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Rotating colloids in rotating magnetic fields: 
dipolar relaxation & hydrodynamic coupling 

Anna C. H. Coughlan and Michael A. Bevan∗ 
Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 

Video microscopy (VM) experiments and Brownian Dynamics (BD) simulations were 
used to measure and model superparamagnetic colloidal particles in rotating magnetic fields for 
interaction energies on the order of the thermal energy, kT. Results from experiments and 
simulations were compared for isolated particle rotation, particle rotation within doublets, 
doublet rotation, and separation within doublets vs. field rotation frequency. Agreement between 
VM and BD results was obtained at all frequencies and amplitudes only by including exact two-
body hydrodynamic interactions and relevant relaxation times of magnetic dipoles. Frequency 
dependent particle forces and torques cause doublets to rotate at low frequencies via dipolar 
interactions and at high frequencies via hydrodynamic translation-rotation coupling. By 
matching measurements and simulations for a range of conditions, our findings unambiguously 
demonstrate the quantitative forms of dipolar and hydrodynamic interactions necessary to 
capture non-equilibrium, steady state dynamics of Brownian colloids in magnetic fields. 

PACS#: 47.57.J, 47.57.-s, 82.70.Dd, 82.70.-y 

I. INTRODUCTION 
The dynamics of magnetic colloidal particles in time-dependent magnetic fields are 

relevant to many applications such as measuring biomolecular interactions [1,2], developing 
microfluidic devices [3,4], tuning magnetorheological suspensions [5], and increasingly, 
colloidal assembly [6-10]. For example, magnetic dipolar colloidal chains can be used to tune 
suspension rheological properties by forming, bending, breaking, translating, and rotating in 
dynamic fields [11-14]. Microstructures of dipolar colloidal particles can be manipulated in 
external fields to form chains, clusters, crystals, and many other configurations [15-17]. 
Controlling colloidal interactions in rotating fields is becoming a promising approach to 
manipulate two-dimensional colloidal assembly [6-9] as well as three-dimensional 
microstructures [17]. Rotating fields, when combined with field gradients, can also transport, 
disperse, and order colloidal particles [18]. 

In applications involving magnetic colloids, it is important to understand how single 
dipoles interact with dynamic magnetic fields in balance with hydrodynamic drag. 
Superparamagnetic micron-sized particles have induced dipoles that display a range of relaxation 
times based on the ensemble response of individual magnetic domains (due to many magnetic 
nanoparticles dispersed within each micron sized colloidal particle). Practically, for a given field 
frequency, a separation of relaxation times allows net dipoles to be considered as the sum of two 
contributions: (1) Néel dipoles that appear to be instantaneous as a result of their relatively fast 
relaxation via stochastic reorientation within magnetic domains, and (2) Brownian dipoles that 
appear to be permanent as a result of their slow relaxation relative to the stochastic rotation of 
the colloidal particle [19,20]. Both of these dipoles contribute to frequency-dependent dipole-
field torques in rotating fields while viscous forces oppose rotation. Previous work has shown the 
fast Néel relaxation dominates the ensemble dipole [21]. 
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In addition to single particle interactions, two (or more) particles have been shown to 
rotate in response to external fields due to particle-particle interactions, including dipole-dipole 
and hydrodynamic interactions. Dipole-dipole interactions lead to torques on particle doublets 
(or chains) due to the favorable head-to-tail alignment of dipoles [8,22-24]. Particle-particle 
interactions also determine whether doublets rotate as rigid bodies or as free rotating particles. 
For doublets to rotate rigidly, a tangential force between two particles is required (which has 
been used to study macromolecular and electrostatic interactions [25,26]). Rigidly rotating 
doublets rotate slower than doublets in which the particles can freely rotate. These results 
suggest that the dynamics of individual particles within doublets, as well as particle-particle 
interactions, are crucial to understanding doublet rotation (and vice versa).  

Previous research suggests that hydrodynamic interactions and dipole relaxation both 
affect the frequency dependence of magnetic doublet rotation in rotating fields. It has been 
observed that doublets rotate at the same frequency as rotating fields up to a critical frequency, 
after which the rotation rate declines due to viscous drag [8,23,28,29]. These studies showed at 
frequencies slightly higher than the critical frequency: (1) individual dipoles no longer remain 
aligned along the line of centers, (2) for freely rotating doublets, the interparticle distance 
oscillates, and (3) for both rigid and freely rotating doublets, the angular trajectories oscillate 
about an average steady rotational velocity. At even higher frequencies, where Brownian 
relaxation cannot occur, larger clusters [9,30] and rigid doublets [31] continue to rotate, which 
has been suggested to occur via the balance of an out-of-phase dipole and hydrodynamic 
interactions. Although prior modeling studies of small chains and clusters have considered 
various aspects relevant to rotating doublets in rotating fields (including hydrodynamic 
interactions [11-14], translation-rotation coupling [32], and non-trivial Néel relaxation [30,31]), 
none have included thermal motion, exact hydrodynamics, and dipolar relaxation necessary to 
quantify both single particles and doublet rotation and relative particle translation vs. frequency. 

  
 

FIG. 1. Single particle and doublet rotation in experimental images and BD simulation renderings (6 
Gauss, 0.8 Hz; image time step of 0.167s) (see Videos S1-S3 in the Supplemental Material (SM) [27]). 
Experimental images are processed via analysis algorithms described in the Materials & Methods and 
depicted in Fig. 4 to provide raw trajectory data that is averaged and filtered via Fast Fourier transforms 
to identify dominant rotational modes in frequency spectra. 
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In this work, we investigate superparamagnetic particles in rotating magnetic fields 
including single particle rotation, doublet rotation, single particle rotation within rotating 
doublets, and relative particle translation within doublets (see Fig. 1). VM is used to measure the 
translation and rotation of particles vs. field rotation frequency for small field amplitudes that 
allow for thermal motion to probe kT-scale interactions. Each experiment is simulated using BD 
simulations that include conservative forces and torques (i.e., the gradients of scalar potential 
functions), non-conservative forces and torques (i.e., exact pair hydrodynamic interactions 
between particles including translation-rotation coupling and near-field and far-field [33]), 
Brownian motion, and the effects of a distribution of relaxation times. To increase model 
complexity in a systematic fashion, we first match simulations and experiments for single 
particles by determining their dipole moments and their relaxation vs. field rotation frequency. 
We then measure and model all rotational and translational modes in doublets vs. field 
frequency. This process provides a unique rigorous model that qualitatively and in most cases 
quantitatively captures all frequency dependent interactions and dynamics of superparamagnetic 
Brownian colloids in rotating magnetic fields. 

II. THEORY 

A. Equation of Motion 

The translational and rotational motion of a particle with mass m  can be expressed by 
the Langevin equation as (for coordinates labeled in Fig. 2) [34], 

 P H Bdm
dt

= + +u F F F  (1) 

 P H Bdm
dt

= + +ω T T T  (2) 

where u  and ω  are translational and angular velocity vectors, and F  and T  are force and 
torque vectors. Superscripts in Eqs. (1) and (2) denote contributions from: P, conservative forces 
on particles due to the gradient of a scalar potential field, H, non-conservative forces due to 
hydrodynamic interactions that couple translation and rotation between particles, and B, random 
thermal forces and torques due to Brownian motion. 

