of the peak to shift toward smaller values. From Eq. 13 we anticipate a scaling which

is proportional to D
− 1

2
T , which is indeed what we observe in Fig. 3 (d). These scaling relations

imply that the peak location depends on the ratio between longitudinal and transverse

diffusion. In many applications, diffusion is considered to be isotropic, which, interestingly,
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Figure 3: Location in time and space of the peak of the autocorrelation function

(R∗(δ)|(1,2)) as a function of (a) the distance over which the velocity field varies (l), (b) the

spatial average of the velocity field (u), (c) longitudinal diffusion (DL), and (d) transverse

diffusion (DT ).

leads to the location of the peak in the autocorrelation function being independent of the

diffusion coefficient, because these competing effects exactly balance one another.

While the actual scaling relationships that we had predicted all seem to hold in Fig. 3,

one thing that does stand out is that specific values for Couette and Poiseuille flow are offset
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from one another, suggesting that there is one more missing ingredient in this analysis. To

identify this ingredient, we begin by decomposing the velocity field into its spatial average

and fluctuations,

u(y) = u+ u′(y), u =
1

L

∫ L

0

u(y)dy. (15)

Then the spatial variance of the velocity field is

u′u′ =
1

L

∫ L

0

u′(y)2dy. (16)

From this we can say that for Couette and Poiseuille flow the velocity fields have variance

u′u′c =
u

3
u′u′p =

u

5
, (17)

respectively. Since the variance of velocity depends on which flow field we use, it may

contribute to the missing ingredient in the scaling arguments which caused the peaks to

offset. However, this only provides us with two points from which we cannot infer any

reliable scaling behavior.

In order to determine the scaling of the peak location with regard to the variance in

velocity, we ran an additional set of simulations. Thus far, we have only looked at two

different velocity fields. Therefore, we only have two different values of the dimensionless

coefficient of variation, cv =

√
u′u′

u
. In order to assess the scaling of the peak location with

the coefficient of variation more velocity fields were needed. We defined a general stratified

velocity field,

us(y) = u+ σγ(y), (18)

where σ =
√
u′u′ is the parameter we varied and γ(y) is a sorted sequence of random

numbers with mean 0. This allowed us to create velocity fields with a large range of values

for the variance and coefficient of variation. While such a velocity field may be deemed

unphysical from the standpoint of a Navier-Stokes flow it could arise from a Darcy flow

through a stratified aquifer [32–34], and the recent work of [35] also suggests that when

chosen to represent the cumulative density function of longitudinal velocities in a highly

complex heterogeneous flow, it can adequately represent and upscale transport.

The characteristic length scale in these systems is l = L, as in Couette flow. In all of

these simulations, we set L = u = 1 and DL = DT = 10−3. Fig. 4 shows the locations of the
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Figure 4: Location in time and space of the peak of the autocorrelation function

(R∗(δ)|(1,2)) versus the coefficient of variation (cv) for stratified velocity fields defined in

Eq. 18.

peaks of the autocorrelation functions obtained from this set of simulations. We find that

the locations of the peaks in the autocorrelation are approximately proportional to c−1
v . At

first, this scaling may seem counterintuitive. The reason for this is that if the velocity field

has no variance at all, then the system is purely diffusive, thus no correlation exists, so the

autocorrelation function can never take the assumed form (i.e., it will never increase to a

peak).

This evidence indicates that the non-dimensional peak locations, δ̂x
l

and δ̂tu
l

are propor-

tional to the dimensionless quantity c−1
v

√
DL
DT

. Thus, we can collapse all of the peak locations

in time to a single line and likewise for the peaks in space. These lines are shown in Fig.

5. The peak locations are represented well by these lines. The proportionality constants for

this linear scaling are found are to be equal for both as α = 0.6.

