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Abstract:  

Origami-based design holds promise for developing new mechanical metamaterial whose overall 

kinematic and mechanical properties can be programmed using purely geometric criteria. In this 

article, we demonstrate, for the first time, that the deformation of a generic degree-4 vertex (4-

vertex) origami cell is a combination of contracting, shearing, bending, and facet-binding. The 

last three deformation mechanisms are missing in the current rigid-origami metamaterial 

investigations of which focuses were mainly on conventional Miura-ori patterns. We show that 

these mechanisms provide the 4-vertex origami sheets and blocks with new deformation patterns 

as well as extraordinary kinematical and mechanical properties, including self-locking, tri-

directional negative Poisson’s ratios, flipping of stiffness profiles, and emerging shearing 

stiffness. This study reveals that the 4-vertex cells offer a better platform and greater design 

space for developing origami-based mechanical metamaterials than the conventional Miura-ori 

cell.  
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I. INTRODUCTION 

One of the recent interests in origami research is to translate the principles of paper folding into 

the designs of novel mechanical metamaterials [1–8]. Such metamaterials are essentially periodic 

assemblies of origami units so that their overall unusual mechanical properties are defined by the 

intricate folding geometry rather than the constituent materials. Auxetic effects [1,2,5], nonlinear 

stiffness [2–4,9], and multistability [5,7,10–14] have been reported. These unorthodox properties 

are programmable via synthesizing the folding crease pattern; combined with the foldability and 

scalability of origami, they offer the origami-based mechanical metamaterials with promising 

application potentials [15–18].  

The aforementioned properties of origami metamaterials mainly originate from the 

kinematics of rigid-folding. Rigid-foldable origami retains one degree-of-freedom for folding 

even if its facets are assumed to be rigid panels connected by perfect hinges. The most 

elementary rigid-foldable unit for building origami metamaterials is the degree-4 vertex (for 

short, 4-vertex) [19], which consists of four rigid sectors connected by four folds that meet at a 

point. The current state of the art in rigid-origami metamaterials is mainly based on a very 

special 4-vertex: the Miura-ori and its close relatives [1,2,4,5,8].  Miura-ori design is constrained 

by two conditions: one is being flat-foldable that the origami can be folded to a flat state; and the 

other is having two collinear crease lines. Such strong constraints simplify the geometry but limit 

the deformation of Miura-based metamaterials to contraction and extension only. On the other 

hand, several recent studies systematically investigated the folding kinematics and multi-stability 

of 4-vertices [13,19], which illustrates the potentials of extending the metamaterial research from 

Miura-ori to generic 4-vertices. 

Here we present a framework of translating the folding kinematics of the constituent generic 

4-vertex to the deformation mechanisms and mechanical properties of the overall origami 

metamaterial. Specifically, we demonstrate that the deformation of a generic 4-vertex origami 

cell is a combination of in-plane and out-of-plane shearing, bending, contracting, and facet-

binding; the first two have not been discovered in rigid-origami metamaterials before. We show 

that these deformation mechanisms are partially passed down to three types of non-generic 4-

vertex cell: general flat-foldable, single collinear, and Miura-ori cells. Furthermore, we show that 

the newly discovered deformation mechanisms of the constituent cell provide the origami sheets 
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and stacked blocks with extraordinary properties that are unseen from previous studies. In terms 

of kinematics, the design space for constructing metamaterial is significantly expanded by 

introducing rich and new deformations patterns and large ranges of achievable maximum 

deformation. In terms of mechanical properties, the shear deformations can induce tri-directional 

negative Poisson’s ratio and can qualitatively alter the stiffness profiles (including generating 

shearing stiffness). It’s worth noting that while the focus of this study is on metamaterials, the 

approach is fundamental and generic, and thus the outcome will advance and impact the overall 

field of origami research. 

II. GEOMETRIES AND DEFORMATION MECHANISMS  

We start with a generic 4-vertex (G-4) cell without any geometry constraints. It consists of four 

rigid parallelogram facets connected by four folds; its geometry is characterized by two length 

parameters ( ,  )a b  and four sector angles ( 1,2,3,4)i iα =  (see Fig. 1(a)). Assuming that 

360iα∑ = o  and j i jα α ≠< ∑  to avoid triviality [19], there are three independent sector angles 

(say, 1 2,  α α  and 4α ).  A partially folded state of the cell is described by the dihedral angles iρ  

between adjacent facets ( (0 ,180 )iρ ∈ o o  for “mountain”, (180 ,360 )iρ ∈ o o  for “valley”, 180iρ = o  

for unfolded state, and 0iρ = o  or 360o  for fully-folded state). To describe its deformation, four 

auxiliary planes (I to IV) are constructed (Fig. 1(b)). In this research, to facilitate the study on 

cell deformation, without loss of generality, we assume that 1α  is the smallest sector angle, fold 

4 has the opposite type (say, “valley” fold) from the rest (i.e., 4ρ  is the unique fold, which calls 

for 1 4α α π+ <  [19]), and fold 1 is capable of fully closing to 0o  (i.e., 1ρ  is the binding fold).  

We categorize the 4-vertex cells into 4 types based on whether the cell possess flat-

foldability ( 1 3 2 4α α α α+ = + ) or single-collinearity ( 1 2 3 4α α α α+ = +  ). The G-4 cell cannot be 

folded flat nor has collinear creases; the general flat-foldable (GFF) cell possesses flat-foldability; 

the single-collinear (SC) cell has a pair of collinear creases; and the Miura-ori cell has both 

characters. For convenience, we assign 1α  and 4α  (for simplicity, denoted by α  and β , 

respectively) as the independent angles of the GFF and SC cells, 1α  (denoted by α ) as the 

independent angle of the Miura-ori cell (Fig. 1(a)). 
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FIG. 1. Geometries and deformations of 4-vertex origami cells. (a) Initial flat states of a G-4 cell and three non-
generic cells. (b) Partly folded state of a G-4 cell, where each auxiliary plane is spanned by two edges, namely, I (1-
3, 1-4), II (3-7, 3-8), III (2-6, 4-5), and IV (2-7, 4-8); height H  is defined as the distance from vertex 0 to plane III. 
(c) L and W , (d) sϕ , (e) D , and (f) 13ϕ  and 24ϕ  as functions of  1ρ . For the four types of cell, the lengths a  and 
b  are set to be the same 1a b= = . G-4 cell: 1 2 436 , 160 , 72α α α= = =o o o ; GFF and SC cells: 36 , 72α β= =o o ; 
Miura-ori cell: 36α = o . 