Particle position vs. time is modeled by solving the Langevin equation for position. A 
new position lr  where l coordinates correspond to translation only (i.e., 3l N≤ ), is calculated as, 

 
0 0 ,0 0 ,0

0

, 3 , 3

( ) ( )P B P B
lj lj j j lj j j

l l
j j j N j j Nj

t t t
d kT kT≤ >

∂ + +
= + Δ + Δ + Δ∑ ∑ ∑

D D F F D T T
r r

r
  (3) 

where, ,0P
jF and ,0P

jT  ,0P
jΤ are the force and torque vectors at the start of each step, and B

jF  and 
B
jT  are the random force and torque vectors. Brownian Dynamics of the angular displacement of 

a particle has been derived in a similar manner [34]. The orientation of the particle main axis is 
calculated from unit vector n  whose displacement is related to the conservative forces and 
torques as [35], 
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 ( ) ( ) ( ) ( ) ( )
0 0

,0 ,0

, 3 , 3

lj ljP B P B
l l j j j j l

j j N j j N

t t t t t
kT kT> ≤

⎡ ⎤⎛ ⎞
+ Δ = + + + + × Δ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑
D D

n n T T F F n  (4) 

where l coordinates correspond to rotation only i.e. 3l N> . 

B. Conservative Forces & Torques 
A colloidal particle experiences a net potential energy that includes particle-wall, 

particle-field, and particle-particle interactions with a nearby particle. The dipoles are 
distinguished using an index, k, where k=N, B for Néel, and Brownian as shown,  

 ( ) ( ) ( )1, 2, 1, 2, 1, 1, 1, 2, 1, 2,, , , , , ( ) , , , , , ,net pw pf pp
k k k k k k k k k ku z u z u z uθ θ φ φ θ φ θ θ φ φ= + +r r  (5) 

where ,l kθ  and ,l kφ  are the azimuthal and polar angles of the l particle-centered dipole moment, 
r  is the 1-2 center-to-center distance and z is the particle center-to-wall-surface position. Three-
dimensional force and torque vectors can be derived from Eq. (5) by taking partial derivatives 
with respect to a position or angle, keeping all other variables constant. For example, the force 
along the r  direction and the torque in ,l kθ  are given by, 

 ( )1, 2, 1, 2,
P net

r k k k ku , , , , ,z
r

θ θ φ φ∂= −
∂

F r  (6) 

  
 

FIG. 2. Schematics showing (a) a dipole m, defined in Eq. (20), and its phase lag in the x-y plane with 
respect to a field H, which produces a torque on the particle as expressed in Eq. (37), and (b) the relevant 
angles and vectors of a doublet system, including dipole polar and azimuthal angles with respect to the 
particle-particle vector r in the x-y plane, used in the dipole-dipole potential, Eq. (16)(note k has been 
dropped to generalize the schematic). 
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 ( )
1, 1, 2, 1, 2,

1,
k

P net
k k k k

k

u , , , , ,zθ θ θ φ φ
θ
∂= −

∂
T r  (7) 

C. Particle-Wall Potential 
The only interaction with the particle and the wall is electrostatics [36], given by, 

 ( ) ( )exppw pw
elu z B z aκ= − −⎡ ⎤⎣ ⎦  (8) 

 064 tanh tanh
4 4

v ppw v wB

B B

z e z ek TB a
ze k T k T

ς ςπεε
⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (9) 

where a  is particle radius, 1κ−  is Debye length, Bk  is Boltzmann’s constant, T  is temperature, 
ε  is the medium dielectric constant, 0ε  is the vacuum permittivity, e  is the charge of an 
electron, vz  is the electrolyte valence, and pς  and wς  are the particle and wall surface potentials. 

D. Particle-Field Potentials 
Particle-field interactions include gravitational and dipole-magnetic field mediated 

potentials given as, 

 ( ) ( )1, 2, 1, 1,, , ( ) ,pf pf pf
k k g df k ku z u z uθ φ θ φ= +  (10) 

such that the gravitational field only depends on z,  

 ( ) ( )34
3

pf
g p mu z a gz Gzπ ρ ρ= − =  (11) 

where pρ  and mρ  are particle and medium densities, and g  is acceleration due to gravity. A 
particle dipole of moment, m , interacts with a magnetic field, H  [37], as given by (see Fig. 
2(a)), 

 ( )1, 1,
pf
df k ku ,θ φ = − ⋅m H  (12) 

where m  can correspond to either a Néel or Brownian dipole (discussed in the following). 

E. Particle-Particle Potentials 
Two interacting particles experience a magnetic dipole-dipole potential and an 

electrostatic double layer repulsion as, 

 ( ) ( ) ( )1 , 2 , 1, 2, 1 , 2 , 1, 2,, , , , , , , , , ,pp pp pp
r k r k k k r el dd r k r k k k ru r u r u rθ θ φ φ φ θ θ φ φ φ= +  (13) 

where angles in the x-y plane are relative to the particles’ center-to-center vector, r , are denoted 
as 1 ,r kθ  and 2 ,r kθ ; the subscript r indicates the angles are relative to r  (see Fig. 2(b), note k is 
dropped). At low ionic strengths, particles do not experience van der Waals attraction and only 
the electrostatic term from DLVO theory needs to be taken into account, which is given by [36], 

 ( ) ( )exp 2pp pp
elu r B r aκ= − −⎡ ⎤⎣ ⎦  (14) 
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2

32 tanh
4

ppp B
m

B

zek TB a
ze k T

ς
πε

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (15) 

The magnetic dipole-dipole interaction is given by (expanding the typical vector expression) 
[37], 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 , 2 , 1, 2,

1 , 2 , 1, 2, 1, 2,

1, 2, 1 , 1, 1,3
,B

2 , 2, 2,

, , , , ,

os sin sin cos cos

3 cos sin sin cos cos
4

cos sin sin cos cos

pp
dd r k r k k k r

r k r k k k k k

o
k k r k k r k r

k N

r k k r k r

u r

m m
r

θ θ φ φ φ

θ θ φ φ φ φ
μ θ φ φ φ φ
π

θ φ φ φ φ
=

=

⎧ ⎫− +
⎪ ⎪
⎪ ⎪⎡ ⎤− +⎨ ⎬⎣ ⎦
⎪ ⎪
⎡ ⎤+⎪ ⎪⎣ ⎦⎩ ⎭

∑
 (16) 

where μ0 is the vacuum permeability, and m1,k and m2,k are the magnitudes of the dipole moments 
on particles 1 and 2, which can correspond to either a Néel or Brownian dipole, which we review 
in more detail in the following section. 