IV. SPATIAL MARKOV MODEL

As noted in the introduction, the purpose of this note is to find the limits of the Spatial

Markov model, which has been used to successfully replicate transport behavior in hetero-

geneous velocity fields, such as those of interest here. Here we provide a description of this
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Figure 5: Peak location in (a) time versus the parameter group l
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v .

upscaled model. The Spatial Markov model falls into the broader category of continuous

time random walk models (CTRW). In a CTRW model, the solute mass is discretized into

a large number of particles whose motion is governed by the Langevin equations,

xn+1 = xn + δx

tn+1 = tn + τn n = 0, 1, 2, ...
(19)

where in this representation δx is a fixed spatial increment and {τn} are random motion times

described by some chosen distribution f(τ1, τ2, ...). This matches the upscaled interpretation

depicted on the right hand side of Fig. (2). This is similar to Eq. 4 except that now only

longitudinal transport is modeled and we do not require that time steps are fixed, but rather

that they can be random. In general CTRW models δx may also be random [11], but in our

Spatial Markov implementation it is fixed.

What really distinguishes the Spatial Markov model from other similar models is that

it does not use independent and identically distributed {τn} values from a given univariate

distribution, but rather models a one-step correlation between successive values using a

Markov Chain. This means that {τn} values are described by the conditional distribution
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f(τn) =

f(τ1) for n = 1

f(τn|τn−1) for n = 2, ...
(20)

Numerically, we approximate f(τn|τn−1) by discretizing the marginal f(τ1) into β travel time

classes, or bins. If β = 1, the model reduces to an uncorrelated model. As β increases, more

of the correlation structure of the system is resolved. We model the steps of the Spatial

Markov model as a spatially homogeneous Markov process with β discrete states, which can

be described with a transition probability matrix, Tji, defined as,

Tji = P (τn+1 ∈ bin j|τn ∈ bin i) = P (τ2 ∈ bin j|τ1 ∈ bin i). (21)

Practically speaking, in order to do this, we simulate transport using the Langevin equa-

tion (Eq. 4) over a distance of x = 2δx and measure the time it takes for each particle to cross

x = δx and x = 2δx. This gives us the joint distribution of particle travel times f(τ1, τ2).

We then choose the classes, as is commonly done, by splitting f(τ1) into β equiprobable

regions and recording the values of τ1 corresponding to the boundaries of these regions. The

smallest travel times belong to bin 1, and a particle’s travel time is in bin i if ti ≤ τ < ti+1,

where ti is the lower limit of bin i, which for bin 1 is 0. In steady flows, Tji tends to be a

diagonally dominant banded matrix, indicating that particles have the highest probability

of staying in their initial class, with some probability of jumping to nearby classes. Further

details of the procedure for creating a Spatial Markov model are available in [13, 15, 18].

The strength of the Spatial Markov model is that by not imposing that τn+1 be indepen-

dent of τn, we reduce the minimum length scale over which the {τn} may be measured and

still create a valid model. We need not wait until asymptotic time to begin measuring the

travel time distribution. But to determine how much this length scale is reduced, we must

consider the assumptions of the model and when they are valid.

A. Model Assumptions

There are two key assumptions that must be met for the Spatial Markov model to be a

valid approach. First, the Spatial Markov model assumes that between any two adjacent

spatial jumps, the correlation structure is the same (i.e., spatially homogeneous). Further-

more, treating transport as a Markov Chain requires that a particle’s next state only depends
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on its current state regardless of how the particle arrived in its current state or how long it

has been there. This means that the number of steps (each corresponding to a length δx)

required to leave the current state follows a geometric distribution and the autocorrelation

between subsequent steps is exponential [21, 30, 36]. Since each state has a distinct range

of velocities assigned to it, this exponential autocorrelation passes into the velocity domain.

In order to satisfy these assumptions we require the autocorrelation function between veloc-

ities averaged over a distance δx∗ and separated by a distance |j − i|δx∗ for |j − i| ∈ N be

exponential. That is,

R̂x(i, j)|δx∗ = R̂x(|j − i|)|δx∗︸ ︷︷ ︸
spatially homogeneous

= exp(aδx∗|j − i|)︸ ︷︷ ︸
Markov process

, (22)

where aδx∗ ∈ R− depends on δx∗ and can be related to the second largest eigenvalue of the

transition matrix (Tji) [37]. The function R̂x(i, j)|δx∗ is distinct from Rx(i, j)|δx in that it

is the autocorrelation function required to satisfy the assumptions of the Spatial Markov

model, as opposed to the actual measured autocorrelation function.