The following geometry quantities are defined to examine the cell deformation (Fig. 1(b)): 

the length L , width W , and height H  of a cell; the angle Sϕ  between the length and width 

directions; the dihedral angles 13ϕ  between the auxiliary planes I and III and 24ϕ  between planes 

II and IV; and the distance D  between planes I and II. Hence, changing of L  and W  indicates 

the contraction of a cell; Sϕ  is a measure of the possible in-plane shear of a cell; changing of 13ϕ  

and 24ϕ  represents the out-of-plane shear of a cell; the relationship between 13ϕ  and 24ϕ  

illustrates the relative bend of a cell; and D  is used to quantify whether facet-binding happens at 

a non-flat state.  

We calculate the above quantities for the four types of cell through vector operations 

(Appendix A). Fig. 1(c)-(f) show these quantities as a function of 1ρ , from the initial flat state 

1 180ρ = o  to the fully-folded state 1 0ρ = o . For the G-4 cell, the following phenomena are 
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observed: (1) L  and W  decrease with 1ρ , indicating the contraction of the cell; (2) Sϕ  changes 

with 1ρ , suggesting an in-plane shear; (3) 13ϕ  and 24ϕ  changes with 1ρ , revealing an out-of-

plane shear; (4) 13ϕ  is different from 24ϕ  or 24180 ϕ−o , implying a relative bend between the left 

and right halves of the cell; (5) D  does not return to zero when 1 0ρ = , manifesting that the G-4 

cell cannot be further folded to a flat state when 1ρ  fully closes, i.e., facet-binding happens at a 

non-flat state. In summary, the deformation of the G-4 cell is a combination of contracting, in-

plane and out-of-plane shearing, bending, and facet-binding.  

Fig. 1(c)~(f) also reveal that the abovementioned deformation mechanisms are partially 

passed down to the non-generic 4-vertex cells. The GFF cell inherits the contracting and out-of-

plane shearing, but loses the in-plane shearing ( Sϕ  keeps constant), bending ( 13ϕ  always equals 

to 24π ϕ− ), and facet-binding ( D  returns zero); the SC cell inherits the contracting, in-plane 

shearing, and facet-binding, but loses the out-of-plane shearing and bending ( 13ϕ  and 24ϕ  keep 

constant and identical); the most studied Miura-ori cell only inherits the contracting, which 

explains why the other deformation mechanisms have never been discovered in Miura-based 

metamaterials. Table I summarizes the deformation mechanisms of the four types of cell.   

TABLE I. Deformation mechanisms of 4-vertex cells, sheets and blocks. “c” stands for contracting, “i-s” for in-
plane shearing, “o-s” for out-of-plane shearing, “b” for bending, and “f-b” for facet-binding. 

Types c i-s o-s b f-b 

G-4 
cell √ √ √ √ √

sheet √ √ √  √ 

GFF cell and sheet √  √   
block √  √  √ 

SC cell and sheet √ √   √ 
block √ √   √ 

Miura-
ori 

cell and sheet √     
block √     

 

III. CONSTRUCTIONS OF 4-VERTEX ORIGAMI METAMATERIALS 

The above uncovered deformation mechanisms motivate us to develop origami metamaterials 

with generic 4-vertices, and to explore their extraordinary properties. In this section, we 

introduce the construction of 4-vertex origami sheets and blocks. Taking the 4-vertex cell as a 

unit, origami sheets can be assembled by repeating identical cells along the L and W directions 

(see Fig. 2). Waitukaitis et al.  [13] have pointed out that such tessellation would introduce three 
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new vertices, namely, a rotated vertex, a “complementary vertex” with sector angles { }iπ α− , 

and a rotated complementary vertex. However, these newly generated vertices remain the same 

type as the original vertex and do not change the folding kinematics of the original vertex 

(including the unique fold, the binding fold, and the binding angle)  [13]. Hence, deformation 

mechanisms of the original vertex will not be affected, and the newly generated vertices will not 

acquire additional mechanisms or lose certain mechanisms.  

Note that although the GFF and SC cells only inherit some of the deformation mechanisms 

from the G-4 cell due to the additional constraints on sector angle assignments, their geometries 

are much simplified and can be explicitly expressed (Appendix B). More importantly, through 

similar techniques as  [1], it is feasible to further integrate two GFF or SC cells along their zig-

zag crease lines into a stacked unit based on the following relationship (Appendix C): 

B A A A
B A

B B B

cos cos cos,  ,  ,
cos cos cosA

ab b
a

α α β
α α β

= = =     (1) 

where the subscripts ‘A’ and ‘B’ denote the bottom cell A and top cell B, respectively. Taking 

Bα  as the independent variable of the top cell, and without loss of generality we let B Aα α≥  so 

that cell A can be either nested into or bulged out from cell B, corresponding to two 

topologically different stacked units (see Fig. 2). Folding of the stacked unit is still a one degree-

of-freedom motion, because the folding angles of cell B can be uniquely determined by those of 

cell A. Repeating the stacked units in L, W, and H directions yield the corresponding GFF or SC 

stacked blocks. Note that Miura-ori cells can also be stacked up with degenerated stacking 

conditions [1]; but the G-4 cells are geometrically-incompatible to be stacked together due to the 

bending deformation. 

 

FIG. 2. Construction of origami sheets and blocks. 

(3 3 3 bulged out)× ×(3 3)× (3 3 3 nested in)× ×
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FIG. 3. Self-locking phenomena in (a) G-4 and SC sheets, (b) GFF block, and (c) SC block. The binding-facets are 
indicated by doted rectangles, and the corresponding self-locking mechanisms are denoted. 