F. Magnetic Field & Dipoles 
The force and torque expressions in the preceding sections require the field vector and 

dipole moments, which are inputs in the particle-field potential (Eq. (12)) and field mediated 
particle-particle potentials (Eq. (16)). In the following, we provide more detailed information on 
the time varying external magnetic field, the magnetic fields of nearby particles, and predicted 
dipole moments based on material properties. In an applied rotating field, the field vector can be 
expressed as a function of the intensity oH  and the magnetic permeability oμ  such that 

/o o oH B μ= , where oB  is the applied field. The field orientation depends on rotation speed, fω , 
as (where f f tθ ω= ), 

 ( ) ( )ˆ ˆo o f o fH cos H sinθ θ= +H x y  (17) 

When two particles are in proximity to each other, the field from a neighboring particle’s 
dipole is added to the total field. The magnetic intensity of a nearby particle is given by [38], 

 ( ) ( )
3

ˆ ˆ3
4p

o

r
rπ μ
⋅ −

=
r m r m

H  (18) 

and the total external field in Eq. (12) is the sum of the applied and local dipolar fields given as, 

 ( )o p= +H H H r  (19) 

When a magnetic dipole moment m  is induced by an external magnetic field (for 
superparamagnetism [37]), its values is given by, 

 
( )34
3

f oaπ χ ω μ
=

H
m  (20) 

where ( )fχ ω  is the dynamic susceptibility, which is a function of the static susceptibility and 
dipole relaxation times. The dipole in Eq. (20) can be used to compute the dipole-field 
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interaction potential in Eq. (12). Practically, the Brownian dipole is modeled with a fixed 
magnitude. By combining Eqs. (18)-(20), the Néel dipole on one particle, 1,Nm , induced by both 
an applied external field and the Néel, 2,Nm , and Brownian, 2,Bm , dipoles of a second adjacent 
particle is given by, 

 ( ) ( ) ( )2,N 2,N 2,B 2,B3
1,N 3 3

ˆˆ ˆ ˆ3 34
3 4 4o N f o

o o

a
r r

π μ χ ω
π μ π μ

⎡ ⎤⋅ − ⋅ −
= + +⎢ ⎥

⎢ ⎥⎣ ⎦

rr m r m m r m
m H  (21) 

where ( )N fχ ω  is the dynamic susceptibility corresponding to the Néel dipole only. The 
magnitude of the Néel dipoles on particles 1 and 2 for use in the dipole-dipole potential in Eq. 
(16) are obtained by: (1) assuming the dipoles are equal in magnitude and direction (i.e., 

1,N 2,N 1,B 2,B,= =m m m m ) on the right and left hand sides of Eq. (21), (2) algebraically solving for 
either 1,Nm  or 2,Nm , and (3) taking the magnitude of the dipole vector to obtain m1 and m2. The 
inaccuracy due to assuming 1,B 2,B=m m  (in this equation only) is negligible when the permanent 
dipoles are much smaller than the instantaneous dipoles. 

G. Particle Susceptibility 

The effective static susceptibility, ( )o Hχ , for a spherical particle is defined as a function 

of the static susceptibility, ( )Hχ , as [37], 

 ( ) ( ) ( )( ) 1
1 3o H H Hχ χ χ

−
⎡ ⎤= +⎣ ⎦  (22) 

The dynamic susceptibility as a function of the fractional contributions of the Néel and 
Brownian dipoles, fN and fB, and their associated relaxation times, τN and τB, is given by, 

 ( ) ( ) ( )f N f B fχ ω χ ω χ ω= +   (23) 

 ( )
( )1 11

N B
f o

f Bf N

f f
ii

αχ ω χ
ω τω τ

−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥++⎣ ⎦

  (24) 

where  α  determines the Néel relaxation time distribution width [39,40]. If some of the 
individual Néel dipoles have relaxation times on the order of the field rotation rate, they cannot 
overcome the energy barrier to reorient with the field [41,42]. As a result, the Néel dipole in a 
rotating field has in-phase, ( )'

N fχ ω , and out-of-phase, ( )''
N fχ ω  components of the 

susceptibility as [20], 

 ( )
( )

( ) ( )' ''
1

1
N o

N f N f N f

f N

f i
i

α
χχ ω χ ω χ ω

ω τ
−= = −

+
  (25) 

The Néel phase lag is defined as, 
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 ( ) ( )
( )

''

,N '

N f
lag f

N f

arctan
χ ω

θ ω
χ ω

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

  (26) 

and components can be modeled as [39], 

 ( )
( )

( ) ( ) ( )

1

''

1 2 1

1cos
2

11 2 sin
2

N o f N

N f

f N f N

f
α

α α

χ ω τ πα
χ ω

ω τ πα ω τ

−

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

  (27) 

 
( )

( ) ( )

1

'

1 2(1 )

11 sin
2( )

11 2 sin
2

N o f N

N f

f N f N

f
α

α α

χ ω τ πα
χ ω

ω τ πα ω τ

−

− −

⎡ ⎤⎛ ⎞+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

  (28) 

H. Hydrodynamic Forces & Torques 
Hydrodynamic forces and torques oppose translational and rotational motion of the 

particle. For low-Reynolds number dynamics, translational and angular velocities of particles can 
be directly related to the forces and torques by a mobility matrix, M , given as, 

 

1

2

1

2

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1

2

1

2

u F
u F

M
ω Τ
ω Τ

  (29) 

 

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

11 12 11 12

21 22 21 22

11 12 11 12

21 22 21 22

a a b b
a a b b

M
b b c c
b b c c

% %

% %
  (30) 

where M  is the mobility matrix containing near-field and far-field terms, obtained for two 
particles using twin multipole expansions [33]. When expanded, the mobility matrix has 6N × 
6N terms. Here, N=2 so that the mobility matrix M  is 12 × 12. If the particles are infinitely far 
from each other, only diagonal terms are nonzero and for spheres, 1/ 6iia aπη=  and 

31/ 8iic aπη= . The mobility matrix is related to the resistance matrix, R, by,  

 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

11 12 11 12 11 12 11 12

21 22 21 22 21 22 21 22

11 12 11 12 11 12 11 12

21 22 21 22 21 22 21 22

MR I

a a b b A A B B
a a b b A A B B
b b c c B B C C
b b c c B B C C

% % % %

% % % %   (31) 
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The elements in R are dependent upon the relative distances and orientations of particles as 
given by expressions using the notation of the original reference [33], 

 

( )

( )

A A
ij i j ij i j

B
ij ij ijk k

C C
ij i j ij i j

A X e e Y e e

B B Y e

C X e e Y e e

αβ
αβ αβ

αβ αβ
αβ

αβ
αβ αβ

δ

ε

δ

= + −

= =

= + −

%   (32) 

where the terms on the right-hand-side correspond to Jeffrey and Onishi’s resistance functions 
defined at “arbitrary separations” (including recently reported corrections [43]), ,α β  correspond 
to particle number, and / r= re such that i je e  and ij i je eδ − indicate parallel and perpendicular to 
the line of particle centers, respectively. 

I. Brownian Forces & Torques 

The Brownian force and torque can be combined into one vector BS  as,  

 
B

B
B

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

F
S

T
 (33) 

which follows a Gaussian distribution with a mean of zero and variance given by, 

 ( ) ( ) ( ) ( )2 10 2B B
i j ijt kT tδ−=S S D  (34) 

where in practice SB is computed from a vector of normal deviates weighted by a Cholesky 
decomposition of the resistance matrix, R [34]. 

J. Particle & Doublet Rotation  
The angular velocity of a particle in a rotating magnetic field can be calculated by 

balancing the viscous torque, ,H RT , against the dipole-magnetic field torque, P
dfT , as, 

 ,P H R
df = −T T   (35) 

The gradient of the dipole-field potential (Eq. (12)) with respect to orientation gives the torque 
on the dipole moment of a particle, which is the sum of the torques due to the Néel and Brownian 
dipolar contributions given as, 

 
,B

P
df k o

k N
μ

=

= ×∑T m H   (36) 

In a field in the x-y plane, Eq. (36) depends on the angle of the dipole in the x-y plane, ,l kθ  and 
with respect to the z-axis ,l kφ  (see Fig. 2(a)) as given by, 

 ( ) ( ), 1, 1,
,B

P
df z k o o f k k

k N

T m H sin sinμ θ θ φ
=

= −∑   (37) 

and , 1,lag k f kθ θ θ= −  is defined as the phase lag of either the Néel dipole (from Eq. (26)) or 
Brownian dipole (determined directly from the particle main axis). 