B. Implications of the Model Assumptions

The next step is to find what the restriction on Rx(i, j)|δx means for Rx(δx)|(1,2). From

this information, we can determine the length scale over which the assumptions of the Spatial

Markov model hold (δx∗) by finding the scale where Rx(δx)|(1,2) behaves in the required way.

In order to derive the requirements on R∗(δ)|(1,2), we assume Rt(i, j)|δt = R̂t(i, j)|δt∗ and

propagate the correlation to larger δt. The analysis is shown in Appendix A. We find that

Rt(δ)|(1,2) must have a negative first derivative and positive second derivative and we assume

that Rx(δ)|(1,2) must satisfy the same restriction. This seems reasonable, since if we were

to analyze the autocorrelation between travel times directly (rather than using the average

velocities in space), then the analysis would be nearly identical to that in Appendix A.

As we have seen above (Fig.1), the actual autocorrelation function Rx(δ)|(1,2) does not

satisfy these properties at all scales. Thus, in order to satisfy the assumptions of the Spatial

Markov model, we must ensure that the length scale over which the model is applied (δx) is

sufficiently large that at distances greater than δx,Rx(δx)|(1,2) has a negative first derivative

and positive second derivative. Since Rx(δx)|(1,2) is clearly concave down at its peak, we seek
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the length scale where Rx′′(δx)|(1,2) > 0 as the length scale over which velocity distributions

are taken. Thus we are seeking the inflection point (after the peak) in the autocorrelation

function. Note that, while the primary focus of this work is on the Spatial Markov model,

many of the arguments presented would also hold for a Temporal Markov model [e.g. 38].

Choosing between the two depends on the specific system of interest [13].

V. PEAK AND INFLECTION POINT RELATIONSHIP

The inflection points are found by locating the zero in the second derivative of Rx(δx)|(1,2)

for all of the simulations. We compute the second derivative numerically using an eighth or-

der accurate finite difference method to eliminate measurement noise; however, the inferred

inflection point locations are still quite noisy. An alternative method to find the inflection

points, which would eliminate some of the noise, would be to assume the form of the auto-

correlation function and fit an analytical curve through it. However, due to the additional

assumption required for this method, we opt to find the inflection points numerically.

The locations of inflection points and the peaks have a linear relationship, shown in Fig.

6. The variance in the inflection point locations, however, depends on the location of the

peak. This can be seen in the figure by noting that the scatter in the data is fairly uniform

on a log scale. This means that a standard least squares linear fit is insufficient to estimate

the standard error. We therefore fit the log of the inflection point locations to the log of

the peak locations. The fit of δx∗ = 2.3δ̂x is shown in blue with the standard error (±1.3)

shaded in red. This means that the non-dimensional inflection point locations, δx∗

l
and δt∗u

l

are approximately equal to (2.3 ± 1.3)(.6)c−1
v

√
DL
DT

. Thus, to be conservative, we will use

δx∗ = 2.2 l
cv

√
DL
DT

, which accounts for the standard error.

VI. SPATIAL MARKOV MODEL PERFORMANCE AT, AND ON EITHER SIDE

OF, δx∗

Now that we have an estimate for the location of the inflection points in space (δx∗) of

the autocorrelation functions, we can test the effect of using the Spatial Markov model with

δx in Eq. 19 set to various multiples of δx∗. If these inflection point locations are indeed the

cutoff between where the Spatial Markov model is valid and not, then when we use δx < δx∗,
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the model should fail to predict transport metrics properly, but when we use δx ≥ δx∗, the

model should yield reasonable predictions.

To test this, we set L = u = 1 and DL = DT = 10−3 and simulate the transport of

106 particles using Eq. 4. We parameterize the Spatial Markov model and then compare

predictions to results from fully resolved microscale simulations that solve Eq. 4 up to

large timescales. The results of these microscale simulations are referred to as benchmarks,

because all of the physics are highly resolved within them so they can be used to determine

the accuracy of the Spatial Markov models.