 

IV. KINEMATICS OF 4-VERTEX ORIGAMI METAMATERIALS 

We now investigate how the newly discovered deformation mechanisms contribute to the 

kinematics of the 4-vertex sheets and blocks. We first point out that as component units, the 4-

vertex cells’ contracting, shearing, and facet-binding deformations can be accordingly passed on 

to the corresponding sheets. However, bending is lost when repeating the G-4 cell into G-4 sheet 

because the out-of-plane shear is counteracting the bending such that the planes I and II remain 

parallel during folding.  Similarly, the contracting, shearing, and facet-binding are further passed 

on to the GFF, SC, and Miura-ori stacked blocks [21]. However, the GFF block is no longer flat-

foldable and regains the facet-binding mechanism. Table I also displays the deformation 

mechanisms of the 4-vertex sheets and stacked blocks; video illustrations are given in 

Supplemental material [20].  

Particularly, facet-binding will induce self-locking in certain 4-vertex sheets and stacked 

blocks, due to two different mechanisms: in-cell facet-binding and inter-cell facet-binding. We 

show that self-locking of the G-4 and SC sheets is due to in-cell facet-binding, i.e., two facets in 

each cell bind together to prevent the whole sheet from further folding (Fig. 3(a)). The GFF 

block has two self-locking states (Fig. 3(b)): self-locking in the nested-in configuration is 

attributed to inter-cell facet-binding, i.e., one facet of the top cell and one facet of the bottom cell 

in each stacked unit bind together, which prevents the whole block from further folding; self-

locking in the bulged-out configuration is because the bottom cell is folded into a flat state and 

all the four facets bind together, which is still the effect of in-cell facet-binding. The SC block 

also has two self-locking states (Fig. 3(c)): self-locking in the nested-in configuration is due to a 
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combined action of the two mechanisms; self-locking in the bulged-out configuration is induced 

by two separate in-cell facet-bindings. See detailed analysis in Appendix D.  Note that while [1] 

provided an example of self-locking, here we present a generic and basic mechanism analysis. 

Moreover, we demonstrate that the GFF and SC sheets/blocks feature larger ranges of 

maximum achievable deformation than the previously investigated Miura-ori design. In length 

and width directions, we examine the maximum achievable strains, defined as 

0 0 0 0ˆ ˆ: ( ) / ,    : ( ) / ,L f W fL L L W W Wε ε= − = −     (2) 

where 0L  and 0W  are the initial length and width of the sheet/block, respectively; fL  and fW  are 

the final length and width of the sheet/block when the binding fold is fully folded, respectively. 

Moreover, we examine 13 13 max 13 minˆ : ( ) ( )ϕ ϕ ϕΔ = −  in GFF sheets/blocks to reveal the maximum 

achievable out-of-plane shearing deformation, and max minˆ : ( ) ( )S S Sϕ ϕ ϕΔ = −  in SC sheets/blocks 

to manifest the maximum achievable in-plane shearing deformation 1 . These quantities are 

evaluated in the whole design space, shown in Fig. 4. Considering the assumptions that 1α α=  is 

the smallest sector angle, and 4ρ  is the unique fold, only the variable range surrounded by 

,  + =180α β α β= o , and 0< <90α o  is studied. 

For both cases, the Miura-ori design locates just on the dotted line α β= . Figure 4 reveals 

that in the length and width directions, the maximum achievable strain of the Miura-ori 

sheet/block is programmable only in the length direction, while fixed at 100% in the width 

direction regardless of the value of α . However, the maximum achievable strains of the GFF/SC 

sheet/block can be programmed in both the length and width directions from 0 to 100%. 

Moreover, the Miura-ori sheet/block does not possess shearing deformability ( 13ˆ 90ϕΔ ≡ o  and 
ˆ 0SϕΔ ≡ ). Nevertheless, the GFF designs could reach any out-of-plane shearing deformation 

between 13ˆ 0ϕΔ = o  and 13ˆ 90ϕΔ = o ; and the SC designs could reach any in-plane shearing 

deformation between ˆ 0SϕΔ =  and ˆ 60SϕΔ ≈ o . Such enlargement of the maximum achievable 

deformation ranges is beneficial to the development of origami metamaterials. 

 

                                                            
1 The subscript “max” and “min” indicate the maximum and minimum value of the angle during the whole folding process. 



Manuscript submitted to Physical Review E 

 

FIG. 4. Maximum achievable deformations of the GFF and SC sheet/block. (a)~(c) correspond to ˆLε , ˆWε , and 

13ϕ̂Δ  in GFF design, respectively; (d)~(f) correspond to ˆLε , ˆWε , and ˆSϕΔ  in SC design, respectively. The Miura-
ori design locates on the dashed lines α β= .  

 

V. MECHANICS OF 4-VERTEX ORIGAMI METAMATERIALS 

We now discuss the mechanical properties of the 4-vertex sheets and blocks. We first focus on 

the Poisson’s ratios of the GFF, SC and Miura-ori sheets, which can be calculated as 

d / d /,  .
d / d /HL WL
H H W W
L L L L

ν ν= − = −      (3) 

Fig. 5 displays the values of HLν  and WLν  with respect to 1ρ . For the SC and Miura-ori sheets, 

HLν  remains positive, and WLν  remains negative during the whole folding process. However, for 

the GFF sheet, although  WLν  still keeps negative,  HLν  experiences a flip from positive to 

negative due to the out-of-plane shear. Hence, there exists an interval in which the GFF sheet 

exhibits negative Poisson’s ratio in three directions. Such tri-directional auxetic effects has been 

reported on Tachi-Miura polyhedron tubes [5] and stacked Miura blocks [1], but have never been 

90

0

45

 [d
eg

]
β

45 900
 [deg]α

a β=
Miura-ori

135

180

90

0

45

 [d
eg

]
β

135

180

45 900
[deg]α

α β=
Miura-ori

180a β+ = o 180a β+ = o

ˆ  [%]Lε ˆ [%]Wε

90

0

45

 [d
eg

]
β

45 900
 [deg]α

135

180

α β=
Miura-ori

180a β+ = o

13ˆ [deg]ϕΔ

180

45 900
 [deg]α

 [d
eg

]
β

135 1 4 180α α+ = o

α β=
Miura-ori

1 4 180α α+ = o

a β=
Miura-ori

90

180

0

 [d
eg

]
β

45

135

45 900
[deg]α

90

0

45

ˆ  [%]Lε ˆ [%]Wε

1 4 180α α+ = o

a β=
Miura-ori

90

180

0

 [d
eg

]
β

45

135

45 900
 [deg]α

ˆ [deg]SϕΔ



Manuscript submitted to Physical Review E 

discovered in single layer origami sheets. We also extend Poisson’s ratio study to stacked blocks 

(Appendix E). We notice that similar flipping of Poisson’s ratio is reserved in the bulged-out 

GFF block, but are lost in the nested-in configuration. 