For isolated particles, the particle is also rotating around the axis perpendicular to the 
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wall, leading to a negligible wall hydrodynamic correction [44], and negligible motion with 
respect to the polar axis is assumed. As such, the hydrodynamic drag is approximated as,  

 , 38H R
z pT aω πη=   (38) 

For the Néel dipole, only the out-of-phase component contributes to the torque, therefore 
the velocity can be written as (using Eq. (20) for the Néel out-of-phase dipole), 

 
( ) ( )3 '' 2

1,B

3

4
3

8

B o o f N f o o

p

m H sin + a H

a

μ θ θ π χ ω μ
ω

πη

−
=   (39) 

The critical frequency is the frequency at which the particle experiences a maximum 
dipole-field torque. If the critical frequency is less than the field frequency, the angle between 
the particle and the field gradually increases. When that angle reaches π, the particle experiences 
backwards rotation until it is once again aligned with the field. The frequency of one such 
forwards-backwards oscillation for single particles can be inferred from a previous model for 
rigid doublet rotation [22]. When this model is applied to a single particle, the oscillation 
frequency, oscω , relates to single particle critical frequency, critω , and field frequency as, 

 
2

1f
osc crit

crit

ω
ω ω

ω
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  (40) 

During each oscillation for single particles, the particle axis angular displacement is -2π with 
respect to the field. In this regime, the average frequency of particle rotation is the difference in 
the field frequency and the frequency of one oscillation cycle given by, 

 f oscω ω ω= −   (41) 

Similar to the single particle analysis, a critical frequency exists for a rotating rigid 
doublet. The oscillation frequency has the same form as Eq. (40) but considers the weighted 
contribution from both Néel and Brownian dipoles as given by, 

 

2

, ,B
, ,

,B

/ 1
2

k k
d osc k N

d crit d crit
k

k N

m

m

ω
ω

ω ω=

=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= −⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑
∑

  (42) 

where ,d critω  and ,d oscω  are the critical and oscillation frequencies of the doublet vector r . In one 
cycle of forward-backward rotation, the doublet angular displacement is -π with respect to the 
average dipole trajectory. The average frequency of rotation in this regime is the difference in the 
overall dipole rotation and half of one doublet-oscillation cycle given by, 
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III. MATERIALS & MEHODS 

A. Particles & Surfaces 
M-270 carboxylic acid-coated microparticles composed of iron oxide nanoparticles 

embedded in a polystyrene matrix with nominal diameter 2.8um were used as received 
(Dynabeads, Life Technologies). To visualize particle orientation, a nonmagnetic film was 
coated on one hemisphere to make “optical Janus” particles (Fig. 1). The particles as received 
were dried as a monolayer on a glass slide. The slides with the half-exposed dried particles were 
coated using an E-beam evaporator by first depositing a 15nm thin film of Cr to aid the adhesion 
of Au, followed by 35 nm Au film, and finally a 30 nm SiO2 film. The microscope slides were 
sonicated in DI water to remove the coated particles from the surface and the solution was 
centrifuged to collect the particles. 

Experiments were conducted on glass coverslips (Gold Seal, Corning) for 100x 
objectives or regular glass slides (Fisher Scientific) for 40x objectives. Coverslips or slides were 
sonicated in Acetone (Sigma-Aldrich Company) and then Isopropanol (Sigma-Aldrich 
Company), and soaked in Nochromix (Godax Laboratories) for 1-24 hours, rinsed in deionized 
water, sonicated in 0.1M KOH for 35 minutes to charge the surface, rinsed with deionized (DI) 
water, and dried with nitrogen gas. Sample cells containing dilute particles in 0.1mM NaCl were 
prepared by dispensing the dispersion into Viton o-rings (McMaster Carr) coated with vacuum 
grease on coverslips/slides and sealed using epoxy quickset glue (Loctite) and a top coverslip. 

B. Microscopy & Magnetic Field Apparatus 
For rotating doublet and single particle magnetophoresis experiments, a 40x objective 

(Nikon) was used to monitor particles. For single particle and particle rotation in doublet 
experiments, a 100x oil objective (Nikon) was used to detect orientation of “optical Janus” 
particles. For all experiments, a Photron PCI-512 camera was used to record video at 60 or 120 
frames per second (fps) of the field of view of the microscope. Coverslips/slides with the 
colloidal particles were placed on a stage in the center of a magnetic quadrupole set-up, which 
has been described elsewhere [45]. Briefly, two sets of four solenoids are arranged in a 
quadrupole (see Fig. 3) and solenoids receive a current that is 90°  out of phase with the 
preceding solenoid to produce a constantly rotating field with uniform magnitude. In a second 

  
 

FIG. 3. Image of the magnetic quadrupole apparatus, showing the two sets of four solenoids.  
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operating mode, a differential current through opposing solenoids creates a controllable field 
gradient along a single axis. A uniform 5 Gauss/mm gradient was applied for magnetophoresis 
experiments.  

Videos were analyzed using particle tracking codes written in FORTRAN for doublet 
rotation or in MATLAB for particle rotation using algorithms similar to others reported in the 
literature [19,46-48]. For particle angular orientation images, we apply the bandpass filter 
bpass.m (adapted for MATLAB from the original particle tracking codes [49]) that enhances the 
contrast between the gold particle patch, the rest of the particle, and the background.  We then 
use the MATLAB built-in function bwboundaries to identify the boundaries of our particles and 
the patch by their higher intensities relative to the rest of the image. The coordinate of the patch 
is determined by weighting the intensities of all pixels within the patch. For single particles, the 
center of the particle is the average position of the boundary pixels. For particles within doublets, 
two circles are fit to the doublet outline to find the centers of the particles. Lastly, the orientation 
is calculated based on the angle of the patch with respect to the centers of the particles. Figure 4 
shows experimental images before and after the analysis is applied for single particles and 
particles within doublets. 

C. Particle Characterization 
Single particle drift in a field gradient, or magnetophoresis, can be used to calculate the 

static susceptibility as a function of field intensity in the case where the intensity negligibly 
changes in the field of view [50]. Static susceptibility values (for brevity here and throughout, 
the effective static susceptibility is referred to as the static susceptibility) calculated from 

 
 

FIG. 4. (a) Experimental image of single particle with gold patch, and (b) the corresponding image 
obtained from increasing the contrast, identifying the outline of the particle and the patch, and calculating 
the location of the patch, marked with a black dot. (c) An experimental image of two particles within a 
doublet, both with gold patches, and (d) the corresponding image after analysis, showing in blue the 
circles fit to the outlines of the particles, the borders of the patches, and the locations of the patches 
marked with black dots. 
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magnetophoresis experiments are shown in Table I.  Further details on the measurements are in 
the Appendix.  