The first metric we use for comparison is the second centered moment of the plume (Eq.

6). Fig. 7 shows the predictions of the Spatial Markov models using ten bins (β = 10) with

different values of δx along with the benchmarks for both velocity fields. The models using

δx < δx∗ predict values of σ2(t) that are below the benchmarks, implying these models are

unable to capture all of the spreading that takes place. The models using δx ≥ δx∗ perform

much better, implying that they are able to capture more of the true physical behavior of

the systems. While a difference can be seen between the two models using δx < δx∗, the

predictions of the three models with δx ≥ δx∗ are indistinguishable from each other. This

implies that as long as δx is at least as large as the critical length scale (δx∗), then doubling

and even quadrupling does not add to the performance of the Spatial Markov model.

The other metric used for comparison is the autocorrelation function Rx(i, j)|1. This

comes with an added benefit and allows us to get some insight into an open question which
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Figure 7: Spatial Markov model predictions of the second centered spatial moment of the

plume (σ2(t)) using breakthrough data at and on either side of δx∗ for (a) Couette flow

and (b) Poiseuille flow.

remains: how many discrete travel time classes (β) must be used in order to create a reliable

Spatial Markov model? In order to answer this question, we compare the predictions of the

assumed form of the autocorrelation function R̂x(i, j)|1 (Eq. 22) of many Spatial Markov

models with varying δx and varying number of velocity classes (β). The only free parameter

in this equation is the spatial decorrelation rate, a1, so we fit an exponential curve through

the function Rx(i, j)|1 for each of the Spatial Markov models and compare their predicted

value of a1 to the benchmark value which is found by fitting an exponential through Rx(i, j)|1
from the fine scale simulation.

Fig. 8 illustrates the effect of changing the length scale over which the model is used

(δx) and the effect of changing the number of bins (β) on the predicted value of a1. We

see that while for small values of β the prediction of a1 improves as δx gets larger, as long

as β ≥ 10, increasing δx beyond δx∗ leads to very little improvement. Thus, if the Spatial

Markov model is to be used with the smallest valid length scale (δx = δx∗), then the travel

time distribution f(τ1) should be discretized into at least 10 different classes, creating a

transition matrix that is at least 10x10. It is important to note that this finding is not

physically based, but made only from empirical observation; however it does agree very well

with similar empirical observations of [15]. Note that this discretization of the transition
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Figure 8: Spatial Markov model predictions of a1, the spatial rate of decay of the

autocorrelation function, versus β, the number of travel time bins, modeled using different

values of δx for (a) Couette flow and (b) Poiseuille flow.

matrix issue is associated with the manner in which we, and most studies to date, generate

the transition matrix. If one had a way to generate the transition probability density in a

non-discrete continuous way, no such issue would arise.

VII. CONCLUSION

In this paper we have aimed to address an open question: What is the smallest scale

at which the Spatial Markov model can be used for upscaling transport in a heterogeneous

velocity field? To address this issue we focus on a classical and well studied class of velocity

fields: pure shear flows. The theory developed here can be used to guide the choice of this

modeling length scale, which we denote as δx∗. While the theory developed in this note was

validated only in these very simple velocity fields, the scaling arguments did not require any

particular form of the velocity fields, so the ideas should be readily extendable to a broad

range of flow fields, although additional considerations must be made for velocity fields

that change in the longitudinal direction. Such considerations include flow heterogeneity at

multiple scales, and large contrasts between highly mobile and stagnant regions of varying

size, all of which may influence the scaling arguments presented here and are worthy of
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future study. For example, a fundamental assumption of the Spatial Markov model is that

the velocity field statistics are stationary over the length scale used in the model. While this

was of no concern in the velocity fields used here, it must be accounted for in general. If, by

use of the theory presented in this note, one were to find δx∗ to be smaller than the length

scale over which the velocity field statistics are stationary, then the larger length scale must

be used for the Spatial Markov model.