Then we discuss the effects of the new deformation mechanisms on the stiffness properties. 

In rigid origami, the elastic energy is stored only in the crease hinges which allow the rigid facets 

to rotate. Assigning 0k  as the linear torsional stiffness per unit length at each crease, the torsional 

spring constant ( )iK  at each crease corresponding to the dihedral angle ( )iρ  can be calculated by 

multiplying 0k  with the crease length. The total spring energy of a 4-vertex cell with respect to 

the folding process is  

( )
4 20

1

1 ,
2 i i i

i
K ρ ρ

=

Π = −∑      (4) 

where 0
iρ  is the initial dihedral angle corresponding to the initial stress free configuration 0

1( )ρ . 

Then the tangent stiffness of the origami sheet can be determined via variation principle. The 

stretching stiffness in the length and height directions are given by 2 2d / dLK L= Π  and 
2 2d / dHK H= Π , respectively. Particularly, due to the emerging shearing deformation, we also 

investigate the in-plane and out-of-plane shearing stiffness defined as 2 2d / dI SG ϕ= Π  and 
2 2

13d / dOG ϕ= Π , respectively. Stiffness of the staked blocks can be determined using similar 

arguments (Appendix F).  

 

FIG. 5. Poisson’s ratios HLν  and WLν  of the three types of sheet (with the same geometry parameters as those in Fig. 
1). Insets illustrate the states of the 2 2×  GFF sheets before, at, and after the flipping. 
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Fig. 6 displays the normalized stretching and shearing stiffness of the GFF, SC, and Miura 

sheets with respect to the folding process. The key observation is that the shearing deformation 

generates finite in-plane shearing stiffness IG  in the SC sheet (Fig. 6(c)) and finite out-of-plane 

shearing stiffness OG  in the GFF sheet (Fig. 6(d)). Such shearing stiffness has never been 

observed or reported on other types of rigid origami. Moreover, such shearing stiffness comes 

only from rigid-folding, indicating that the corresponding metamaterials are able to withstand 

shear deformation without bending or twisting of the facets or creases, which is significantly 

different with other shear behavior reported in [2,3] where facet/crease material deformation is a 

necessity. Note that due to the loss of corresponding shear deformation, the GFF and Miura-ori 

sheets cannot feature in-plane shearing stiffness from rigid-folding, and the SC and Miura-ori 

sheets cannot feature out-of-plane shearing stiffness either; in other words, they can bear shear 

deformation only if material deformation is allowed. 

 

FIG. 6. Normalized stretching and shearing stiffness of the three types of sheet (with the same geometry 
parameters as those in Fig. 1): (a) 0( ) /LK a k  , (b) 0( ) /HK a k , (c) 0/( )IG k a , and (d) 0/( )OG k a  as functions of 1ρ . 
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VI. SUMMARY AND OUTLOOK 

Our analysis on the deformation mechanisms and the resulting physical properties of the 4-vertex 

origami metamaterials are rooted in the geometry of the unit 4-vertex cells. Starting with the 

most generic 4-certex cell, the G-4 cell, we have illustrated that its deformation is a combination 

of contraction, in-plane and out-of-plane shearing, bending, and facet-binding. The last three 

mechanisms are missing in the current Miura-ori-based metamaterial research. These 

mechanisms could be partly inherited by the GFF, SC, and Miura-ori cells, which are generated 

by incorporating additional constraints among sector angles.  

We have also established the relationship between the deformation mechanisms and the 

metamaterials’ kinematic/mechanical properties. We find that by breaking the Miura-ori 

limitation, the GFF and SC designs can significantly expand their maximum available 

deformation ranges. Furthermore, the newly uncovered deformation mechanisms introduce 

various novel properties: facet-binding provides the metamaterials with self-locking ability, out-

of-plane shear generates tri-directional negative Poisson’s ratio in GFF designs, and in-plane and 

out-of-plane shears offer the metamaterials with shearing stiffness without material deformation.  

Finally we would like to remark that this research paves the way for applying 4-vertex 

origami design into metamaterial development. Our analysis allows us to formulate and solve 

inverse design problems to derive the geometry parameters of the 4-vertex cell that lead to 

specified deformation patterns (ref. Table 1) and deformation capability (ref. Fig. 4).  
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Appendix A. Geometry quantities in vector space 

Here we introduce the principles of calculating the geometry quantities L , W , H , Sϕ , D , 13ϕ , 24ϕ , and 

 ( 1,2,3,4)i iθ =  in a 3D vector space. We first calculate the coordinates of each vertex in a cell (for clarity, vertex i  

in Fig. A1 is denoted by V  ( 0,...,8)i i = ). Based on spherical trigonometry, the dihedral angles  ( 2 3 4)i iρ = ，，  can be 

expressed as functions of 1ρ   [20]:  

1 2 4
2

2 3

3 4
3

3 4

3 42 1
4

1 4

cos cos cos cos cos cos
arccos arccos ,

sin sin sin sin

cos cos cos
arccos ,

sin sin

cos cos coscos cos cos
arccos arccos .

sin sin sin sin

α α ξ α α ξρ
α ξ α ξ

ξ α αρ
α α

α α ξα α ξρ
α ξ α ξ

⎛ ⎞⎛ ⎞− −
= + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞−−

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A1)

where 1 2 1 2 1arccos(cos cos sin sin cos )ξ α α α α ρ= + . Considering the relative relations among folds (i.e., the 

dihedral angles  ( 1,..., 4)i iρ =  and the sector angles ( 1,..., 4)i iα = ), coordinates of all vertices can be expressed in 

a certain rectangular coordinate system, with 1ρ  as the independent variable. Here, we use coordinate system 

o xyz−  shown in Fig. A1. With the obtained vertex coordinates, all vectors in the cell can be accordingly expressed, 

which facilitate the following-up calculations. 