The dynamic susceptibility due to the Néel dipole (Eqs. (25)-(28)) was determined by 
two independent methods: PPMS measurements and single particle rotation at high frequencies 
(when the Brownian dipole does not contribute to rotation in Eq. (39)). Phase lag and the in-
phase and out-of-phase components at different magnetic field frequencies were measured using 
a Particle Property Measurement System (PPMS) (Quantum Design). The magnetic 
microparticles were characterized either as a powder or in a dried agar matrix. For the powder, 
the microparticles were dried on a glass slide and scrapped off. For the agar matrix, agar powder 
(Type I, Sigma-Aldrich Company) was heated until dissolved in DI water. Colloids were directly 
added to the solution and sonicated. The dispersion was then poured onto a petri dish and left 
overnight to harden. Prior to measurement, the agar gel was vacuum-dried. Frequencies ranged 
from the minimum of 10 Hz to 200 Hz at a constant field of 10 Gauss and an oscillating field of 
6 Gauss. Equations (26)-(28) were used to fit the PPMS measurements for unknowns α  and Nτ  
(note oχ  and Nf  cancel in Eq. (26)), assuming they do not change in this field range. In the 
second method, we conducted a torque balance of single particle rotation at 10 Hz, 50 Hz, and 
100 Hz at 6 Gauss and 10 Gauss, respectively, and fit '' ( )N fχ ω  (Eq. (27)) via adjustable 

parameters α  and Nτ , given oχ  and an estimate of Nf  (which was verified via an iterative 
method to simultaneously fit the Néel dipole measurements and the Brownian dipole, described 
below). The parameters that fit both PPMS and particle rotation data are shown in Table I. 

 
TABLE I. Parameters used in the BD Simulations. 

   

Parameter Value Equation 

pς− (mV)a, wς− (mV) 50 (9), (15) 

a  (nm)b 1400 (8), (9), (11), (14), (15), (21) 
1κ−  (nm) 30.3 (8), (14) 

oχ  at 6 Gaussc 1.46 (24),(25),(27),(28) 

oχ  at 10 Gaussc 1.33 (24),(25),(27),(28) 
α d 0.87 (24),(25),(27),(28) 

Nτ  (s)d 2.5E-9 (24),(25),(27),(28) 
mB (10-16 A/m2)e 3.0 (12), (16), (21) 
fB at 6 Gauss (%)f 3.75 (24),(25) 
fB at 10 Gauss (%)f 2.5 (24),(25) 
fN at 6 Gauss (%)f 96.25 (24),(25) 
fN at 10 Gauss (%)f 97.5 (24),(25) 

   

aReference [8]. 
bReported by the manufacturer.  
cFit to magnetophoresis experiments.  
dFit to both PPMS measurements and torque balance experiments. 
eFit to single particle critical frequency measurements. 
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fCalculated using mB and the total dipole (plug in oχ  in Eq. (20)). 

 
The magnitude of the Brownian dipole can be determined from a torque balance at 

critical frequencies, at which the Brownian dipole dominates the torque expression (Eq. (37)). At 
frequencies < 10 Hz, the Néel dipole component '' ( )N fχ ω  is estimated to be ≈  0.02 (from the 
above-mentioned model) and at the critical frequency, the Brownian dipole phase lag 1,Bfθ θ−  = 
π/2, hence mB is the only unknown in Eq. (39). The Brownian dipole mB and fractions Bf  and 

Nf  were determined in an iterative fashion by minimizing error in Eqs. (26)-(28) and Eq. (39). 
Explicitly, /B Bf m= m where m is the total dipole in A/m2 by using oχ for susceptibility in Eq. 
(20) and 1N Bf f= − , which is used to calculate '' ( )N fχ ω  in Eq. (27), then '' ( )N fχ ω used in Eq. 
(39). The values are shown in Table I. It is assumed that the magnitude of the Brownian dipole 
does not change significantly in this field and frequency range. 

D. Brownian Dynamics Simulations 
BD simulations were performed based on Eqs. (3) and (4) with an integration time of 

0.01 ms, which is short enough to assume constant force but long enough for momentum 
relaxation [51]. Equation (3) can be approximated by using the midpoint rule to avoid calculating 
the gradient of the diffusion tensor [52-54]. Initial doublet, particle, and field orientation was 
always 0  °  or parallel to the x-axis, with an initial separation of 3.03 µm, which is an estimate of 
the energy minimum at all frequencies determined from a probability distribution from 
experimental data. Simulations were run for at least 15 s, which was found to be sufficient to 
obtain particle and doublet average rotation frequency, and adequate given doublets reach steady 
state after approximately <1 s. Particle coordinates (positions, angles) were recorded every 1 ms. 
Particle, wall, and solution properties used in the simulation are shown in Table 1. The Néel 
phase lag values from the model (see Eq. (26)-(28), Table I) were directly used in BD 
simulations at 6 Gauss. 

Due to the particles’ proximity to the underlying wall, translational motion parallel to the 
wall will be slowed [55]. However, translation-rotation coupling increases with wall proximity 
[44], speeding up translational motion. We made the assumption that the overall net effect of the 
wall would be a reduction in translational motion, although not as reduced as a single particle 
translating parallel to the wall. To validate this assumption, we ran Stokesian Dynamics (SD) test 
cases that included particle-particle, particle-wall and multi-body hydrodynamics [44,54,56] and 
compared them to BD simulations run with a 1.35 resistance increase for the translational 
diagonal terms. The simulations agreed qualitatively near the critical frequency and at high 
frequencies. Regarding quantitative agreement, for 10 trials at a high frequency case (50 Hz at 6 
Gauss), the difference in mean doublet rotation for SD vs. BD was ~20% and the results were 
within one standard deviation of each other. For 10 trials at a frequency right after the critical 
frequency (0.6 Hz at 6 Gauss), the difference in mean doublet rotation was ~30%. Since both the 
SD and BD results at these frequencies were still within the ranges that were observed in 
experiment, we used the computationally less expensive BD simulations.  

IV. RESULTS & DISCUSSION 

B. Single Particle Rotation 
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Single particle rotation rates were measured in fields of 6 and 10 Gauss and rotation 
frequencies from 0.1 Hz to 100 Hz. Representative rotational trajectories are plotted in Fig. 5(a) 
from VM and BD simulations for particles in 0.8 Hz and 80 Hz fields at 6 Gauss. Oscillations in 
the angular trajectory at 0.8 Hz demonstrate that the particle cannot rotate as fast as the field, 
which occurs after a critical frequency. Fig. 5(b) shows the Fast Fourier Transform (FFT) of the 
sine of the angular trajectories (normalized by the greatest nonzero peak) for both the simulation 
and experiment at 0.8 Hz. The BD simulation reproduces the single particle rotation, capturing 
both a dominant frequency at 0.8 Hz and a secondary frequency at ≈ 0.3 Hz.  

Figure 5(c) and Fig. 5(d) summarize single particle rotation frequency vs. field rotation 
frequency at 6 and 10 Gauss for experiments and simulation. Particles rotate at the same 
frequency as the field up to critical frequencies of ≈ 0.6 Hz for 6 Gauss and ≈ 1 Hz for 10 Gauss. 
The results can be understood by considering the torques on both the Brownian and Néel dipoles. 
At low frequencies (<2 Hz for 6 Gauss, <8 Hz for 10 Gauss), the particles have an effectively 
“permanent” dipole, on the time scale of the experiment, which aligns with the field orientation 
via Brownian relaxation. At frequencies >2 Hz for 6 Gauss and >8 Hz for 10 Gauss, the field is 
rotating with a time scale on the order of ~0.1 s, whereas the Brownian relaxation time is τB = 
4πηa3/kT ≈ 7.5 s, and therefore the torque from the Brownian dipole averages to zero.  