Concerning δx∗, from the work presented in this note, we conclude:

1. There exists an early time (and space) regime in which diffusion dominates advection

in the longitudinal direction, which causes the autocorrelation between consecutive

average velocities in time and space to be non-monotonic; first it rises and then it

falls. This non-monotonic behavior suggests the existence of a length scale below

which the Spatial Markov model is invalid.

2. In order to satisfy the assumptions of the Spatial Markov model, the autocorrelation

function must be monotonically decreasing and concave up (first derivative always

negative and second derivative always positive). The results of our analysis suggest

that this minimum spatial scale δx∗ ∼ l
cv

√
DL
DT

), where l is length scale over which the

velocity varies, cv is the coefficient of variation of the velocity field and DL and DT

are longitudinal and transverse dispersion coefficients respectively.

The Spatial Markov model has in several instances been shown to work very well at pre-

asypmtotic scales in advection dominated system, and this work helps to show why this is

the case. Recall that the time scale after which asymptotic models are valid is the Taylor

timescale, τD ∼ L2

DT
, with the equivalent spatial scale equivalent being χD ∼ u l2

DT
. Here we

have shown that the Spatial Markov model is valid after the spatial scale χSMM ∼ l
cv

√
DL
DT

.

This means χSMM

χD
=
√
DLDT
ulcv

, which is like an inverse Peclet number, meaning that the Spatial

Markov scale can be significantly smaller than the Taylor scale in advection dominated

systems.
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Appendix A: Appendix: Correlation propagation

In order to determine the implications of the restriction that R∗(i, j)|δ be exponential on

R∗(δ)|(1,2), we consider the case where δ = δt as opposed to δx. This substantially simplifies

the analysis. We simplify further by considering the case where average velocities over δt∗,

(vti(δt
∗)) all have the same mean and variance.

To begin, recall, vti(δt) = λi
δt

from Eq. 7. Then

vti(nδt) =

∑in
j=(i−1)n+1 λj

nδt
. (A1)

Now let ρk = R̂t(|j − i| = k)|δt∗ = exp(aδt∗k) for aδt∗ ∈ R−, k ∈ N. Since R̂t(k)|δt∗ is

exponential, ρk = ρk1. Because the covariance operator is linear, we only need the pairwise

covariance to find what R̂t(nδt∗)|(1,2), the autocorrelation between sequential average veloc-

ities over the interval nδt∗ given the form of R̂t(k)|δt∗ , must be. The pairwise covariance

is,

Cov[vi, vj] =

σ
2
δt∗ i = j

ρ|j−i|σ
2
δt∗ i 6= j,

(A2)

where σ2
δt∗ is the variance of velocities averaged over δt∗, which for the sake of this analysis

is taken to be constant.

Then

R̂t(nδt∗)|(1,2) =
Cov

[∑n
i=1

λi
nδt∗

,
∑2n

j=n+1
λj
nδt∗

]
√

Cov
[∑n

i=1
λi
nδt∗

,
∑n

j=1
λi
nδt∗

]
Cov

[∑2n
i=n+1

λj
nδt∗

,
∑2n

j=n+1
λj
nδt∗

]
=

σ2
δt∗

(nδt∗)2

∑n
i=1

∑2n
j=n+1 ρj−i

σ2
δt∗

(nδt∗)2

(
n+ 2

∑n
j=1

∑j−1
i=1 ρj−i

) .
(A3)
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Figure 9: Derived autocorrelation function R̂∗(nδ)|(1,2), which satisfies the assumptions of

the Spatial Markov model, and its second derivative with aδ = −10−2.

Recognizing that both the numerator and denominator are geometric series, we find that

R̂t(nδt∗)|(1,2) =
ρ1

(
1−ρn1
1−ρ1

)2

n+ 2ρ1
−(1−ρn1 )+n(1−ρ1)

(1−ρ1)2

=
ρ1 (1− ρn1 )2

n(1− ρ2
1) + 2ρ1(ρn1 + 1)

.

(A4)

Fig. 9 shows this function for aδ = −10−2. Regardless of the particular value of a, as long

as it is in R−, R̂t(nδt∗)|(1,2) is monotonically decreasing and its second derivative is always

positive.
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