The length L  and width W  of a cell can be determined by 

5 8 7 8V V ,   V V .L W= =
uuuuur uuuuur

 (A2)

The angle Sϕ  can be expressed as 

5 8 7 8

5 8 7 8

V V V V
arccos .

V V V V
Sϕ ⋅

=
uuuuur uuuuur

uuuuur uuuuur  (A3)

To obtain the other quantities, we first define the auxiliary planes. The plane I is spanned by 1 6V V
uuuuur

 and 1 5V V
uuuuur

; the 

plane II is spanned by 3 7V V
uuuuur

 and 3 8V V
uuuuur

; the plane III is spanned by 6 2V V
uuuuur

 and 6 4V V
uuuuur

; and the plane IV is spanned by 

7 2V V
uuuuur

 and 7 4V V
uuuuur

. The normal vector of each auxiliary plane (denoted by IN
uur

 to IVN
uuuur

) can be calculated as 

I 1 6 1 5 II 3 7 3 8

III 6 2 6 4 IV 7 2 7 4

N V V V V ,     N V V V V ,

N V V V V ,   N V V V V .

= × = ×

= × = ×

uur uuuuur uuuuur uuur uuuuur uuuuur

uuur uuuuur uuuuur uuuur uuuuur uuuuur  (A4)

Then the height H  yields 

0 4 III

III

V V N
.

N
H

⋅
=

uuuuur uuur

uuur  (A5)

The distance D  between the planes I and III can be calculated via 

3 1 I

I

V V N
.

N
D

⋅
=

uuuuur uur

uur  (A6)
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FIG. A1. A partly folded state of a 4-vertex cell in 3D vector space. The rectangular coordinate system o xyz−  is such built: the 

auxiliary plane III is assigned as the x o y− −  plane, the vertex 5V  is assigned as the origin, the x -axis extends along 4 5V V , the 

axisy −  is determined by rotating the axisx −  counterclockwise by 90o  in the x o y− −  plane, and the axisz −  is 

perpendicular to the x o y− −  plane following the right-hand rule. 

The dihedral angles 13ϕ  and 13ϕ give 

II IVI III
13 24

I III II IV

N NN N
arccos ,    arccos ,

N N N N
ϕ π ϕ π ⋅⋅

= − = −
uuur uuuuruur uuur

uur uuur uuur uuuur  (A7)

where the “π − ” is added because the two normal vectors both pointing inside or outside of the dihedral angle. The 

folding angles  ( 1,2,3,4)i iθ =  are defined as the dihedral angles between the facets and the auxiliary plane III or IV 

[Fig. A1], which can be obtained similarly through vector dot products 

3 IV 4 IV1 III 2 III
1 2 3 4

1 III 2 III 3 IV 4 IV

N N N NN N N N
arccos ,    arccos ,    arccos ,    arccos ,

N N N N N N N N
θ θ θ π θ π⋅ ⋅⋅ ⋅

= = = − = −
uuur uuuur uuur uuuuruur uuur uuur uuur

uur uuur uuur uuur uuur uuuur uuur uuuur  (A8)

We remark that the rectangular coordinate can be built in other ways, through coordinate translations and rotations. 

However, expressions for these geometry quantities do not depend on the coordinate systems because they are 

calculated based on the relative relations among vectors. We also remark that the above expressions work for all the 

four types of cell in this study. Taking a step of 
1

0.5hρ = o  to traverse [0 ,180 ]o o , plots of 13,  ,  ,  ,  SL W D ϕ ϕ  and 24ϕ  

with respect to 1ρ  (i.e., Fig. 1(c)~(f)) can be obtained. 
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Appendix B. Analytical expressions for the geometry quantities in GFF and SC cells 

Due to the flat-foldability and collinearity, geometries of the GFF and SC cells are significantly simplified and can 

be explicitly expressed, which makes it easier to find the conditions for stacking two cells together and to calculate 

the Poisson’s ratios. Here we display the expressions for the geometry quantities. 

For GFF and SC cells, 13ϕ  always coincides with 24ϕ  or 24(180 )ϕ−o [see Fig. 1(e)], indicating that the 

auxiliary planes III and IV in Fig. A1 are coplanar (no bending deformation). Hence, during folding, the vertices 

2 4 5 6 7V ,  V ,  V ,  V ,  V  and 8V always stay on the same auxiliary plane, i.e., the x o y− −  plane [Fig. B1, B2]. 

Meanwhile, since 0 3V V  and 0 1V V  are parallel to the x o y− −  plane, vertices 0V , 1V , and 3V  stay on a plane 

parallel to the x o y− −  plane. Then the distances from the vertices 0V , 1V , and 3V  to the x o y− −  plane are the 

same, which induces an important identical relation: 

sin sin const,  ( 1,..., 4),i i iα θ = =  (B1)

where for the GFF cell, 1 2 3 4,  ,  ,  α α α π β α π α α β= = − = − = ; and for the SC cell, 1α α= , 2 aα π= − , 

3α π β= − , 4α β= . 