Because the ensemble Néel dipole has a characteristic relaxation time of τN ≈ 1x10-9s, it 
is aligned with the field at all frequencies. However, the  Néel relaxation time distribution is 
broad (described byα ), with a finite out-of-phase component of the Néel dipole [19], which 

 
 

FIG. 5. (a) Angular trajectories of VM experiments and BD simulations of isolated single particles at 6 
Gauss and 0.8 Hz (red, top) and 80 Hz (blue, bottom) (see VM movies and BD renderings of particles 
rotating at 0.8 Hz in Video S1 [27]). In all plots, experimental results are shown by light filled symbols, 
and simulation results are shown by dark unfilled symbols. (b) Fast Fourier transform (FFT) of the sine of 
the angular coordinate of the 0.8 Hz trajectories for both experiment and simulation. Single particle 
rotation frequency vs. applied field frequency for (c) 6 Gauss and (d) 10 Gauss with experimental 
averages with range bars (min & max) and BD simulation results. 
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produces a frequency-dependent torque on the particle [20,57]. As such, the particle rotation 
frequency plateaus, and then slightly increases as the phase lag begins to increase in external 
fields up to 100 Hz. It is expected that at frequencies >100 Hz, particle rotation will continue to 
increase as the out-of-phase component increases [19]. The agreement between simulations and 
experiments shows the dipole relaxation model accurately captures the measured dynamics. We 
proceed with these properties to analyze doublet rotation experiments. 

 

C. Particles Rotating within Rotating Doublets 
We report in Fig. 6 the rotation of individual particles within doublets in 6 and 10 Gauss 

fields from 0.1 Hz to 100 Hz. Rotation frequency results were not significantly different from 
those of isolated rotating particles. The variation in particle rotation rates is most likely due to 
non-uniformity between particles, such as size, static susceptibility, and phase lag. To 
demonstrate the particle non-uniformity, Fig. 6(a) shows angular trajectories of particles rotating 
at 0.8 Hz and 80 Hz at 6 Gauss. The two experimental plots shown for the 0.8 Hz case are 
distinct particles rotating in the same doublet. For comparison, the isolated particle at 0.8 Hz in 
Fig. 5(a) rotates at a frequency in between these two particles. 

Figure 6(b) shows the FFT of the sine of the angular trajectory of the faster particle in the 

 
 

FIG. 6. (a) Angular trajectories of VM experiments and BD simulations of particles rotating within a 
doublet at 6 Gauss and 0.8 Hz (red, top and bottom) or 80 Hz (blue, middle) (see VM movies and BD 
renderings of particles rotating in a doublet at 0.8 Hz and 80 Hz in Videos S2 and S3 [27]). The two 0.8 
Hz experimental plots are of particles within the same doublet, illustrating the range in magnetic 
properties. In all plots, experimental results are shown by light filled symbols, and simulation results are 
shown by dark unfilled symbols. (b) FFT of the sine of the angular coordinate of the faster 0.8 Hz 
trajectory for both experiment and simulation and (c) the FFT of the slower 0.8 Hz angular trajectory 
minus a linear fit of the same trajectory to capture the oscillation frequency of both experiment and 
simulation. Single particle rotation frequency within doublets vs. applied field frequency for (d) 6 Gauss 
and (e) 10 Gauss with experimental averages with range bars (min & max) and BD simulation results. 
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doublet in Fig. 6(a). The faster particle has a critical frequency greater than 0.8 Hz because it can 
still rotate with the field at 0.8 Hz, while its partner cannot. The slower particle is oscillating 
about an average rotation rate, indicating it is in a regime just past the critical frequency. BD 
simulations are fit to match the two particles’ trajectories by increasing the Néel dipole phase lag 
for the faster particle (relative to the measured average) (to increase torque), and decreasing the 
phase lag for the slower particle (to decrease torque). Figure 6(c) shows the FFT of the slower 
particle trajectory minus a linear fit to the average trajectory (which captures the secondary 
oscillation frequency) for both experiment and simulation in Fig. 6(a). The simulation captures 
the oscillation frequency in the experiment, as seen by the matching peaks at ≈ 0.67 Hz. 

Figure 6(d) and Fig. 6(e) summarize particle rotation frequency within doublets vs. the 
field rotation frequency for 6 Gauss and 10 Gauss. The same general behavior is observed in 
these plots as isolated, single particles (Fig. 5). The particle follows the frequency of the field 
until a critical frequency of ≈ 0.6 Hz at 6 Gauss. For 10 Gauss experiments, the critical frequency 
is at ≈1 Hz, which is less than the ≈ 2 Hz simulation estimate. The discrepancy is most likely due 
to experimental over-sampling of “slow” particles (i.e., particles with a smaller phase lag and/or 
smaller static susceptibility). Like the single particles, particles in a doublet continue to rotate 
even when the field frequency is several orders of magnitude greater than the Brownian 
relaxation time because the torque on the Néel dipole is nonzero. In the field frequency range 10-
100 Hz, the particle frequency plateaus just above 0.2 Hz and 0.5 Hz for 6 and 10 Gauss, similar 
to the plateaus seen for single particles in Fig. 5(c) and Fig. 5(d).  

The trajectory of the oscillating particle at 0.8 Hz is fit to a linear function to obtain an 
average rotation speed of 0.13 Hz. An available literature model [22] (Eqs. (40), (41)) predicts 
the frequency of oscillations given the average particle rotation and the field frequency as 0.8 Hz 
- 0.13 Hz = 0.67 Hz, which is close to the measured peak in Fig. 6(c). The critical frequency can 
also be estimated from this model, and is found to be ≈ 0.44 Hz, which is lower than the average 
measured value (see Fig. 6(d)). This also confirms what has been observed experimentally for 
this unique particle; it has a smaller overall susceptibility, Brownian dipole, and/or a smaller 
Néel dipole phase lag with the field, decreasing the field torque and reducing the critical 
frequency.  

The effect of unique particle properties is evidenced by the large variation in particle 
rotation in the frequency regime near the critical frequency, as shown in Fig. 5(c), Fig. 5(d), Fig. 
6(d), and Fig. 6(e). As expressed in Eq. (39), the Brownian dipole mB and the out-of-phase Néel 
susceptibility ( )''

N fχ ω  impact rotation at the lower frequencies and near the critical frequency, 

while ( )''
N fχ ω  influences high frequency rotation. Changing the Néel dipole phase lag by ~0.01 

radian will shift the critical frequency for unique single particles. It has been noted previously for 
these particles that non-uniformity can alter the observed dynamics [21], thus the stochastic 
nature of the system, including particle heterogeneity, explains why in some cases the simulation 
data is not within range of the experimental data. The parameters presented in Table I reproduce 
with good agreement the features observed in the single particle and particle in doublet 
experiments, but can be tuned to obtain more quantitative agreement for distinct particles.  