Geometries of the GFF cell. In the GFF cell (with dimensions ,  a b , and sector angles ,   ( < )α β α β ) [Fig. B1], 

the dihedral angles  ( 2,3, 4)i iρ =  can be expressed as functions of 1ρ  based on spherical trigonometry, i.e., 

2

3 1

4

cos cos cos cos cos cosarccos arccos ,
sin sin sin sin

,

cos cos cos cos cos cosarccos arccos ,
sin sin sin sin

α β ξ β α ξρ
β ξ α ξ

ρ ρ
α β ξ β α ξρ

β ξ α ξ

⎛ ⎞ ⎛ ⎞+ += +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

⎛ ⎞ ⎛ ⎞− − − −= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (B2)

where ( )1arccos cos cos sin sin cosξ α β α β ρ= − + . At the initial stage of folding, 1ρ  begins to decrease from 180o ; 

and all the folding angles  ( 1,..., 4)i iθ =  are acute angles, which can be expressed as 

1
1 3

1

1
2 4

1

2 sin sinarcsin ,
2 cos(2 ) cos(2 ) 4sin sin cos

2 sin sinarcsin .
2 cos(2 ) cos(2 ) 4sin sin cos

β ρθ θ
α β α β ρ

α ρθ θ
α β α β ρ

= =
− − −

= =
− − −

 (B3)

During folding,  ( 1,2,3,4)i iθ =  increases with the decrease of 1ρ . Since α β< , 1θ  and 3θ  will reach 90o  prior to 

2θ  and 4θ . The critical value of 1ρ  (say, 1Cρ ) corresponding to the instant that 1θ  and 3θ  reach 90o  [Fig. B1(b)] can 

be determined by solving the equation 1 3 90θ θ= = o . After the critical point, 1θ  and 3θ  become obtuse angles and 

keep increasing [Fig. B1(c)], while 2θ  and 4θ  remain acute angles and decrease. The expressions for the folding 

angles after the critical point (denoted by the subscript ‘C’) yield  
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FIG. B1. Geometry of the GFF cell  (with dimensions ,  a b , and sector angles ,   ( < )α β α β ). Partly folded states of the cell are 

shown: (a) before the critical point ( 1 3 90θ θ= = o ), (b) at the critical point, and (c) after the critical point. During folding, the 

vertices 2 4 5 6 7V ,  V ,  V ,  V ,  V , and 8V  always locate on the x o y− −  plane. 

1
1 3

1

1
2 4

1

2 sin sin
arcsin ,

2 cos(2 ) cos(2 ) 4sin sin cos

2 sin sinarcsin .
2 cos(2 ) cos(2 ) 4sin sin cos

C C

C C

β ρθ θ π
α β α β ρ

α ρθ θ
α β α β ρ

= = −
− − −

= =
− − −

 (B4)

Based on the above dihedral angles iρ  and folding angles iθ , iCθ , the length L , width W , and height H  can 

be obtained. Before the critical point, we have 

2 2 2 2
1 4

2 2
1 2 2 2 2

1 4

1 cos cos2 sin arccos arccos ,
2 1 sin sin 1 sin sin

1 cos cos2 1 sin sin sin arccos arccos ,
2 1 sin sin 1 sin sin

sin sin  ( 1,2,3, 4);i i

L b

W a

H a i

α β
α θ β θ

α βα θ
α θ β θ

α θ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= +

⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟= − +

⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
= =

 
(B5)

and after the critical point, we have 

2 2 2 2
1 4

2 2
1 2 2 2 2

1 4

1 cos cos2 sin arccos arccos ,
2 1 sin sin 1 sin sin

1 cos cos2 1 sin sin sin arccos +arccos ,
2 1 sin sin 1 sin sin

sin sin  ( 1,2,3,4).

C

C

C i i

L b

W a

H a i

α β
α θ β θ

α βα θ
α θ β θ

α θ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − +

⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟= − −

⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
= =

 
(B6)
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FIG. B2. Geometry of the SC cell (with cell dimensions ,  a b , and sector angles ,   ( < )α β α β ). (a) Partly folded states of the 

cell; (b) self-locking state of the cell, where two facets bind together, and 1 2 90θ θ= = o . During folding, the vertices 

2 4 5 6 7V ,  V ,  V ,  V ,  V , and 8V  always locate on the x o y− −  plane. 

We also calculate the quantities J  and K , which are useful when deriving the conditions for stacking two GFF 

cells. J  is the distance between vertex 4V  and the line 5 8V V . Plot the perpendicular of the x o y− −  plane through 

vertex 1V , which intersects with the plane at point 9V . K  is the distance between point 9V  and the line 5 6V V . 

Before the critical point, we have 

2 2 2 2 2( / 2) ,   ( / 2) ;J b L K a H W= − = − −  (B7)

and after the critical point, we have 

2 2 2 2 2( / 2) ,   ( / 2) .C C C CJ b L K a H W= − = − −  (B8)

Geometries of the SC cell. In the SC cell (with cell dimensions ,  a b , and sector angles ,   ( < )α β α β ) [Fig. B2], 

the dihedral angles  ( 2,3, 4)i iρ =  can also be expressed as functions of 1ρ  based on spherical trigonometry: 

2

2

3 2

4

arccos cot cot arccos cot cot ,
2 2

cos cosarccos ,
sin

arccos cot cot arccos cot cot ,
2 2

ξ ξρ α β

β ξρ
β

ξ ξρ α β

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞+= ⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (B9)

where ( )2 2
1arccos cos sin cosξ α α ρ= − + . At the initial folding stage, the folding angles  ( 1,2,3,4)i iθ =  of the SC 

cell can be simplified into  

1 2 1

3 4 3

( ) / 2,
( ) / 2.

θ θ π ρ
θ θ π ρ

= = −
= = −

 (B10)

Since α β< , we have 3 1ρ ρ> . Therefore, when 1 0ρ = , 3 0ρ ≠ ;i.e.,  although the facets astride 3ρ  have not bound 

yet, the facets astride 1ρ  already bind together [Fig. B2(b)]. Such facet-binding prevents the cell from further 
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folding. Besides, we notice that the folding angles ( 1,..., 4)i iθ =  will not larger than 90o  during the whole folding 

process 1 [180 ,0 ]ρ ∈ o o . 

Expressions for the length L , width W , and height H  keep the same as those in Eq. (B5), providing that 

2 aα π= −  for SC cell. The expression for the quantity J  remains the same as that in Eq. (B7). However, noticing 

from Fig. 2(c) that the auxiliary planes I and II are always perpendicular to the planes III and IV  (i.e., the x o y− −  

plane) during folding, i.e., 13 24 90ϕ ϕ= = o , vertex 9V  always locates on the line 5 6V V , and the quantity K  vanishes.  

 

Appendix C. Stacking geometry of the GFF and SC cells 

Two GFF or SC cells can be stacked along their zig-zag crease lines into a stacked unit. To make the two different 

cells kinematically compatible so that they can stay connected along the zig-zag crease lines during folding, the 

stacking geometry is derived here.  

Stacking of GFF cells. To ensure the kinematic compatibility of two GFF cells, the bottom cell A and top cell 

B must satisfy the following constraints on extrinsic cell geometry: 

,  ,  ,  ,A B A B A B A BL L W W J J K K= = = =  (C1)

which is equivalent to  

,  ,  458 458 ,  956 956 ,A B A B A B A BL L W W= = ∠ = ∠ ∠ = ∠  (C2)

see illustrations in Fig. C1(a). If taking Bα  as the independent variable of the top cell B, Bα  has to be larger than 

Aα  so that the bottom cell A can be either nested into or bulged out from the top cell B. Then the other geometry 

parameters of the top cell B can be calculated by 

cos cos cos
,  ,  .

cos cos cos
A B A A

B A
B A B B

ab b
a

α α β
α α β

= = =  (C3)

The folding angle 1Bθ  of top cell B can be expressed as 

( )2 2 2 2
1

1 2 2

cos cos sin sin 1
arcsin .

sin cos
A B A A

B
B A

α α α θ
θ

α α
+ −

=  (C4)

The other folding angles of the top cell B can be obtained based on the identical relation (see Eq. (B1)) 

sin sin const,  ( 1,..., 4),Bi Bi iα θ = =  (C5)

where 1 2 3 4,  ,  ,  B B B B B B B Bα α α π β α π α α β= = − = − = . 
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FIG. C1. Illustrations of the stacking conditions for (a) the GFF stacked unit and (b) the SC stacked unit. 

Stacking of SC cells. Due to the vanishment of the quantity K , the constraints on extrinsic cell geometry for 

stacking SC cells are changed to 

,  ,  458 458 ,  658 658 ,A B A B A B A BL L W W= = ∠ = ∠ ∠ = ∠  (C6)

see the illustrations of angles 458∠  and 658∠  in Fig. C1(b). Similarly, taking B Aα α>  as the independent sector 

angle, the expressions for the other geometry parameters of the top cell B can be obtained, which remain the same as 

Eq. (C3). The folding angle  ( 1,..., 4)Bi iθ =  of the top cell B can also be calculated by Eq. (C4) and Eq. (C5). 

 

Appendix D. Self-locking in 4-vertex blocks 

In addition to the simulation illustrations on self-locking shown in Fig. 3, we provide theoretical analysis on the 

folding angles to show how self-locking happens in GFF and SC blocks. Fig. D1 (a) and D1(b) show the folding 

angles ( A B,i iθ θ ) of the GFF and SC block, respectively. The GFF block has two self-locking states: self-locking of 

the nested-in configuration is attributed to the binding of bottom-cell facets and top-cell facets (intersection of A1θ  

and B1θ  at 90o , noting that 1 3A Aθ θ=  and 1 3B Bθ θ= ), which prevents the whole block from further folding; while 

self-locking of the bulged-out configuration is because that the bottom cell A is folded into a flat state 

( A1 A3 A2 A4180 ,  0θ θ θ θ= = − = =o o ) and all the four facets bind together, which prevents the whole block from 

further folding. The SC block also has two self-locking states: at A1 0ρ = o , four facets bind together, two in cell A 

and two in cell B ( A1 A2,  θ θ  and B1 B2,  θ θ  intersect at 90o ); at A1 360ρ = o , two facets of cell A (astride A1ρ ) and two 

facets of cell B  (astride B1ρ ) bind separately ( B1 B2,  θ θ intersect at 90o , while A1 A2,  θ θ  intersect at 90− o ).  
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FIG. D1. Self-locking in the stacked GFF and SC blocks. (a) Folding angles of layers A and B in a 2 2 1× ×  GFF block  

( 1,A Aa b= = 36Aα = o 72 , 54A Bβ α= =o o ). (b) Folding angles of layers A and B in the 2 2 1× ×  SC block 

( 1,  36 , 72A A A Aa b α β= = = =o o , 54Bα = o ). Insets illustrate the configurations of the block at the two locking positions and the 

transition position ( 1 180Aρ = o ). Binding facets are denoted by dotted rectangles. 

 

Appendix E. Poisson’s ratio of stacked blocks 

In this section, we study the Poisson’s ratio in stacked blocks.  After stacking multiple stacked units into a block, the 

height SH  can be expressed as  

B A A

B A

( ) ,    nested in,
( ),             bulged out,

S

S

H n H H H
H n H H

= − +⎧
⎨ = +⎩

 (E1)

where n  is the number of repeating layer pairs AB [Fig. 2], AH  and BH  are the height of the bottom cell and top 

cell, respectively. The Poisson’s ratio WLν  remains the same as the corresponding sheet; 
SH Lν  can be calculated 

based on Eq. (2) by replacing H  with SH  [Fig. E1].  

Particularly, we focus on the GFF stacked block and study the effects of the out-of-plane shearing on the 

Poisson’s ratios. The Poisson’s ration WLν  remains the same as the GFF sheet, i.e., keeping negative during the 

whole folding process. However, 
SH Lν  shows significant difference with HLν  of the GFF sheet. At the bulged-out 

configuration, flipping of Poisson’s ratio still exists for any n . At the nested-in configuration, when 1n = , the 

structure remains positive 
SH Lν ; but when 2n ≥ , 

SH Lν  switches to negative. Note that due to self-locking, flipping 
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of 
SH Lν  no longer exist in the nested-in configuration. Overall, if the GFF block consists of multiple layer pairs, it 

can be auxetic in three directions, for both nested-in and bulged-out configurations.  

 

FIG. E1. Poisson’s ratio 
SH Lν  of the GFF block ( 1,  36 , 72 , 54  or 72 ,  1 or 2A A A A Ba b nα β α= = = = = =o o o o ). 