D. Doublet Rotation 
Figure 7 displays representative measured and simulated doublet rotational trajectories 

for doublets experiencing a 0.8 Hz or 80 Hz field at 6 Gauss. Oscillations in the 0.8 Hz 
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trajectories indicate this frequency is greater than the critical frequency for doublets. The 
normalized FFT plots of the sine of the 0.8 Hz experiment and simulation trajectories in Fig. 7(b) 
show alignment of the peaks at ≈ 0.3 Hz, demonstrating that the simulation captures the 
dominant doublet frequency. The FFT of the 0.8 Hz trajectories minus linear fits is shown in Fig. 
7(c) to obtain the frequency of the rotational oscillations. The experiment data has two peaks at ≈ 
0.8 and ≈ 1 Hz, most likely due to particle non-uniformity, whereas the simulation shows a 
single oscillation frequency at ≈ 1 Hz.  

Oscillations in doublet rotation occur just past the observed critical frequency because the 
dipoles of two particles rotate faster than the doublet vector. When the angle between the doublet 
vector and the weighted average dipole (i.e. Néel and Brownian) reaches 90°, the doublet vector 
rotates backwards to realign with the particle dipoles, and the cycle begins again. The previously 
mentioned model for single particle rotation, which relates the critical frequency and oscillation 
frequency to the average rotation frequency for a given field frequency, is adapted from a one-
dimensional torque balance of a bound doublet [22]. Such a simple torque balance may not easily 
capture the doublet rotation rate, because: (1) the doublet may not be rigidly rotating, (2) the 
doublet vector is coupled to a torque balance involving the individual particle dipoles, and (3) the 
dipoles experience stochastic translation and rotation that may not be captured by a simple 
average interaction. 

We compare the simple model to the double rotational trajectory at 0.8 Hz to determine 
how the model’s assumptions may limit its applicability for quantitative predictions of freely 
rotating doublets. First, we estimate that the overall dipoles rotate at the same frequency as the 
field at 0.8 Hz; this should be a valid assumption given the relaxation time of the Néel dipole and 
the fact that the Brownian dipole is an order of magnitude smaller than the Néel dipole (see 
Table I). Then, given the average doublet rotation rate of 0.3 Hz, the oscillation frequency should 
be 2(0.8 Hz - 0.3 Hz) = 1 Hz (see Eq. (43)). This is comparable to the observed peak in Fig. 7(c) 
for the simulation, but the secondary peak at 0.8 Hz for the experiment may indicate that the 
dipoles are not rotating at the same rate as the field. Next, using the value of 0.8 Hz as the dipole 
rotation, the estimate of the critical frequency can also be calculated from the model, and for this 
doublet it is ≈ 0.6 Hz, which is higher than the experimental upper bound of 0.4 Hz (see Fig. 
7(d)). We attribute this discrepancy to the fact that the doublet is not rigidly rotating. 

Figure 7(d) and Fig. 7(e) summarizes doublet frequency vs. field frequency at 6 and 10 
Gauss. BD simulations with the exact particle-particle hydrodynamic tensor (Eq. (30) with all 
terms) are plotted as dark circles and fall within the upper and lower values observed in the 
experiments. Critical frequencies are observed at 0.4 Hz for 6 Gauss and 1 Hz for 10 Gauss. Low 
frequency rotation below the critical frequency can be understood as follows; the particles’ 
Brownian and Néel dipoles rotate at the same frequency as the field, and as a result, the doublet 
also rotates due to the favorable head-to-tail alignment of their dipoles. This is captured in Eq. 
(16) where particles experience a tangential force in the rθ  direction when their dipoles are not 
aligned along the center-to-center vector r. At intermediate frequencies just above the critical 
frequency, the doublet vector increasingly lags behind the particle dipoles and when the lag 
reaches 90°, the doublet rotates backwards (hence the observed oscillations in the angular 
trajectory) to re-align with the dipoles. As described earlier, at higher frequencies, the Brownian 
dipole orientation averages out to zero but the Néel dipoles of the particles are still rotating with 
the field (with a characteristic lag). In this regime, the particles cannot reorient around each 
other, on the time scale of the field rotation, to align their Néel dipoles as part of doublet 
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rotation. This would imply that the doublet would not rotate at frequencies much greater than the 
critical frequency for doublets due to viscous drag. However, doublets are observed to continue 
to rotate at high frequencies in VM experiments (see VM movie at 80 Hz in Video S3). 

The significance of hydrodynamic interactions and their contribution to doublet rotation 
is illustrated by testing two additional approximate mobility matrices in the BD simulations, 
which are also shown in Fig. 7(d) and Fig. 7(e). One approximation is a mobility matrix with 
only diagonal terms corresponding to 1/ 6iia aπη=  and 31/ 8iic aπη=  (red points in Fig. 7(d) 
and Fig. 7(e) shifted to the right of the critical frequency). These simulations overestimate the 
critical frequency because the particles experience an overall smaller viscous resistance. In 
addition, doublet rotation vanishes at high frequencies in simulations with only diagonal terms. 
These results imply that the doublet rotates at low frequencies due to dipolar interactions, a 
behavior that is still qualitatively captured by the simple hydrodynamic model, and at high 
frequencies due to hydrodynamic interactions that are not captured by this model. It appears that 
rotation of the particles within the doublet couples to their translation (b , b%  in Eq. (30)), leading 
to overall doublet rotation at high frequencies.  

To test the role of translation-rotation, BD simulations were also performed with b  and 
b%  removed from the mobility matrix; the results are shown as gray points (shifted to the left of 

 
FIG. 7. (a) Angular trajectories of VM experiments and simulations of doublets rotating at 6 Gauss and 
0.8 Hz (red, top) or 80 Hz (blue, bottom) (see VM movies and BD renderings of rotating doublets at 0.8 
Hz and 80 Hz in Videos S2 and S3 [27]). In all plots, experimental results are shown by light filled 
symbols, and simulation results are shown by dark unfilled symbols. (b) FFT of the sine of the angular 
coordinate of the 0.8 Hz trajectory for both experiment and simulation and (c) the FFT of the 0.8 Hz 
angular trajectory minus a linear fit of the respective trajectory to capture the oscillation frequency for 
both experiment and simulation. Doublet rotation frequency vs. applied field frequency for (d) 6 Gauss 
and (e) 10 Gauss with experimental averages with range bars (min & max) and BD simulation results. In 
plots (d) and (e), simulations with exact mobility matrix (Eq. (30)) (black) are compared to simulations 
run as if the particles are non-interacting with all off-diagonal elements in the matrix zero (red) and as if 
the particles have no translation-rotation or rotation-translation coupling (i.e., b , b%   in Eq. (30) are zero) 
(gray). 
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the critical frequency) in Fig. 7(d) and Fig. 7(e). In this case, the doublet rotation rate is 
underestimated for frequencies >0.3 Hz for 6 Gauss and >0.7 Hz for 10 Gauss, indicating that 
translation-rotation coupling contributes to doublet rotation even at low frequencies. At higher 
field frequencies, doublet rotation vanishes without including coupling, which indicates that the 
translation-rotation coupling is the sole mechanism causing doublet rotation in this regime. This 
effect would still occur in simulations that only include far field hydrodynamics, although to a 
lesser extent, because the coupling terms in Eq. (32) remain qualitatively unchanged.   

The results highlight the connection between individual particle dynamics and doublet 
dynamics: the particles’ rotation within the doublet produces an asymmetric flow, causing 
particles to translate around each other and the doublet to rotate. This finding is supported by 
another literature study that also showed individual particle rotation contributed to rotation of 
larger clusters via a translation-rotation coupling mechanism [32]. Due to the relationship 
between particles and doublet rotation, the doublet experimental results can be used to confirm 
the dipole relaxation model applied in BD. At 10 Gauss, slightly greater phase lag values (+ 
~0.01 radian) than those from the model fit parameters (α  and Nτ  in Eqs. (26)-(28)) were found 
to better match single particle and doublet experiments, but follow the trend of the model. 