 

Appendix F. Stiffness in 4-vertex sheets and blocks 

Here detailed derivation on the stiffness of the 4-vertex sheets and blocks are provided. In GFF, SC, and Miura-ori 

sheets, the stretching stiffness along the length and height directions can be expressed through 2 2d / dLK L= Π  and 
2 2d / dHK H= Π . Through variation principle, we have 

2 32 2

2 2
1 1 11 1

2 32 2

2 2
1 1 11 1

d d d d d ,
d d dd d
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d d dd d
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⎝ ⎠ ⎝ ⎠
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⎝ ⎠ ⎝ ⎠

 (F1)

Similarly, the shearing stiffness 2 2d / dI SG ϕ= Π  and 2 2
13d / dOG ϕ= Π  can be expressed as 

2 3 22
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1 1 11 1

2 3 22
13 13 13

2 2
1 1 11 1

d d dd d ,
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⎛ ⎞ ⎛ ⎞Π Π= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (F2)

Notice that due to the out-of-plane shearing deformation, the height H  and the dihedral angle 13ϕ  will 

experience a switch from increasing to decreasing [Fig. F1(a) and F1 (b)], which as a result induces the stiffness 

jump and stiffness switch on HK  and OG , respectively [Fig. F1(c) and F2(d)]. 

In GFF, SC, and Miura-ori stacked units, the total elastic energy Block( )Π  is contributed by three parts: the 

spring energy stored in the bottom cell A ( )AΠ , the spring energy stored in the top cell B ( )BΠ , and the energy 

stored in the connecting creases ( )CΠ . Assigning Ak  as the linear torsional stiffness per unit length at the creases in 

cell A, Bk  as the linear torsional stiffness per unit length at the creases in cell B, and Ck  as the linear torsional 

stiffness per unit length at the connecting creases, the torsional spring constant AiK  at each crease in in cell A, BiK  
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at each crease in cell B, and CiK  at each connecting crease can be accordingly calculated by multiplying Ak , Bk , 

and Ck with crease length. Then the total energy in stacked units yields 

Block A B CΠ = Π + Π + Π  (F3)

where 

( )

( )

( ) ( )( )

4 20

1
4 20

1
4 20 0

1

1 ,
2
1 ,
2
1 .
2
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i

B Bi Bi Bi
i

C Ci Bi Ai Bi Ai
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 (F4)

Since the dihedral angles and folding angles of both cells have been obtained in Appendix A, the stretching stiffness 

and shearing stiffness of the blocks can be similarly obtained through variation principle. However, it should be 

noted that in stacked blocks, the geometry parameters that served as the differential variables may be different with 

those in sheets, and call for re-definition. 

 

FIG. F1. In the GFF sheet ( 1,  36 , 72a b α β= = = =o o ), the (a) height H , (b) angle 13ϕ , (c) normalized stretching stiffness 

0( ) /HK a k , and (d) normalized shearing stiffness 0/ ( )OG k a  with respect to the folding process. Switches on the geometry 
quantities and the normalized stiffness are denoted by the dotted vertical lines.  

  

0
(

)/
 [-

]
H

K
a

k

1 [deg]ρ

3( 10 )×

1 [deg]ρ

0
/(

) [
-]

O
G

k
a

3( 10 )×

1 [deg]ρ

H

1 [deg]ρ

13
 [d

eg
]

ϕ



Manuscript submitted to Physical Review E 

REFERENCE 

[1] M. Schenk and S. D. Guest, Proc. Natl. Acad. Sci. 110, 3276 (2013). 
[2] C. Lv, D. Krishnaraju, G. Konjevod, H. Yu, and H. Jiang, Sci. Rep. 4, 5979 (2014). 
[3] E. T. Filipov, T. Tachi, and G. H. Paulino, Proc. Natl. Acad. Sci. 201509465 (2015). 
[4] J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, and I. 

Cohen, Science (80-. ). 345, 647 (2014). 
[5] H. Yasuda and J. Yang, Phys. Rev. Lett. 114, 185502 (2015). 
[6] J. T. B. Overvelde, T. A. De Jong, Y. Shevchenko, S. A. Becerra, G. M. Whitesides, J. C. 

Weaver, C. Hoberman, and K. Bertoldi, Nat. Commun. 7, 10929 (2016). 
[7] J. L. Silverberg, J. Na, A. A. Evans, B. Liu, T. C. Hull, C. D. Santangelo, R. J. Lang, R. C. 

Hayward, and I. Cohen, Nat. Mater. 14, 389 (2015). 
[8] Z. Y. Wei, Z. V. Guo, L. Dudte, H. Y. Liang, and L. Mahadevan, Phys. Rev. Lett. 110, 

215501 (2013). 
[9] S. Li and K. W. Wang, Smart Mater. Struct. 24, 105031 (2015). 
[10] S. Li and K. W. Wang, in Proc. SPIE 9431, Act. Passiv. Smart Struct. Integr. Syst. 2015 

(2015), p. 94310H. 
[11] B. H. Hanna, J. M. Lund, R. J. Lang, S. P. Magleby, and L. L. Howell, Smart Mater. 

Struct. 23, 94009 (2014). 
[12] S. Li and K. W. Wang, J. R. Soc. Interface 12, 20150639 (2015). 
[13] S. Waitukaitis, R. Menaut, B. G. Chen, and M. van Hecke, Phys. Rev. Lett. 114, 55503 

(2015). 
[14] F. Lechenault and M. Adda-Bedia, Phys. Rev. Lett. 115, 235501 (2015). 
[15] N. Turner, B. Goodwine, and M. Sen, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 

954406215597713 (2015). 
[16] A. Lebée, Int. J. Sp. Struct. 30, 55 (2015). 
[17] E. A. Peraza-Hernandez, D. J. Hartl, R. J. Malak Jr, and D. C. Lagoudas, Smart Mater. 

Struct. 23, 94001 (2014). 
[18] M. Schenk, A. D. Viquerat, K. a. Seffen, and S. D. Guest, J. Spacecr. Rockets 51, 762 

(2014). 
[19] S. Waitukaitis and M. van Hecke, Phys. Rev. E 93, 23003 (2016). 
[20] T. Hull, Project Origami: Activities for Exploring Mathematics, 2nd ed. (CRC Press, Boca 

Raton, 2013). 
[20] See the Supplemental Material at… for video illustrations of the folding processes of the 

4-vertex cells, sheets, and blocks. 
[21] In the GFF block, the out-of-plane shear is confined in each layer of stacked units, but 

cannot be accumulated among layers.  