E. Particle Separation Dynamics 
Particles in rotating doublets experience varying degrees of fluctuations in their center-to-

center distance, r = |r| with varying field frequency. Separation distance as a function of time is 
plotted in Fig. 8 for three representative frequency ranges at 6 and 10 Gauss. At frequencies 

 
 

FIG. 8. Representative plots of particle-particle separation, r, vs. time, t, at 6 Gauss (a-c) and 10 Gauss (d-
f) at frequencies below the critical frequency (a,d: 0.1 Hz), just after the critical frequency (b: 0.6, d: 2 
Hz), and two orders of magnitude higher than the critical frequency (c: 50 Hz, f:100 Hz) for experiments 
(black, open circles) and simulations (green, closed circles). Oscillations in r are observed at frequencies 
near 0.5 Hz for 6 Gauss and near 2 Hz for 10 Gauss (similar to frequencies where secondary angular 
oscillations are seen for single particles and doublets in Figs. 5-7).  
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below the critical frequency (Fig. 8(a), Fig. 8(d)), the dipoles are aligned with r, and the dipole-
dipole interaction is the same as if the field were constant. As such, strong dipolar attraction 
holds particles together with minimal fluctuations in r. At field rotation frequencies much greater 
than the critical frequency (Fig. 8(c), Fig. 8(f)), the Néel dipole is rotating several orders of 
magnitude faster than r such that the average angle between r and the dipoles is assumed to be ≈ 
45°. This still corresponds to a net attraction between particles (Eq. (16)), although it is much 
weaker than aligned dipoles at 0°, thus producing slightly larger fluctuations in r compared to the 
low frequency limit. 

 For field rotation frequencies near the critical frequency (Fig. 8(b), Fig. 8(e)), the 
particles intermittently separate and came back together at the same frequency as the oscillations 
in the doublet rotation (see Fig. 8). The simultaneous oscillations in rθ  (Fig. 8) and r (Fig. 8) are 
observable in both experiment and simulations (see a representative VM experiment and BD 
simulation of a doublet at 0.8 Hz in Video S2 [27]). In this regime, the angle between the single 
particle dipoles and the doublet vector is periodically between 55°-90° and the particles 
experience a temporary repulsion. For comparison, the angular transition from attraction to 
repulsion occurs at ≈ 55° by solving a simplified version of Eq. (16) for point dipoles with 
identical magnitude restricted to the x-y plane. The temporary repulsion causes the particles to 
separate at the same time as the temporary reversal in rotation direction when the relative angle 
reaches 90°.  

The BD simulation results in Fig. 8 capture the observed r oscillations at 0.6 Hz and 2 Hz 
for 6 and 10 Gauss, as well as the Brownian fluctuations in r in the low and high frequency 
ranges below and above the transition frequency range. The dipolar attraction is strongest when 
the angle between the single particle dipoles and doublet vector is ≈ 0°, which is the case at 0.1 
Hz where the variation in r is seen to be ≈ 100 nm. The dipolar attraction between particles 
decreases at 50-100 Hz, as shown by the ≈ 200 nm variation in r at these frequencies. Variation 
in r is slightly greater in the simulation than is observed experimentally (observed in histograms 
of r), and this discrepancy is most pronounced in the oscillation regime. The error is most likely 
due to the approximate point-dipole potential (i.e., Eq. (16)) used in simulations, which at close-
range overestimates the repulsion by ~10% when the dipoles are perpendicular to the doublet 
vector and underestimates the attraction for aligned dipoles by ~20% [58]. 

V. CONCLUSIONS 
Our findings demonstrate agreement between experiments, simulations, and models of 

superparamagnetic particle dynamics in rotating magnetic fields for single particles and doublets. 
Rotation of particles and doublets depends on dipole-field interactions, dipole-dipole 
interactions, and hydrodynamic interactions. Our results show that both dipolar interactions 
(including relaxation mechanisms) and hydrodynamic interactions (including exact 2-body, 
translation-rotation coupling) play an essential role in capturing non-equilibrium, steady-state 
rotation of magnetic particles vs. field rotation frequency. Simulations and modelling results 
verify that single particle rotation within doublets directly affects overall doublet rotation (via 
hydrodynamics), which we show is essential for qualitatively and quantitatively matching 
experiments with simulations. The effect is most notable at high frequencies when an increased 
Néel phase lag causes the particles to continue rotating. The direct measurements and rigorous 
models developed for single particles and rotating particle pairs within doublets provide a 
foundation to understand interactions and dynamics of magnetic particles in time varying fields 
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important to colloidal assembly in field-driven systems. 
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APPENDIX: MEASURING STATIC SUSCEPTIBILITY 

The effective static susceptibility, oχ , for the particles is reported by the manufacturer as 
0.96, but to obtain an estimate at the order of the field intensities used in this work, 
magnetophoresis experiments were conducted with a 5 Gauss/mm gradient at several field 
intensities. Single particle drift u  is measured using particle tracking, and measurements are 
shown in Fig. 9(a). The susceptibility is calculated by solving a force balance between the 
magnetophoretic force [59] and viscous drag as, 

 ( ) ( )34 3mag o oa H Hπ χ μ= ∇F H  (A1) 

  ( )6drag af hπη=F u  (A2) 

where f(h)=2.8 is a hydrodynamic correction due to lateral movement at height h from the wall 
[54,61], and h is estimated from a balance of gravity and electrostatic repulsion as [62], 

 1 ln pwh B Gκ κ− ⎡ ⎤= ⎣ ⎦   (A3) 

By equating Eqs. (A1) and (A2) at steady state, the susceptibility as a function of field strength, 
where the field gradient and the drift are in the x-direction, is as shown, 

 ( ) ( )
( )

34 3
6

o x
o

x

a H H
H

af h u
π μ

χ
πη

∇
=  (A4) 

We conducted 6 trials at 10 Gauss, and 3 trials for all other field intensities. The results 

 
 

FIG. 9. (a) Measured mean drift, ux, (points) vs. field strength, oHμ , in Gauss. The bars are max and min 

values. (b) Susceptibility, oχ , (points) vs. oHμ  computed from Eq. (A4) and fit to the empirical function 
in Eq. (A5) (solid line). The solid line in part (a) is obtained by inserting Eq. (A5) for the value of 

( )o Hχ  in Eq. (A4) and solving for ux. Magnetization, M= ( )o Hχ H, is also plotted in (b) (dashed line) 
and agrees qualitatively with previously reported magnetization curves for superparamagnetic particles 
[60].  
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are fit to an empirical function that has the form, 

 ( ) ( )expo 1 2 3 oH c c c Hχ μ= + −   (A5) 

where c1=0.9569, c2=0.7709, c3=0.072. Experiments are not conducted at 6 Gauss due to the 
need to run very long videos to get an accurate drift. Instead, (6 / )o oGχ μ  was determined based 
on Eq. (A5). Magnetization defined as M= ( )o Hχ H is plotted on a separate y-axis in Fig 9(b). 

Note that throughout the main text, the H in ( )o Hχ is dropped and oχ  is referred to as the static 
susceptibility. 
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